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Abstract
Aim To elucidate the important cellular and molecular drivers of pulmonary long COVID, we generated a
single-cell transcriptomic map of the airway mucosa using bronchial brushings from patients with long
COVID who reported persistent pulmonary symptoms.
Method Adults with and without long COVID were recruited from the general community in Greater
Vancouver, Canada. The cohort was divided into those with pulmonary long COVID, which was defined as
persons with new or worsening respiratory symptoms following ⩾12 weeks from their initial acute severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (n=9); and control subjects defined as
SARS-CoV-2 infected persons whose acute respiratory symptoms had fully resolved or individuals who had
no history of acute coronavirus disease 2019 (COVID-19) (n=9). These participants underwent bronchoscopy
from which a single cell suspension was created from bronchial brush samples and then sequenced.
Results A total of 56 906 cells were recovered for the downstream analysis, with 34 840 cells belonging to
the pulmonary long COVID group, which strikingly showed a unique cluster of neutrophils in the
pulmonary long COVID group (p<0.05). Ingenuity Pathway Analysis revealed that the neutrophil
degranulation pathway was enriched across epithelial cell clusters. Differential gene expression analysis
between the pulmonary long COVID and control groups demonstrated upregulation of inflammatory
chemokines and epithelial barrier dysfunction across epithelial cell clusters, as well as over-expression of
mucin genes across secretory cell clusters.
Conclusion A single-cell transcriptomic landscape of the small airways suggest that neutrophils may play a
significant role in mediating the chronic small airway inflammation driving pulmonary symptoms of long
COVID.

Introduction
The coronavirus disease 2019 (COVID-19) pandemic has infected >771 million people, accounting for
>6.9 million deaths worldwide [1]. As we transition into the post-pandemic era, a new clinical entity has
emerged: post-acute sequelae of severe acute respiratory coronavirus 2 (SARS-CoV-2) infection,
commonly known as long COVID [2]. Approximately 10% of all infected adult survivors experience long
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COVID, with almost half reporting persistent symptoms beyond 1 year post-infection [3, 4]. However, long
COVID is clinically complicated, as it is associated with >200 different symptoms involving numerous
organs in the body [3, 5]. Among persistent symptoms, respiratory complaints are common [6–8], with
38.5% of all adult Canadians with long COVID experiencing dyspnoea and 39.3% experiencing cough [8].
Despite this, the pathophysiology of pulmonary long COVID remains obscure. To elucidate cellular and
molecular drivers of pulmonary long COVID, we generated a single-cell transcriptomic map of the airway
mucosa using bronchial brushings from patients with long COVID and with persistent pulmonary
symptoms for >10 months following acute SARS-CoV-2 infection.

Methods
Study population
Adults (aged ⩾19 years) with and without long COVID were recruited from a tertiary care clinic at St
Paul’s Hospital as well as from the general community in greater Vancouver, Canada, through advertising.
Following informed consent (University of British Columbia/Providence Health Care research ethics board
approval H21–02149 and H19–02222), all participants answered a series of questionnaires including the St
George’s Respiratory Questionnaire (SGRQ), and underwent a pulmonary function test (PFT), low-dose
chest computed tomography (CT), and phlebotomy for complete blood count. Bronchoscopy was also
performed in a subset of these participants who consented to a research bronchoscopy, the details of which
have been published previously [9].

A priori, the cohort was divided into three groups: 1) patients with pulmonary long COVID [10], defined
as individuals who remained persistently symptomatic >12 weeks post-infection, with a new onset or
worsening of respiratory symptoms including cough or dyspnoea, in conjunction with SGRQ total score of
>10 in the absence of known chronic lung conditions, such as bronchiectasis, pulmonary fibrosis or
COPD; 2) individuals without any lingering respiratory symptoms post-COVID-19 infection (i.e. recovered
COVID-19 patients); and 3) subjects who did not have any history of COVID infection at the time of
enrolment (never COVID-19). As the demographic and clinical features of groups 2 and 3 were similar, in
this study, we merged them as one control group (table 1). We excluded any participants with pre-existing
chronic respiratory disorders, as well as participants who were heavily smoking cigarettes, cannabis or
e-cigarettes at the time of recruitment.

The present cohort study included 24 participants who underwent bronchoscopy between January 2021
and August 2023. All participants were vaccinated against SARS-CoV-2 at the time of enrolment. Based
on history, the predominant strains at the time of the patient’s initial SARS-CoV-2 infection were alpha,
beta, gamma and delta variants. Bronchoscopies were performed when the subjects were clinically stable
for >2 months. Among 13 subjects with pulmonary long COVID, four were excluded due to poor quality
of samples or technical issues in sample processing or library preparation. Among six COVID-19 patients
without pulmonary symptoms, two were also excluded for these reasons. The final number of subjects with
pulmonary long COVID in the analysis was nine. The final number of control subjects was also nine, with
five who had experienced acute COVID-19, but were now free of significant pulmonary symptoms, and
four without a prior history of acute COVID-19 (figure 1).

Bronchoscopy and single-cell suspension preparation
Under conscious sedation, a fibreoptic bronchoscope (Olympus Corporation, Tokyo, Japan) was passed
through the mouth of participants and into the trachea. With the bronchoscope positioned in one of the
subsegmental bronchi of the right or left upper lobe, a cytological brush was inserted through a
bronchoscope channel into a sixth- to eighth-generation airway from where bronchial brush samples were
collected. A cytological brush was then withdrawn from the bronchoscope, and using a pair of
stainless-steel scissors, the brush was cut into a microcentrifuge tube containing 1000 μL medium and kept
on ice until further processing. A single-cell suspension was then created according to our established
protocol [11]. In brief, the single-cell suspension resulted from using Accutase dissociation agent (Stemcell
Technologies, Vancouver, BC, Canada), and multiple washing steps using Pneumacult-Ex (Stemcell
Technologies) media. During the sample collections or throughout the processing, if visible blood was
noted on the brush or cell pellets, the sample was deemed contaminated and was not submitted for
sequencing.

Single-cell sequencing
The created single-cell suspension was transferred on ice to a sequencing facility where the samples were
loaded onto the Chromium Controller using the Chromium Next GEM Single Cell 3′ Kit v3.1 and Chip G
(10x Genomics, CA, USA). The sequenced libraries were prepared in accordance with a previously
published Chromium Single Cell 3′ Reagent Kits User Guide [12]. The integrity of the ccomplementary
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DNA libraries was examined using a 2100 Bioanalyzer instrument with a High Sensitivity DNA Kit
(Agilent Technologies, CA, USA). Sequencing of the final libraries was performed at a loading
concentration of 650 pM with a 2% PhiX spike-in on the NextSeq 2000 (Illumina, CA, USA) as
recommended by 10x Genomics. The final depth of sequenced samples was targeted to reach 60 000 reads
per cell. The Fastq files containing the data were then inputted to the Cell Ranger v6.01 (10x Genomics)
and the reads were aligned to the human reference genome (hg19).

Bioinformatics and statistical analysis
Single-cell analysis pipeline
Correction for ambient RNA was done using the R package SoupX (version 1.5.2) [13] prior to performing
further quality control tasks and downstream analysis. Following ambient RNA correction, using the
Pegasus package (version 1.8.1) in Python, we performed additional quality control steps, in which cells
with high mitochondrial genes (>20%) or high haemoglobin genes (>1%) were filtered out. To ensure the
integrity of the data, we also filtered out cells that expressed <150 or >8000 genes, as very low or high
gene counts could be the result of contamination or a technical artifact. We then removed mitochondrial
genes, ribosomal genes and MALAT1 to reduce the impact of the aforementioned genes on downstream
analysis and to improve the accuracy of gene expression profiles. The data were then processed for

TABLE 1 Baseline characteristics of study participants in the control group

Recovered COVID-19 Never COVID-19 p-value

Participants 4 5
Age, years 48 (32–61) 26 (24–65) 1.00
Male 2 (50) 2 (40) 1.00
BMI kg·m−2 25.6 (21.9–287.7) 22.9 (22.4–24.6) 0.71
Cigarette smoking status 0.17
Former 2 (50) 0 (0)
Never 2 (50) 5 (100)

Cannabis smoking status 1.00
Current 1 (25) 1 (20)
Never 3 (75) 4 (80)

E-cigarette smoking status 1.00
Current 0 (0) 1 (20)
Never 4 (100) 4 (80)

SGRQ 3.1 (1.9–4.9) 1 (0.8–5.7) 0.54
Symptoms 2.6 (0–6) 6.7 (5.7–23.2) 0.26
Activity 9.2 (4.7–13.7) 0 (0–0) 0.23
Impact 0 (0–0) 0 (0–0) 0.50

Pulmonary function testing
FVC L 4.1 (3.9–4.4) 3.9 (3.8–4.8) 0.90
FVC % predicted 122.2 (113.4–127.5) 116.5 (106.6–122.3) 0.39
FEV1 L 3.5 (3.3–3.8) 3.4 (3–4.2) 1.00
FEV1 % predicted 123.1 (117.5–125.4) 116.9 (104.6–117.7) 0.11
FEV1/FVC % 80.8 (80.3–83.9) 81 (78.4–86.9) 0.66
DLCO % predicted 108.2 (105.3–111.6) 108.1 (99.4–112.2) 0.71

Blood cell counts
White blood cells ×109 cells·L−1 5.2 (4.9–5.5) 4.5 (3.9–4.6) 0.11
Neutrophils % 58.3 (54.6–61.8) 55.7 (46.8–57.1) 0.71
Lymphocytes % 29.7 (28–31.3) 34.9 (34.6–36.5) 0.18
Monocytes % 4.5 (4.1–5.2) 4.3 (4.2–4.4) 0.90
Eosinophils % 3.1 (1.8–4.6) 2 (1.9–2.5) 1.00
Basophils % 0.5 (0.4–0.5) 0.7 (0.6–1) 0.10

BAL differential cell count#

Macrophage % 90 (82.3–94.8) 79 (77–91) 0.54
Lymphocytes % 8.5 (5–14) 8 (4–16) 1.00
Neutrophils % 1.5 (0.8–3) 5 (2–5) 0.39
Eosinophils % 0 (0–0.3) 0 (0–0) 0.37

Data are presented as n, median (interquartile range) or n (%), unless otherwise stated. COVID-19: coronavirus
disease 2019; BMI: body mass index; SGRQ: St George’s Respiratory Questionnaire; FVC: forced vital capacity;
FEV1: forced expiratory volume in 1 s; DLCO: diffusion capacity for carbon monoxide; BAL: bronchoalveolar
lavage. #: the percentages of each type of leukocyte present in the BAL fluid.
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normalisation, logarithmic transformation, principal component analysis, and batch effect correction using
the Scanorama algorithm (version 1.7.3). After nearest neighbour calculation, the Leiden algorithm was
used to cluster the data [14]. Cell type annotation was then performed using a curated gene list from the
Pegasus human lung and human immune legacy markers, which was complemented by other resources
including the Protein Atlas (www.proteinatlas.org), PanglaoDB [15] and the markers highlighted in
publications such as HEWITT et al. [16] and ZARAGOSI et al. [17] (supplementary table S1) [16–19]. Next,
during annotation, within each cluster, we grouped cells into subclusters based on the differential gene
expression of canonical markers. For example, within the basal cell cluster, we subdivided the cells into
basal and basal-2 subclusters based on differences in the gene expression of ⩾20% for TP63, a known
canonical gene marker for basal cells.

Wilcoxon rank-sum tests were used to determine if there were significant cell proportion differences
between the pulmonary long COVID group and controls. In addition, we performed differential gene
expression between the two groups within each cluster, and significantly expressed genes were identified at
a false discovery rate (FDR) of <0.05. Differential gene expression analysis among pooled cell clusters
(e.g. epithelial) was performed using NEBULA [20], a negative binomial mixed model to conduct
association analysis of multisubjects between the pulmonary long COVID group versus the control group.
Pre-ranked gene set enrichment analysis was performed using log fold change (logFC) ranks from
differential expression results with the Bioconductor R package, fgsea. Cell trajectory and pseudotime
analysis were carried out using Velocyto 0.17.17, and ScVelo 0.2.5 packages in Python. All analyses were
performed in R (4.3.1) and Python (3.9.12).

Ingenuity Pathway Analysis
All cluster-specific genes, in addition to their respective log2FC and FDR values, were uploaded to
Ingenuity Pathway Analysis (IPA; Qiagen, Hilden, Germany), excluding cell clusters that comprised <2%
of immune or epithelial cells in disease or control groups. Any clusters, such as suprabasal, that were
considered to be cells in transition, were further excluded even if they had >2% presence in both disease
and control groups to minimise the potential for false positive results due to their transition state. For each
cluster-specific differentially expressed gene (DEG) set (FDR<0.05 and a |log2FC|>0.5), IPA core analysis
functions generated p-values (threshold [–log (adjusted p-value)>1.3]) and predicted activation or
inhibition status (positive or negative z-scores) for representative canonical pathways and upstream

Recovered COVID (n=6)

24 subjects with bronchoscopy under eligibility criteria#

Pulmonary long COVID (n=13)

Poor-quality samples/

technical issues (n=2)

Poor-quality samples/

technical issues (n=4)

Final subject (n=9) Final subjects (n=4) Final subjects (n=5)

Final case group (n=9) Final control group (n=9)

Control without a history of COVID-19

(n=5)

FIGURE 1 A flow diagram summarising the participants who were enrolled between January 2021 and August 2023 and underwent bronchoscopy.
13 subjects were identified as having persistent respiratory symptoms ⩾3 months post-COVID-19 (coronavirus disease 2019) infection and scored
>10 in the St George’s Respiratory Questionnaire (pulmonary long COVID). Nine subjects were selected as controls due to either no history of
COVID-19 infection or lack of persistent respiratory symptoms post-infection. The final number of subjects used for analysis was nine in the
pulmonary long COVID group and nine in the control group. #: subjects with pre-existing chronic respiratory disorders and participants who were
heavily smoking tobacco cigarettes or using cannabis or e-cigarettes at the time of recruitment were excluded.
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regulators (including associated downstream genes), the latter of which were used to identify chemical and
biological drug targets predicted to modulate each DEG set. Core-analysis results from all epithelial
clusters were also inputted for comparison analysis, with top upstream regulators and canonical pathways
ranked based on the sum of absolute z-score across all compared cell types. Bubble plots for these
analyses were then generated using the R package Plotly (version 4.10.4).

Results
Study subjects
There were no significant differences in age, sex, smoking status or PFT measures between subjects with
pulmonary long COVID (n=9) and controls (n=9). However, the median (interquartile range) body mass
index was significantly higher in subjects with pulmonary long COVID than in control subjects (28 (27–
31) kg·m−2 versus 23 (22–26) kg·m−2, p=0.03). Similarly, the SGRQ total score and all three domains of
symptoms, activity and impact were also significantly higher in subjects with pulmonary long COVID than
in control subjects (45.0 (33.1–69.1) versus 2.1 (1.0–5.7), p<0.001 for SGRQ total score; 42.7 (40.8–44.1)
versus 5.7 (0–8.8), p<0.001 for the symptoms domain; 60.4 (48.3–86.5) versus 0 (0–12.2), p<0.001 for the
activity domain; and 32.5 (21.0–63.6) versus 0 (0–0), p<0.001 for the impact domain) (table 2) There were
no significant differences in blood leukocytes or their differentials including neutrophils, lymphocytes,
monocytes, eosinophils and basophils between the two groups. In bronchoalveolar lavage fluid, the cell
counts for alveolar macrophages, lymphocytes, neutrophils and eosinophils were similar between the two
groups and there was no evidence of a microbiological infection (table 2). The median (range) follow-up
from the acute COVID-19 infection to bronchoscopy was 23.7 (11.2–30.6) months and 18.5 (10–24.8)
months for pulmonary long COVID group and the control group that recovered from COVID-19,
respectively. On a low-dose chest CT scan, there were no abnormal findings in the control group and there
were minimal abnormal findings in the pulmonary long COVID group, which included mosaic attenuation
(n=1), ground-glass opacity (n=1) and reticulation (n=3) without emphysema or honeycombing (table 3).

Profiling the airway mucosal landscape using single-cell RNA sequencing
A total of 56 906 cells were recovered for downstream analysis, with 34 840 cells belonging to the
pulmonary long COVID group. Using uniform manifold approximation and projection, we generated a
dimensionality reduction plot, which revealed several clusters. These clusters were then labelled using
legacy markers and manual curation (figure 2). With this approach, we identified a cluster predominantly
derived from bronchial brush samples of the pulmonary long COVID patients (figure 2a), annotated as
neutrophils. Overall, we found 16 clusters of epithelial origin and 15 clusters of immune cells (figure 2b).
A composition plot (figure 3) illustrates the distribution of all established clusters.

A Wilcoxon rank-sum test comparing the composition of clusters between the pulmonary long COVID and
control groups revealed that the abundance of neutrophils was significantly increased in pulmonary long
COVID participants (p<0.05) (supplementary figure S1a and b). To validate this observation, we prepared
cytospin slides from randomly selected bronchial brushes and confirmed the presence of neutrophils in
pulmonary long COVID group samples (n=3). In contrast, we did not observe any neutrophils in the
control samples (n=3) (supplementary figure S2a and b).

Trajectory analysis
The RNA velocity dynamical model in conjunction with a pseudotime analysis revealed that the majority
of cells in our dataset were relatively transcriptomically stable and thus probably in a quiescent state. This
was confirmed by evaluating the Antigen Kiel 67 (MKI67) expression levels across all cell types
(supplementary figure S3a and b). The calculated coherence of the vector field provided us confidence of
accuracy for the calculated RNA velocity (supplementary figure S3c).

Differential gene expression analysis of epithelial and immune cells
Next, we explored the transcriptional profiling differences in the airway mucosa of pulmonary long
COVID compared to control groups. Here, the DEGs between pulmonary long COVID and control
participants were subjected to canonical pathway analysis in IPA (supplementary figure S4a–s). Among all
epithelial cells, consistent enrichment in pathways associated with neutrophil activation was observed.
These pathways included neutrophil degranulation in basal and secretory cell clusters, neutrophil
extracellular trap signalling in basal cell clusters, oxidative phosphorylation in basal and ciliated cell
clusters, the Ras homology (Rho)-GTPase cycle pathway in secretory cell clusters, and interferon-γ
signalling in ciliated cell clusters (figure 4a–c).

Given the enrichment of neutrophil-related pathways, we next explored epithelial gene expression changes
related to neutrophil chemoattraction, as well as epithelial changes known to be altered by neutrophil
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TABLE 3 Chest computed tomography findings

Pulmonary long COVID Control

Participants 9 9
Emphysema 0 (0) 0 (0)
Mosaic attenuation 1 (11) 0 (0)
Ground-glass opacity 1 (11) 0 (0)
Reticulation 3 (33) 0 (0)
Honeycombing 0 (0) 0 (0)

Data are presented as n or n (%).

TABLE 2 Baseline characteristics of study participants in pulmonary long COVID and control groups

Pulmonary long COVID Control p-value

Participants 9 9
Age years 54 (44–60) 35 (24–62) 0.63
Male 5 (55.6) 4 (44.4) 1.00
BMI kg·m−2 28 (27–31) 23 (22–26) 0.03
Cigarette smoking status 1.00
Former 1 (11.1) 2 (22.2)
Never 8 (88.9) 7 (77.8)

Cannabis smoking status 0.47
Current 0 2 (22.2)
Never 7 (100) 7 (77.8)

E-cigarette smoking status 1.00
Current 0 1 (11.1)
Never 7 (100) 8 (88.9)

SGRQ, total 45.0 (33.1–69.1) 2.1 (1.0–5.7) <0.001
Symptoms 42.7 (40.8–44.1) 5.7 (0–8.8) <0.001
Activity 60.4 (48.3–86.5) 0 (0–12.2) <0.001
Impact 32.5 (21.0–63.6) 0 (0–0) <0.001

Pulmonary function testing
FVC L 4.0 (3.0–5.4) 4.0 (3.8–4.8) 1.00
FVC % predicted 108.6 (101.6–114.6) 117.8 (106.6–126.5) 0.19
FEV1 L 3.0 (2.4–4.2) 3.4 (3.0–4.1) 0.48
FEV1 % predicted 110.7 (94.7–117.1) 117.7 (106.3–125.0) 0.11
FEV1/FVC % 80.6 (76.8–84.4) 81.0 (79.8–86.9) 0.66
DLCO % predicted 96.9 (83.8–102.5) 108.1 (100.7–112.2) 0.13

Blood cell counts
White blood cells ×109 cells·L−1 5.3 (4.7–6.5) 4.6 (4.5–5.1) 0.31
Neutrophils % 56.4 (52.1–58.5) 55.7 (53.9–61.7) 1.00
Lymphocytes % 32.5 (30.4–38.5) 32.3 (28.4–34.9) 0.60
Monocytes % 5.1 (4.0–6.4) 4.3 (4.1–4.9) 0.60
Eosinophils % 2.2 (1.6–3.1) 2.0 (1.9–4.2) 0.49
Basophils % 0.6 (0.5–0.9) 0.5 (0.4–0.7) 0.59

BAL differential cell count#

Macrophage % 79 (76–95) 86 (77–93) 0.79
Lymphocytes % 18 (4–20) 8 (4–16) 0.59
Neutrophils % 1 (0–3) 2 (1–5) 0.37
Eosinophils % 0 (0–0) 0 (0–0) 0.37

Days from COVID-19 infection to bronchoscopy 711 (444–832) 556 (374–703)¶ 0.35

Data are presented as n, median (interquartile range) or n (%), unless otherwise stated. BMI: body mass index;
SGRQ: St George’s Respiratory Questionnaire; FVC: forced vital capacity; FEV1: forced expiratory volume in 1 s;
DLCO: diffusion capacity of the lung for carbon monoxide; BAL: bronchoalveolar lavage; COVID-19: coronavirus
disease 2019. #: the percentages of each type of leukocyte present in the BAL fluid; ¶: the time from infection to
bronchoscopy for individuals in the control group who are post-COVID, but do not report any persistent
pulmonary symptoms (n=4).
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accumulation (i.e. barrier dysfunction and mucin production) (figure 5a and b). CXCL6 and interleukin
(IL)-8, known cytokines associated with neutrophil recruitment and activation, were upregulated in the
pulmonary long COVID group (threshold: log2FC>|0.5| and FDR <0.05) (figure 5a). Using the same
threshold, a similar upregulation pattern was also observed in genes for SLPI (secretory leukocyte protease
inhibitor), IL-33, TRPV4 (transient receptor potential vanilloid-type 4) and TSLP (thymic stromal
lymphopoietin), which could implicate epithelial barrier dysfunction (figure 5a). Looking at all known
human mucin genes, compared to controls, the results indicated overall upregulation of MUC5AC, MUC4,
MUC1 and MUC5B across pulmonary long COVID epithelial cells with secretory characteristics (figure 5b).

The top five significantly (FDR<0.05) identified enriched pathways among pooled epithelial cells, based
on the reference Human Molecular Signatures Database (MSigDB), including Gene Ontology (GO),
Reactom85, hallmark gene sets and the Kyoto Encyclopedia of Genes and Genomes (KEGG) (KEGG
MEDICUS, KEGG legacy gene sets), were plotted (supplementary figure S5, supplementary table S2).
The results also indicated enriched immune pathways in epithelial cells, similar to what we observed in the
IPA analysis.

We grouped all the identified cell types in the samples based on their lineages (ciliated, secretory, dendritic,
T-cells and myeloid lineage cells). Among the resulting top five most common cell type-specific DEGs
(threshold: FDR <0.05 and log2FC>|0.5|), we noted 10 upregulated genes to be common across these five
groups with no significant pathway enrichment. When looking at the enriched pathways for the two most
abundant clusters (i.e. secretory and myeloid) using the R package WebGestaltR, we noted enrichment of
GO pathways that were indicative of immune response activation (supplementary figure 6a–c).

On the basis of upregulated genes and associated enriched pathways, we used the IPA database to explore
potential therapeutics that could potentially reverse the transcriptomic signature across all epithelial cells
(figure 6, supplementary table S3). For example, budesonide and fluticasone propionate were predicted to
revert the signature of pulmonary long COVID airways to that resembling the control airway.
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Discussion
Here, we profiled the transcriptomic landscape of epithelial and airway immune cells in the small airways
of patients with pulmonary long COVID at a single-cell resolution. The most striking feature was an
increase in the number of neutrophils in the airway mucosa as well an upregulation in the
neutrophil-associated activation signatures and increased expression of epithelial barrier dysfunction
markers across all epithelial cells, alongside mucin genes in the secretory cells. in the pulmonary long
COVID airways. We also observed an increase in MUC gene expression in the secretory cells of the
pulmonary long COVID airways.

Our findings are in line with the important role that neutrophils play in the pathogenesis of severe
COVID-19. During an acute infection, there is a significant increase in circulating neutrophils in peripheral
blood of patients with severe COVID-19 infections [21, 22] and several studies using single cell
RNA-sequencing (scRNA-seq) have reported an increase in dysfunctional circulating neutrophils in the
blood of those with severe disease [23, 24], which may contribute to cytokine storm caused by
uncontrolled innate immune system activation during active disease [25, 26].
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However, the pathogenesis of long COVID-19 is largely unknown. A previous study indicated that
individuals with interstitial lung changes at 3–6 months post-infection demonstrated upregulation in
neutrophil-associated immune signatures including increased chemokines, proteases and markers of
neutrophil extracellular traps in circulation compared to those who experienced a complete radiographic
resolution at follow-up [27]. A recent study showed that long COVID patients display upregulation of
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certain inflammatory plasma proteins. Interestingly, the most enriched pathways (for these proteins) were
those related to neutrophil degranulation [7]. We extend these data by showing that neutrophils and their
associated signatures are increased in the small airway mucosa of patients with pulmonary long COVID,
even among patients with no or minimal changes on chest imaging (by CT scan) or PFTs. Additionally,
the IPA canonical pathway analysis indicated enrichment of neutrophilic degranulation pathways in both
secretory and basal cells. Oxidative phosphorylation in the basal cells and ciliated cells clusters and
Rho-GTPase cycle pathway in secretory cells clusters were also enriched, indicating ongoing inflammation.
Oxidative phosphorylation in mitochondria induces activation of innate immune response [28], suggesting
a potential link between cellular energy metabolism and the inflammatory process. Rho-GTPases are
associated with migration and function of innate immune cells during inflammation [29]. In addition, we
observed an upregulation of inflammatory chemokines CXCL6 and IL-8 in epithelial cells. These
chemokines are known for their role in recruiting and activating myeloid cells [30, 31], which can drive
inflammation and immune responses. In line with these observations, we saw a significant upregulation of
SLPI in epithelial cells, which neutralises neutrophil elastase and dampens extracellular trap signalling
[32]. We also observed increased expression of MUC5AC and MUC5B genes, representing two major
secreted airway mucins, in the airways of pulmonary long COVID compared with control subjects.
Upregulation of these genes could result in increased mucus production in the airways [33, 34]. Together,
these data suggest that even months and years following acute COVID, there may be “neutrophilic”
inflammation in the small airways of long COVID patients, who have persistent pulmonary symptoms.

The upstream drivers of the inflammatory changes in the airway mucosa of pulmonary long COVID
patients are obscure and largely speculative. Given that lung epithelial cells are the prime targets of entry
and propagation of SARS-CoV-2, the enrichment of adaptive immune response signalling (T-cell receptor
signalling) in ciliated cells raises the possibility of ongoing stimulation potentially by putative viral
reservoirs [35, 36]. Another possibility for this ongoing inflammation in the small airways might be a loss
of mucosal barrier integrity marked by upregulation of genes including SLPI, TRPV4 and TSLP, alongside
subsequent release of cytokines, such as IL33, in epithelial cells [37–39].

Dissimilar to prior studies, which used peripheral blood samples for scRNA-seq, we used airway tissue
samples obtained during research bronchoscopy. Notably, the patients in the present study had normal lung
function measurements and normal or near-normal CT imaging. Moreover, we focused on patients with
long-term COVID who had persistent pulmonary symptoms for >10 months post-acute infection, which
enabled us to relate the scRNA-seq data in the small airways of these patients with their symptoms.

The present study has several limitations. First, this is a cross-sectional study, and thus longitudinal
changes of involved cells and biological pathways for pulmonary long COVID could not be investigated.
Secondly, due to the nature of single-cell transcriptomic analysis, the expression level of protein related to
function could not be assessed. To validate the scRNA-seq data on neutrophils, we prepared cytospin
slides and observed these cells in pulmonary long COVID, but not in control samples. However, it should
be noted that the sample size for the cytospins was low and will require additional validation in the future.
Thirdly, technical limitations of scRNA-seq such as dropout events of fragile cells and relatively low
sequencing depth, leading to the loss of rare cell types or those with low RNA content could also have
skewed our results, though any confounding or biases from these technical issues should have been
nondifferential and affected both the pulmonary long COVID and control groups, resulting in a reduction
in the signal. Finally, our primary recruitment relied on voluntary participation from the local community;
thus, the results of our study may not be generalisable to different settings.

In conclusion, the single-cell transcriptomic landscape of the pulmonary long COVID airways in patients who
were >10 months post-acute infection showed an increase in the number of neutrophils along with
upregulation in the neutrophil-associated activation signature and its related inflammatory chemokines across
clusters. An increased expression of epithelial barrier dysfunction markers across all epithelial cells and an
increase in mucin gene expression in the secretory cells was also observed in pulmonary long COVID
airways. Together, these changes may explain the persistent pulmonary symptoms of cough, sputum
production and exertional dyspnoea, although additional studies will be required to fully validate this notion.
Notwithstanding, these chronic inflammatory changes in the small airways provide new biologic insight on the
pathogenesis of pulmonary long COVID and raise potential novel therapeutic investigations for these patients.
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