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associated with preventing non-communicable diseases, 
especially cardiometabolic diseases [3]. A number of plant-
based diet indices have been developed to reflect the adher-
ence to certain dietary patterns and evaluate diet quality 
regarding health outcomes, such as the Mediterranean Diet 
score (MDS) [4], Dietary Approaches to Stop Hypertension 

Introduction

Plant-based diets are typically characterised by high con-
sumption of plant foods, including fruits, vegetables, 
wholegrains, nuts, legumes, and vegetable oils [1, 2]. Stud-
ies suggest that common plant-rich dietary patterns are 

Extended author information available on the last page of the article

Abstract
Background Diet is an important modifiable lifestyle factor for human health, and plant-rich dietary patterns are associated 
with lower risk of non-communicable diseases in numerous studies. However, objective assessment of plant-rich dietary 
exposure in nutritional epidemiology remains challenging.
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the plant-rich diet was assessed using a priori plant-rich dietary patterns calculated using Food Frequency Questionnaires. A 
combination of metabolites evaluating the adherence to a specific diet was identified as metabolic signature. We applied lin-
ear regression analysis to select the metabolites significantly associated with dietary patterns (adjusting energy intake), and 
ridge regression to estimate penalized weights of each candidate metabolite. The correlation between metabolic signature 
and the dietary pattern was assessed by Spearman analysis (FDR < 0.05).
Results The metabolic signatures consisting of 42, 22, 35, 15, 33, and 33 predictive metabolites across different subclasses 
were found to be associated with adherence to Amended Mediterranean Score (A-MED), Original MED (O-MED), Dietary 
Approaches to Stop Hypertension (DASH), Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND), 
healthy Plant-based Diet Index (hPDI) and unhealthy PDI (uDPI), respectively. The overlapping and distinct predictive 
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hydroxybenzoic acids, seven phenylacetic acids, and three hippuric acids. Six metabolites were included in all signatures, 
including two lignans: enterolactone-glucuronide, enterolactone-sulfate, and four phenolic acids: cinnamic acid, cinnamic 
acid-4’-sulfate, 2’-hydroxycinnamic acid, and 4-methoxybenzoic acid-3-sulfate. The established signatures were robustly 
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(DASH) [5], Plant-based diet index (PDI) [6], and The 
Mediterranean-DASH Diet Intervention for Neurodegen-
erative Delay (MIND) [7, 8]. However, a disadvantage of 
this approach is that it relies on the use of dietary assessment 
methods including food frequency questionnaires (FFQs), 
food diaries, or dietary recalls. These methods rely on self-
report assessment, which is subject to bias [9]. Due to this 
important limitation, extensive efforts have been made to 
develop more objective dietary assessment techniques, such 
as validated biological biomarkers of food intake as a more 
objective assessment method to monitor dietary exposure 
[10].

Only a limited number of food biomarkers have been 
proposed using metabolomics approaches in epidemiologi-
cal studies, through the analysis of associations between 
biomarkers and dietary intake exposure [11]. These bio-
markers include food-derived metabolites and catabolites 
measured in plasma, serum or urine using analytical tech-
niques such as Liquid Chromatography-Mass Spectrometry 
(LC-MS) or Nuclear Magnetic Resonance (NMR). To date, 
a few biomarkers, such as proline betaine, naringenin, and 
hesperetin, have been proposed as biomarkers of specific 
fruit and vegetable intake, and α-carotene, β-carotene, and 
chlorogenic acid as biomarkers of total fruit and vegetable 
intake in nutrition epidemiological studies [11, 12]. In addi-
tion to a more objective assessment that does not rely on 
self-reported intake, metabolomic profiling also reflects 
the existing inter-individual variability in metabolism and 
may be a better indicator of overall dietary exposure. Thus, 
metabolomics through high-throughput profiling holds 
the potential to capture adherence to a predefined dietary 
pattern.

Based on metabolomic profiling, the use of metabolic 
signatures (i.e., a combination of metabolites that evalu-
ates the adherence to a specific diet [13]) for characterising 
dietary patterns has recently been proposed [14]. Supervised 
machine learning methods, such as elastic net regression, 
identified a plasma metabolic signature consisting of 67 
metabolites that correlated with adherence to the Mediterra-
nean diet in two cohorts from Spain and the US [13]. A met-
abolic signature consisting of 66 metabolites has also been 
proposed to reflect adherence to the Mediterranean diet in 
a cohort recruited in the UK [15]. The two signatures pro-
posed overlapped in several metabolites, including proline, 
threonine, carnitine, creatinine, citrulline, and glutamate. In 
a systematic review summarizing the use of metabolomics 
for dietary intake, only 16 studies evaluated the metabolite 
signature in relation to dietary patterns, including vegetarian 
and lactovegetarian diets, omnivorous diets, western dietary 
patterns, prudent dietary patterns, Nordic diet, and Mediter-
ranean diet [14]. There is still a lack of systematic explora-
tion of metabolic signatures of plant-based dietary patterns.

Here we investigated and developed metabolic signa-
tures for the most widely used plant-based dietary patterns, 
measured by a validated ultra-High-Performance LC-MS 
(UHPLC-MS) targeted method for plant food metabolites in 
urine samples and FFQs in 2 UK based cohorts.

Methods

Study population

The baseline data from 9 clinical studies conducted at King’s 
College London between 2017 and 2021 were combined in 
the POLYINTAKE cohort (Ethics number, RESCM-17/18-
5283; HR-15/16-3739; HR-17/18-5338; HR-18/19-9091; 
HR-18/19-8999; HR-17/18-5703; RESCM-18/19-9036; 
HR-17/18-5353; HR-19/20-14771; Trial registration num-
ber, NCT03434574; NCT03041961; NCT03592966; 
NCT04084457; NCT04179136; NCT03553225; 
NCT03995602; NCT03573414; NCT04276974). These 
data were combined due to standard baseline data collection 
methods across all participants. The studies were conducted 
according to the Declaration of Helsinki, and all participants 
provided informed written consent, and all consented to 
data used in future research studies.

Participants that completed an FFQ and provided plasma 
and/or urine samples were included in this cross-sectional 
study. To eliminate the outliers related to dietary intake, 
some of the participants were excluded from the analysis 
based on the following reasons as previously described 
[16]: (i) more than ten missing food items from the FFQ; 
(ii) Females with fewer than 500 kcal/d and higher than 
3,500 kcal/d and males with fewer than an average of 
800 kcal/d and higher than 4,000 kcal/d [17]; (iii) The ratio 
of energy intake (EI): basal metabolic rate (BMR, estimated 
by the Harris-Benedict equation) out of mean ± 2 standard 
deviations (SD) of this population according to the Gold-
berg method [18]. A total of 218 participants with FFQ and 
24 h urine samples were included, of which 195 had addi-
tional plasma samples collected and analyzed.

Participants from the sub-cohort of an independent Aro-
nia Berry Consumption on Blood Pressure study (ABP) 
were used as an internal validation set, which included 
88 participants after exclusions. The trial was approved 
by King’s College London’s Ethics Committee (RESCM-
21/22–26721) with the trial registered at ClinicalTrials.
gov NCT03434574. Plasma samples of the POLYNTAKE 
cohort were also used as the internal validation set (n = 195). 
TwinsUK cohort with 198 participants after exclusion was 
used as an external validation set with the ethical approval 
from the NHS Research Ethics Committee at the Depart-
ment of Twin Research and Genetic Epidemiology, King’s 
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College London (the Healthy Ageing Twin Study (H.A.T.S) 
07/H0802/84) and the NRES Committee London-Westmin-
ster (Flora Twin Study reference 12/LO/0227) [19].

Dietary intake assessment and dietary patterns 
generation

Each participant in the POLYNTAKE cohort completed the 
European Prospective Investigation into Diet and Cancer 
(EPIC) Norfolk FFQ validated against key nutrient intakes 
[20]. FFQ EPIC and Nutrition Tool for Analysis (FETA) 
software, which involved composition data of 290 foods 
from the UK food composition database McCance and Wid-
dowson’s ‘The Composition of Foods’ (5th edition) and 
its associated supplements [21] were used in this research 
to estimate energy intake. Five commonly used plant-rich 
dietary patterns were chosen to evaluate the overall food 
constitution based on the predefined dietary scoring for-
mula: DASH [5], PDI (along with healthy PDI (hPDI) and 
unhealthy PDI (uPDI)) [6], Original Mediterranean Score 
(O-MED) [4], Amended Mediterranean Score (A-MED) 
[22], and MIND [8]. The detailed food group descriptions 
and the calculation method for each dietary score were 
previously reported [16]. These dietary patterns share a 
common emphasis on plant-based foods, with fruits and 
vegetables serving as fundamental components. However, 
specific distinctions are present, such as the differentiation 
between green leafy and other vegetables and only berries 
in the fruit category for the MIND. This specificity is due 
to evidence indicating the cognitive benefits of green leafy 
vegetables and the protective effects of berries against cog-
nitive decline rather than overall fruit consumption [8]. Fur-
thermore, most of these patterns employ a scoring system 
based on relative food intake, categorizing consumption 
into quintiles (e.g., DASH [23] and PDI [24]) or medians 
(e.g., A-MED [22] and O-MED [25]). Participants from the 
TwinsUK cohort also completed the validated EPIC Nor-
folk FFQ (available n = 198) [19].

Sample collection and metabolite analysis

In the POLYNTAKE cohort, the 24 h urine (n = 218) and 
fasting plasma samples (n = 195) were collected to anal-
yse plant food metabolite levels. The 24 h urine samples 
were collected using plastic containers (2 L) stored in a bag 
with ice packs to keep the urine in a cool condition dur-
ing and after collection. The participants were instructed 
to collect urine starting from the second urine of the day 
before the visit and finishing with the first urine on the day 
of the study visit. Once received, the total volume of the 
24 h urine was measured by a volumetric cylinder. As for 
plasma sample collection, the participants were instructed 

to fast for eight hours before coming to the research facil-
ity. The fasting blood samples were collected through 
venepuncture into ethylenediaminetetraacetic acid (EDTA) 
vacutainers (10 ml, BD) by trained phlebotomists. The urine 
and blood samples were centrifuged at 1800 g for 15 min at 
4 °C right after the collection. Plasma was obtained from 
the supernatant of the blood samples, and urine and plasma 
samples were spiked with 0.2% formic acid (Thermo Fisher, 
LC-MS grade, Loughborough, UK) before storing at -80 °C 
in labelled plastic tubes until analysis. The detailed process-
ing and analysis of the samples followed a validated method 
[26]. Samples were thawed on ice for 0.5–1.0 h until fully 
defrosted and then centrifuged at 15,000 g for 15 min at 4 ℃ 
using a temperature-controlled microtube centrifuge (5417 
R, Eppendorf, Hamburg, Germany). Urine samples were 
diluted five folds with HPLC water (Sigma-Aldrich, Stein-
heim, Germany), while plasma samples were processed 
directly. A total of 108 urinary metabolites and 116 plasma 
metabolites were identified and quantified using authentic 
chemical standards. The UHPLC-MS analysis of the sam-
ples and standard mixes was achieved with a triple-qua-
druple mass spectrometer (SHIMADZU 8060, Shimadzu, 
Kyoto, Japan) coupled with a UHPLC system (Shimadzu, 
Kyoto, Japan). The samples (5 µL) were injected by autos-
ampler (SIL-30AC, Shimadzu, Kyoto, Japan) through 
a Raptor Biphenyl column 2.1 × 50 mm, 1.8 μm (Restek, 
Bellefonte, USA) coupled with a compatible guard cartridge 
5 × 2.1 mm, 2.7 μm (Restek, Bellefonte, USA) before reach-
ing a heated ESI source. The MS parameters and multiple 
reaction monitoring (MRM) method parameters of the tar-
get compounds were detailed previously [26]. The peak area 
ratio of the target compounds to the internal standard taxifo-
lin was used in the quantification to minimise the influence 
of changes in device performance on the results. The LabSo-
lutions software (SHIMADZU, Kyoto, Japan) was used in 
the peak integration, and the Microsoft Excel (Excel 2020, 
Microsoft, USA) was used for concentration calculation.

The spot urine samples in the TwinsUK cohort (n = 198) 
were processed and analysed in the same way as the sam-
ples from the POLYNTAKE study as described in previous 
study [19]. The urinary creatinine levels were measured 
by Affinity Biomarker Labs (London, UK) using the Jaffe 
method and the concentrations of the metabolites (nM) were 
adjusted by the creatinine levels (mg/L) into mmol/g creati-
nine [19].

Statistical analysis

The statistical analysis was conducted using R (version 
4.1.2) [27]. Dietary scores were normally distributed in the 
population. The metabolite levels were log-transformed and 
adjusted for batch effect using the ComBat method [28] 
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Supplemental Fig. 1. Correlation coefficients ranged from 
− 0.60 to 0.85, among which the strongest correlation was 
observed between A-MED and O-MED (r = 0.85), whereas 
the weakest correlation was found between PDI and uPDI 
(r = 0.10).

ABP cohort & TwinsUK cohort: The overall character-
istics of the participants in the ABP cohort and TwinsUK 
cohort are shown in Supplemental Table 1. The average 
age of subjects was 55.8 (SD 8.7) years in the ABP cohort 
and 62.0 (SD 9.9) in the TwinsUK cohort. Most of the sub-
jects were from the white ethnic group (ABP: 79.5% and 
TwinsUK: 99.0%), and their average energy intakes were 
1,681.3 kcal/d (SD 487.9) and 1,782.5 kcal/d (SD 554.3) 
in ABP and TwinsUK study, respectively. The 24 h urine 
samples in the ABP cohort were collected from 45 males 
and 43 females, and the spot urine samples (n = 198) in the 
TwinsUK cohort were all from females.

Plant-rich dietary patterns and urinary metabolites

The association between 108 urinary metabolites and plant-
rich dietary patterns is shown in Fig. 2(A). The significant 
standardized regression coefficients (and 95% CI) between 
urinary metabolite levels and all plant-rich dietary scores 
except uPDI were all positive, ranging from 0.14 (0.01, 
0.27) for 3,4-dihydroxybenzoic acid (protocatechuic acid) 
and hPDI to 0.29 (0.16, 0.42) for 2,6-dihydroxybenzoic acid 
and DASH, except for the stdBeta for alpha-hydroxyhippu-
ric acid and MIND, which is negative (-0.18 (-0.31, -0.05)). 
Negative associations were found between uPDI and 33 uri-
nary metabolites from each class and most of them being 
phenolic acids (n = 21), including eleven cinnamic acids, 
five hydroxybenzoic acids, three phenylpropanoic acids, 
and two hippuric acids (all FDR-adjusted p < 0.05). Among 
the dietary scores that positively linked with metabolites, 
A-MED correlated with the highest number of metabolites 
(n = 42), followed by DASH, hPDI, and O-MED with 33, 
33, and 22 metabolites associated, respectively, whereas 
MIND (n = 8) and PDI (n = 2) ranked lowest (all FDR-
adjusted p < 0.05). Phenolic acids contributed the most to 
the positive associations with dietary scores, including 29 
individual metabolites associated with A-MED, 26 with 
DASH, 22 with hPDI, 17 with O-MED, six with MIND, 
and one with PDI (all FDR-adjusted p < 0.05).

The association between 116 plasma metabolites and 
plant-rich dietary patterns is shown in Fig. 2(B). Among 
the scores that positively linked with plasma metabolites, 
hPDI was associated with the highest number of metabo-
lites (n = 16), followed by DASH, A-MED, and O-MED 
with ten, nine, and nine metabolites associated, respec-
tively. Similar to the urinary metabolites, in plasma, MIND 
and PDI also ranked lowest among all dietary scores, with 

with the sva package in R before entering the model. The 
ComBat method is an empirical Bayes method developed 
originally for removing batch effect in the microarray data in 
gene sequencing, and it has then been applied to metabolo-
mics analysis [29]. The energy intake levels estimated from 
FFQs were adjusted as confounders in the linear regression 
model to explore the association between plant-rich dietary 
scores and metabolites with the lm. beta package in R. All 
analyses were adjusted for multiple testing (Benjamini and 
Hochberg False Discovery Rate (FDR) < 0.05, FDR sugges-
tive significant 0.05 ~ 0.10) [30]. The metabolites with sig-
nificant associations were chosen for the next step.

Metabolic signatures for each plant-rich dietary pat-
tern were generated to collectively represent the adher-
ence to the overall dietary patterns based on the selected 
significant metabolites. The dietary pattern with less than 
ten metabolites significantly associated was discarded in 
this step (PDI). Ridge regression was applied to estimate 
the penalized weights of the candidate metabolites [31]. The 
metabolic signature of each individual dietary score was 
constructed based on the weights of all selected metabolites 
in derivation and validation datasets. The validation datasets 
included 24 h urine from the internal sub-cohort ABP study, 
plasma samples from the POLYNTAKE cohort, and exter-
nal spot urine samples from the TwinsUK external dataset.

The correlation between plant-rich dietary patterns and 
their metabolic signature was assessed by Spearman correla-
tion analyses in derivation and validation datasets to explore 
the utility and robustness of the generated metabolite sig-
natures. To further test the agreement between plant-rich 
dietary patterns and metabolite signatures, an alluvial plot 
was constructed to illustrate how the targeted population in 
both datasets was allocated across categorical dimensions. 
The detailed flowchart of the analysis is depicted in Fig. 1.

Results

The demographic, sample, and dietary score characteristics 
of the participants of the POLYNTAKE cohort are shown 
in Table 1. The average age of subjects was 51.5 (SD 17.7) 
years. The majority of subjects were from the white eth-
nic group (75.7%), and their average energy intakes were 
1586.9 kcal/d (SD 465.6). The 24 h urine samples were 
collected from 98 males and 120 females, whereas plasma 
samples were from 89 males and 106 females. The plant-
rich dietary scores, including DASH, MIND, O-MED, 
A-MED, and PDI (along with hPDI and uPDI), among the 
overall population are also described in Table 1. The score 
range was as following: 8–40 (DASH), 0–15 (MIND), 
0–9 (O-MED and A-MED), and 18–90 (PDI, hDPI, and 
uPDI). The correlation between dietary scores is reported in 
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Fig. 1 The flowchart of the analysis approach (generation and vali-
dation) of the metabolic signature adherence to the plant-rich dietary 
patterns. DASH, Dietary Approaches to Stop Hypertension; MIND, 
Mediterranean-DASH Intervention for Neurodegenerative Delay; 

O-MED, Original Mediterranean Score; A-MED, Amended Mediter-
ranean Score; PDI, Plant-based Diet Index; hPDI, Healthy Plant-based 
Diet Index; uPDI, unhealthy Plant-based Diet Index
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Development and validation of metabolic 
signatures for plant-rich dietary patterns

To establish a metabolic signature that captures multiple 
characteristics of a dietary pattern, the 24 h urine sample, 
which exhibited more significant metabolites with plant-
rich dietary patterns than the plasma sample, was chosen. 
The detailed parameters of the selected metabolites for each 
plant-rich dietary score were listed in Supplemental Tables 
1 to 6. No metabolic signature was summarized for PDI due 
to the limited significant associated metabolites (n = 2). The 
metabolic signatures for A-MED, O-MED, DASH, MIND, 
hPDI, and uPDI consisted of 42, 22, 35, 15, 33, and 33 pre-
dictive metabolites, respectively (Fig. 3(A), Supplemental 
Tables 1 to 6).

Figure 3(A) shows the overlapping and distinct sets of 
metabolites that were associated with plant-rich dietary pat-
terns A-MED, O-MED, DASH, MIND, hPDI, and uPDI, 
and were made up predominantly of phenolic acids (n = 38), 
including 14 cinnamic acids, 14 hydroxybenzoic acids, 7 
phenylacetic acids, and 3 hippuric acids. Besides phenolic 
acids, 3 methylxanthines, 6 flavonoids, 3 lignans, 3 stilbenes, 
2 tyrosols, 1 benzaldehyde, hydroxycoumarin, and benzene 
diol and triol were also shown significant associations with 
the dietary scores. Six metabolites were included in all sig-
natures, including 2 lignans (enterolactone-glucuronide, 
and enterolactone-sulfate), and 4 phenolic acids (cinnamic 
acid, cinnamic acid-4’-sulfate, 2’-hydroxycinnamic acid, 
and 4-methoxybenzoic acid-3-sulfate). Supplemental Fig. 2 
listed the percentage of classes and subclasses of metabo-
lites included on each metabolic signature. Hydroxybenzoic 
acids and cinnamic acids were the subclasses of pheno-
lic acids which accounted for the dominant proportion in 
the composition of each signature (hydroxybenzoic acids, 
A-MED: 28.6%, O-MED: 45.5%, DASH: 28.6%, hPDI: 
30.3%; cinnamic acids, DASH: 28.6%, MIND: 33.3%, 
uPDI: 33.3%).

The scatter plot in Supplemental Fig. 3 identified the 
significant positive relationship between each dietary score 
in quintiles and the corresponding metabolic signature (p 
for trend < 0.05). In Fig. 3(B), a Spearman correlation was 
implemented to assess the statistical correlation between 
each dietary pattern and the corresponding metabolic signa-
ture in the POLYNTAKE cohort using 24 h urine samples. 
The strongest correlation was found between uPDI, DASH, 
and their metabolic signatures (0.37 (0.25, 0.48)), followed 
by A-MED (0.36 (0.24, 0.47)), hPDI (0.35 (0.23, 0.46)), and 
MIND (0.34 (0.22, 0.45)). O-MED and its corresponding 
metabolic signature ranked lowest (0.25 (0.12, 0.37)) (all 
FDR-adjusted p < 0.05). For comparison, the highest coef-
ficients of the association between each dietary score and 
individual urinary metabolites were 0.28 (0.15, 0.40), 0.21 

four and three metabolites positively associated (all FDR-
adjusted p < 0.05). In plasma, phenolic acids also contrib-
uted to the highest number of positive associations with the 
dietary scores, including 13 individual metabolites associ-
ated with hPDI, seven with DASH and A-MED, six with 
O-MED, and two with MIND and PDI (all FDR-adjusted 
p < 0.05). The significant positive stdBeta (and 95% CI) 
ranged from 0.17 (0.04, 0.30) for 4’-hydroxyhippuric acid 
and A-MED to 0.35 (0.22, 0.48) for 2,6-dihydroxybenzoic 
acid and hPDI. Negative associations were found between 
uPDI and 5-O-caffeoylquinic acid (chlorogenic acid), 
trans-resveratrol-3-sulfate and DASH, A-MED and hDPI, 
3-methoxybenzoic acid-4-sulfate (vanillic acid-4-sulfate) 
and O-MED, alpha-hydroxyhippuric acid and A-MED with 
the stdBeta ranging from − 0.20 (trans-resveratrol-3-sul-
fate and DASH) to -0.17 (trans-resveratrol-3-sulfate and 
A-MED, FDR-adjusted p < 0.05). No significant associa-
tions were found between methylxanthine metabolites and 
dietary patterns (FDR-adjusted p > 0.05).

Table 1 Characteristics of the Study Population of the POLYNTAKE 
Cohort
Characteristics Men Women Total

Mean (SD)/ 
n (%)

Mean (SD)/ 
n (%)

Mean 
(SD)/ n 
(%)

Age (years) (mean, SD) 52.3 (16.9) 50.8 (18.3) 51.5 (17.7)
Ethnicity (n, %)
 White 72 (73.5) 93 (77.5) 165 (75.7)
 Black 7 (7.1) 6 (5.0) 13 (6.0)
 Asian 12 (12.2) 20 (16.7) 32 (14.7)
 Mixed 7 (7.1) 1 (0.8) 8 (3.7)
Energy intake (kcal/d) 
(mean, SD)

1724.4 
(486.0)

1474.5 
(417.6)

1586.9 
(465.6)

Sample (n, %)
 24 h urine 98 (45.0) 120 (55.0) 218
 Plasma * 89 (45.6) 106 (54.4) 195
Plant-rich dietary scores 
(mean, SD)
 DASH 23.8 (5.4) 26.4 (4.3) 25.3 (5.0)
 MIND 8.1 (1.5) 9.0 (1.6) 8.6 (1.6)
 O-MED 4.2 (1.9) 4.5 (1.8) 4.4 (1.9)
 A-MED 4.3 (2.0) 4.6 (2.1) 4.5 (2.1)
 PDI 52.1 (5.9) 50.6 (6.2) 51.3 (6.1)
 hPDI 51.8 (8.1) 55.6 (7.7) 53.9 (8.1)
 uPDI 51.2 (7.0) 49.4 (6.9) 50.2 (7.0)
*: A total of 195 participants had plasma samples additionally col-
lected. DASH, Dietary Approaches to Stop Hypertension; MIND, 
Mediterranean-DASH Intervention for Neurodegenerative Delay; 
O-MED, Original Mediterranean Score; A-MED, Amended Medi-
terranean Score; PDI, Plant-based Diet Index; hPDI, Healthy Plant-
based Diet Index; uPDI, unhealthy Plant-based Diet Index
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respectively. The correlations between metabolites and 
dietary patterns were stronger after assembling metabolites 
into a composite metabolic signature (Supplemental Table 
8).

(0.08, 0.33), 0.29 (0.16, 0.42), 0.21 (0.08, 0.34), 0.26 (0.14, 
0.39) and − 0.28 (-0.40, -0.16) for A-MED (cinnamic acid-
4’-sulfate), O-MED (2,5-dihydroxybenzoic acid), DASH 
(2,6-dihydroxybenzoic acid), MIND (cinnamic acid-4’-sul-
fate), hPDI (enterolactone-sulfate) and uPDI (caffeic acid), 

Fig. 2 Association between (A) urinary and (B) plasma metabolites 
and plant-rich dietary scores. The heatmap was plotted according to 
the standardized regression coefficients (stdBeta). The colour scale 
indicates the effect (stdBeta) of each urinary or plasma metabolite on 
plant-rich dietary scores. Red and blue illustrate positive and nega-
tive effects, and colour intensity represents the degree of effect. The 
asterisks showed significance (*: FDR-adjusted p < 0.05). DASH, 

Dietary Approaches to Stop Hypertension; MIND, Mediterranean-
DASH Intervention for Neurodegenerative Delay; O-MED, Original 
Mediterranean Score; A-MED, Amended Mediterranean Score; PDI, 
Plant-based Diet Index; hPDI, Healthy Plant-based Diet Index; uPDI, 
unhealthy Plant-based Diet Index. The associations were adjusted for 
energy intake

 

1 3

Page 7 of 16    29 



European Journal of Nutrition           (2025) 64:29 

followed by the other 4 dietary scores with their metabolic 
signatures in the ABP cohort (O-MED, 0.36 (0.16, 0.53), 
hPDI, 0.35 (0.16, 0.53) and MIND, 0.35 (0.15, 0.52), 
DASH, 0.33 (0.13, 0.51), FDR-adjusted p < 0.05), whereas 
the lowest correlation was found in TwinsUK cohort with 
A-MED, DASH and O-MED lower than 0.20 (A-MED: 
0.15 (0.02, 0.29), DASH: 0.16 (0.03, 0.30), O-MED: 0.16 
(0.02, 0.29), FDR-adjusted p < 0.05). The correlation range 
of the ABP cohort ranked highest from 0.28 (0.07, 0.46) to 
0.40 (0.21, 0.56), followed by POLYNTAKE cohort with 
plasma ranked middle from 0.21 (0.07, 0.34) to 0.30 (0.17, 
0.43), and TwinsUK cohort lowest from 0.15 (0.01, 0.29) to 
0.24 (0.10, 0.37) (all FDR-adjusted p < 0.05).

The validation cohort employed 3 types of samples across 
three cohorts, including the ABP cohort with 24 h urine 
samples, the POLYNTAKE cohort with plasma samples, 
and the TwinsUK cohort with spot urine samples in Supple-
mental Fig. 4. A significant positive Spearman correlation 
was found between each dietary pattern and their meta-
bolic signatures across cohorts (all FDR-adjusted p < 0.05), 
except for the suggestive significance between uPDI and its 
signature in the POLYNTAKE cohort with plasma sample 
(0.13 (-0.01, 0.27), FDR-adjusted p = 0.05), and MIND with 
its signature in the TwinsUK cohort with spot urine (0.13 
(-0.01, 0.26), FDR-adjusted p = 0.06).

The strongest correlation across the 3 validation cohorts 
was found between A-MED and its metabolic signature 
(ABP cohort: 0.40 (0.21, 0.56), FDR-adjusted p < 0.01), 

Fig. 3 (A) Selected metabolites for each dietary pattern metabolic sig-
nature and (B) Correlation matrix between dietary patterns and meta-
bolic signatures from the derivation set in the POLYNTAKE cohort 
with 24 h urine sample (n = 218). (A) The overlapping and distinct sets 
of the selected metabolites from each plant-rich dietary pattern. Yellow, 
purple, and white illustrated significant positive, negative, and non-
significant associations in each dietary score. (B) The dietary scores 
were measured by FFQ. The metabolic signatures were derived based 
on the selected metabolites that were significantly associated with each 
plant-rich dietary score. The colour scale indicated the Spearman cor-

relation coefficient between plant-rich dietary patterns and metabolic 
signatures. Red and blue illustrated positive and negative correlations 
and colour intensity represented the degree of the coefficient. The cor-
relation with significance has listed the coefficient (FDR-adjusted, 
p < 0.05). DASH, Dietary Approaches to Stop Hypertension; MIND, 
Mediterranean-DASH Intervention for Neurodegenerative Delay; 
O-MED, Original Mediterranean Score; A-MED, Amended Mediter-
ranean Score; hPDI, Healthy Plant-based Diet Index; uPDI, unhealthy 
Plant-based Diet Index
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quartile (the 1st and 4th quartile), respectively in Supple-
mental Table 9.

The agreements between plant-rich dietary patterns 
deriving from FFQs and metabolic signatures when ranking 
participants into quartiles from the TwinsUK cohort (spot 
urine), POLYNTAKE cohort (plasma), and ABP cohort 
(24 h urine) are shown in Supplemental Fig. 5 to 7. Among 
the various dietary patterns across different cohorts and 
samples, hPDI showed the best comparable performance 
between the dietary score from FFQs and the metabolic 
signature from the samples in differentiating participants in 
high and low adherence to the dietary pattern, with 75.9%, 
70.3%, and 76.1% of participants ranked into the same 

Agreements between plant-rich dietary patterns 
and metabolic signatures

The agreements between a priori plant-rich dietary patterns 
estimated from FFQs and metabolic signatures derived from 
24 h urine samples in the POLYNTAKE cohort when rank-
ing participants into quartiles are shown in Fig. 4. The two 
methods were comparable in differentiating participants 
into high and low adherence to the dietary patterns A-MED, 
O-MED, DASH, MIND, hPDI, and uPDI, with 77.5%, 
72.5%, 77.1%, 75.2%, 75.2%, 72.9% of participants ranked 
into the same quartile or adjacent quartile, and only 4.6%, 
7.3%, 5.5%, 4.6%, 8.3%, 3.7% ranked into the opposite 

Fig. 4 Agreements between plant-rich dietary patterns and their 
respective metabolic signatures in ranking participants into quar-
tiles: The POLYNTAKE Study (24 h urine samples). DASH, Dietary 
Approaches to Stop Hypertension; MIND, Mediterranean-DASH 

Intervention for Neurodegenerative Delay; O-MED, Original Mediter-
ranean Score; A-MED, Amended Mediterranean Score; hPDI, healthy 
Plant-based Diet Index; uPDI, unhealthy Plant-based Diet Index
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external validation cohorts using different sample types. 
The result indicated the potential application of assembling 
a set of plant food metabolites as a composite marker of 
plant-rich dietary quality.

Enterolactone metabolites (enterolactone-glucuronide 
and enterolactone-sulfate) were significantly associated 
with all dietary patterns, and they are one of the most robust 
metabolites across all the plant-rich dietary patterns. It is 
the major microbial-derived metabolite of lignans, which 
are present in many plant foods, for instance, seeds, vegeta-
bles, fruits, legumes, wholegrains, extra virgin olive oil and 
non-alcoholic beverages such as tea and coffee [32], with 
the fibre-rich wholegrain outer layer being one of the main 
sources of dietary lignans [32, 33]. This wide distribution in 
plant-based products indicates its potential as a robust bio-
marker of plant-rich dietary patterns. The significant corre-
lation of urinary enterolactone with plant-rich dietary scores 
has been reported in previous studies, including A-MED, 
DASH, and Alternative Healthy Eating Index (AHEI-2010) 
[34, 35] with a measurable concentration (0.006–27.6 
µmol·L− 1) [35]. Therefore, enterolactone has potential as 
a reliable and robust biomarker for habitual plant-rich diet 
consumption. The metabolic signature of each dietary pat-
tern had a stronger correlation than any single biomarker, 
including enterolactone, indicating that the combination of 
metabolites as a composite metabolic signature may be a 

quartile or adjacent quartile, respectively in Supplemental 
Table 9.

Metabolic signatures and animal-based food items

The relationships between the animal-based food items and 
the metabolic signatures from the derivation dataset are 
shown in Fig. 5. Red and processed meat negatively signifi-
cantly correlated with the metabolic signatures of O-MED, 
A-MED, DASH, MIND, and hPDI, with rho ranging from 
− 0.19 (MIND, 95% CI: -0.31, -0.06) to -0.24 (O-MED, 
95% CI: -0.36, -0.11), FDR-adjusted p < 0.05). No correla-
tions were found for the other animal-based food items.

Discussion

Here, we report the development and evaluation of meta-
bolic signatures that measure adherence to a series of fre-
quently applied plant-rich dietary patterns based on targeted 
metabolomics data of plant food metabolites in a popula-
tion-based cohort of healthy adults. The metabolic signature 
combining a set of metabolites reflected a stronger correla-
tion with the dietary patterns than a single biomarker and 
exhibited agreements in differentiating participants into 
high and low scores. Dietary patterns and metabolic signa-
tures were also significantly correlated in the internal and 

Fig. 5 The Spearman correction between the metabolic signatures and 
animal-based food items. Red and blue illustrated respectively positive 
and negative correlations and colour intensity represented the degree 
of the coefficient. The correlation with significance were listed the 
coefficient (FDR-adjusted, p < 0.05), DASH, Dietary Approaches to 

Stop Hypertension; O-MED, Original Mediterranean Score; A-MED, 
Amended Mediterranean Score; MIND, Mediterranean-DASH Inter-
vention for Neurodegenerative Delay; hPDI, healthy Plant-based Diet 
Index; uPDI, unhealthy Plant-based Diet Index
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is commonly found in red grapes, peanuts, and red wine, 
although in very low concentrations [42]. In the present 
study, a positive association was found between the metab-
olites cis-resveratrol-4’-glucuronide, dihydroresveratrol, 
and trans-resveratrol-3-glucuronide with A-MED, DASH, 
and hPDI, reflecting the inclusion of alcohol (including red 
wine) and fruits (including grapes) in these dietary scores. 
Caffeine and its metabolites, paraxanthine and theophyl-
line, are methylxanthines found in chocolate, cocoa, and 
beverages such as coffee and tea [43]. Our findings indicate 
negative associations between uPDI and these metabolites, 
consistent with the negative scoring of tea and coffee in the 
uPDI algorithm. Besides traditional sources like tea and cof-
fee, energy drinks and dietary supplements have emerged as 
significant dietary sources of caffeine in recent years [44]. 
Currently, the lack of mandatory caffeine labelling, shift-
ing classification of products from dietary supplements 
to beverages, and inconsistent definitions of energy prod-
ucts complicate the estimation of their dietary intake [44]. 
Caffeine intake derived from energy products and supple-
ments is often excluded from dietary pattern calculations. 
While plant-derived supplements are less prevalent than 
plant-rich foods, future dietary research should integrate 
data from these sources to more accurately estimate caf-
feine intake. Metabolites related to the intake of olive oil 
(i.e., 3’-hydroxyphenylethanol-4’-sulfate (hydroxytyrosol-
4’-sulfate) and 2-(4-hydroxyphenyl)ethanol (tyrosol)) [35] 
were positively associated with MED diet, DASH, and 
hPDI. Although olive oil was not included in the DASH 
scoring system, this indicates that olive oil-related metabo-
lites might be reliable predictors of healthy habitual diets. 
Urolithins, as gut microbial metabolites of ellagitannins, 
were found to be associated with multiple ellagitannin-rich 
foods, such as pomegranates, berries, and walnuts [45]. 
Here, a positive association was only found between uro-
lithin B and hPDI. However, it is worth mentioning that 
we did not measure the most abundant urolithin phase II 
metabolites, such as urolithin A glucuronide and sulfate, due 
to the difficulty in obtaining such standards commercially.

The metabolic signature of the Mediterranean diet has 
been proposed in several studies [13, 15]. For instance, a 
signature comprising 67 out of 302 metabolites was derived 
from the Spanish PREDIMED trial [13], while 66 out of 175 
metabolites assembling a signature of MDS was identified 
in the Fenland Study in the UK [15]. In the present study, 42 
and 22 candidate metabolites out of 108 metabolites were 
selected to establish the signatures of A-MED and O-MED. 
Compared with O-MED, the signature of A-MED performed 
better in differentiating participants into high and low adher-
ence to the diet and showed a stronger correlation with the 
dietary pattern, especially the moderate correlation found in 
the ABP validation cohort (r = 0.40). This difference may 

better approach to capture the characteristics of a plant-rich 
diet.

Phenolic acids, as secondary plant metabolites and 
(poly)phenol gut microbial derivatives, are widely found 
in the plant kingdom, for instance, vegetable, fruits, espe-
cially berries, and beverages (coffee, tea, and wine) [36]. 
Coherently, there were 38 phenolic acid metabolites asso-
ciated with various dietary patterns, in particular hydroxy 
derivates subclasses, including benzoic (n = 14), cinnamic 
(n = 14), phenylacetic (n = 7) and hippuric acids (n = 3) 
[36]. Hydroxybenzoic acids and hydroxycinnamic acids 
are the two main well-known subclasses of phenolic acids. 
Hydroxycinnamic acids are commonly found as simple 
esters, while hydroxybenzoic acids are mainly found in gly-
cosylated form [36, 37]. Hydroxycinnamic acids include 
coumaric, ferulic, sinapic, caffeic and chlorogenic acids 
[37], and metabolites belonging to these subclasses were 
associated with the plant-rich dietary patterns, especially 
cinnamic acid, cinnamic acid-4’-sulfate, and 2’-hydroxy-
cinnamic acid with a robust linkage across all diets. In the 
subclass of hydroxybenzoic acids, 4-methoxybenzoic acid-
3-sulfate (isovanillic acid-3-sulfate), a compound which is a 
metabolite of many (poly)phenols including anthocyanins, 
for instance, present in berries [38], or plums [39], was also 
identified as a robust biomarker, indicating (poly)phenol-
rich foods widely abundant in all plant-rich dietary patterns. 
Several studies have suggested that gut microbial-derived 
metabolites might be better biomarkers for assessing habit-
ual diet than the parent species due to their restricted absorp-
tion and metabolization in the human body [35]. However, 
parent compounds are less variable and potentially more 
reliable compared with the gut microbial-derived metabo-
lites. Since these coumaric acids and many other phenolic 
acids are also presented in food items, it is hard to distin-
guish whether they are microbial metabolites or parent com-
pounds. Due to the high variability between individuals, the 
gut microbial-derived metabolites may reflect better human 
bioavailability and exposure than accurate habitual food 
intake.

Other classes of urinary metabolites were also found to 
be significantly associated to some of the plant-rich dietary 
patterns investigated here, however, none were robustly 
associated across all of them. Flavonoids represent a large 
class of (poly)phenol metabolites in the UK diet, includ-
ing flavan-3-ols (epicatechin, mainly from tea), flavanones 
(naringenin-4’-glucuronide, mainly from citrus fruit), fla-
vonols (quercetin, quercetin-3-glucuronide, and quercetin-
7-glucuronide, mainly from tea, apples, and onions) [40], 
and dihydrochalcones (phloretin, mainly from apple) [41]. 
In the present study, A-MED was significantly associated 
with all these flavonoid metabolites, and the other patterns 
were associated with some of them. The stilbene resveratrol 
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uPDI (n = 33) and limited with PDI (n = 2). The signature 
of uPDI exhibited the strongest inverse correlation with 
dietary patterns in the derivation cohort, and hPDI showed 
the best agreement in ranking participants in comparison 
with other patterns in all validation cohorts. This result 
indicated that the metabolic signature of hPDI might be a 
promising predictive tool to identify the adherence of par-
ticipants to a habitual plant-rich diet in large nutritional epi-
demiological studies. Compared with hPDI and uPDI, PDI 
was less specific and correlated with limited metabolites. 
Thus, no signature of PDI was established. Moreover, the 
varied performance of the three versions of the diet index 
[6] highlights the grading methodology as a reliable and 
logical approach for characterizing habitual plant-rich diets.

Metabolomics profiling represents a systematic analyti-
cal methodology for low-molecular-weight compounds in 
multiple biofluids, among which spot or 24 h urine, serum, 
and plasma samples are the most widely used sample types 
for biomarker analysis [14]. Compared with plasma, urine 
samples contain more compounds deriving from food phy-
tochemicals, and secondary metabolites produced from 
plants or fungi that are valuable biomarkers for assess-
ing plant-rich dietary habits [47]. Most metabolites are 
excreted fast in urine and can be used as acute biomark-
ers of food intake [14]. Plasma contains more metabolically 
active compounds than urine, and lipid-soluble compounds 
are only found in plasma. In this work, the urine samples 
reflected better the adherence to plant-rich diets than fast-
ing plasma samples in the POLYNTAKE cohort. Urine has 
become a popular choice in nutritional epidemiology studies 
[48], and 24 h urine is optimal as it is quantitative and can 
quantify a larger number of metabolites with different half-
lives than spot urine. However it has the inconvenience of 
burdersome collection, which is not always possible in large 
epidemiological studies [48]. For instance, the excretion of 
proline betaine peaks a few hours after consumption, and 
its concentration declines to almost baseline after 24 h [49]. 
We found that the correlation coefficient between dietary 
patterns and metabolic signatures decreased from the inter-
nal cohort ABP with 24 h urine, to the POLYNTAKE with 
plasma, to the external TwinsUK cohort with spot urine. 
This result may be due to the different nature of the sample 
types discussed above and partially to the study population 
of the TwinsUK cohort, which consisted of older female 
participants [19], compared with the derivation cohort.

To note, the alluvial plots effectively differentiate between 
high and low scores but perform less well in depicting a gra-
dient. This may be attributed to the relatively homogenous 
dietary habits of the study population, leaning towards the 
healthy end of the spectrum, and the inherently relative 
nature of these diet scores. Cross-classification analysis is 
commonly employed to validate agreements between two 

be due to the different food groups included in the scoring 
system. A-MED does not include dairy, starchy vegetables, 
and refined grains, while it includes wholegrains and pure 
fruit juice in comparison with the original MED score [46]. 
The plant food metabolites showed a stronger correlation 
with plant-based food items, such as fruit juice than ani-
mal-derived food, such as dairy. This is also reflected in 
the metabolic signatures, with naringenin-4’-glucuronide 
(mainly coming from citrus fruit and juice) and phloretin 
(mainly coming from apple and juice) being associated 
with A-MED but not O-MED. The correlation coefficient 
of the A-MED signature (r = 0.16–0.40) was similar to 
past research (r = 0.28–0.37 [13], r = 0.43 [15]), despite the 
lower metabolite number in our study. The higher number of 
metabolites in other signatures may be attributed to animal-
sourced food items, for instance, acylcarnitines (meat) and 
phospholipids (fish) [31].

The signature of the DASH diet exhibited a similarly 
good performance as A-MED, with 35 significantly associ-
ated metabolites, and the highest correlation with the dietary 
pattern in the derivation cohort. This result may be attrib-
uted to the wide range of its predefined food profile, which 
included vegetables, fruits, and wholegrains, and limited 
the intake of processed meat, fat, refined grains, and alcohol 
[5]. However, the MIND signature did not achieve a satisfy-
ing result in ranking participants into quartiles, and showed 
a weaker correlation with the MIND dietary pattern. The 
MIND score was developed based on two randomized trials 
investigating the effect of MED and DASH diets on demen-
tia [8]. Compared with other plant-rich patterns, the MIND 
diet narrowed the range of the predefined food profile by 
including specific food items, for instance, berries (instead 
of all types of fruits), beans (instead of legumes), cheese 
(instead of dairy products), and specific cooked-food, such 
as fast fried food. This restricted range may explain why it 
was hard to define an appropriate metabolic signature for 
the MIND diet (with only 15 predictive biomarkers) due to 
being too specific.

PDI was established to investigate associations between 
health outcomes and the gradual reduction in animal food 
intake and the increase in consumption of healthy plant-
foods [6]. Three versions of this diet index were defined with 
different emphasis, including all plant food with a reduc-
tion in animal food (overall PDI), healthy plant food linked 
with beneficial health outcomes (hPDI), and unhealthy plant 
food linked with detrimental health outcomes (uPDI) [6]. 
Refined grains, potatoes, and sugar-sweetened beverages 
are positively linked to uPDI, whereas high-quality plant 
products, for instance, wholegrains, fruits, and vegetables, 
are positively linked to hPDI [24]. These dietary algorithms 
were substantiated by the large number of biomarkers that 
significantly correlated with hPDI (n = 33), inversely with 
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investigate whether adding these animal-derived biomark-
ers would increase the correlation between dietary patterns 
and signatures.

As strengths, though studies have identified several 
dietary pattern-associated metabolic signatures, this study 
is the first to develop metabolic signatures for evaluating 
adherence to a series of common plant-rich diet patterns. The 
measurement of a wide range of metabolites from different 
classes in plasma, spot, and 24-hour urine with authentic 
standards enabled us to capture an accurate, quantitative, 
and comprehensive profiling of the plant food-related 
metabolome [26]. The metabolite-based, machine-learning-
derived signatures were reproducible among free-living 
healthy adults across various sample types. The reliability 
and robustness of the methodology allows potential applica-
tions in future research to measure adherence to plant-rich 
dietary patterns/habits in prospective cohorts and interven-
tional studies.

Limitations of this work include (i) the observational nature 
of this study limited the exploration of causality; (ii) the use 
of self-reported methods and a limited set of predefined food 
groups for each dietary pattern coming from FFQs may intro-
duce measurement bias; (iii) the targeted metabolomics assay 
did not emphasize non-plant-related molecules relevant to 
meat-related food items, for instance, acylcarnitines, phospho-
lipids, amino acids and amines [15]. The assay platform will 
expand in the future to gain more insights into meat-related 
metabolites, and the signatures may benefit from additional 
meat-related metabolites. Moreover, the generalization of the 
findings is limited to healthy adults living in the UK, so future 
replication in both the UK and other countries with a larger 
population is needed, including further examination of associa-
tions with health outcomes.

Conclusion

In conclusion, a set of 6 metabolic signatures was developed 
and evaluated based on three UK-based cohorts to measure 
adherence to plant-rich dietary patterns. Phenolic acids and 
enterolactone metabolites, as gut microbial-derived com-
pounds, played an important role in the establishment of the 
signatures. Agreements were found between dietary patterns 
and their corresponding signatures when ranking participants 
into quartiles, highlighting the value of the metabolic signature 
as a reliable marker of plant-rich dietary intake. Our findings 
highlight the potential of metabolomics profiling as a tool for 
objectively evaluating habitual dietary intake.

Supplementary Information The online version contains 
supplementary material available at  h t t  p s : /  / d o  i . o  r g / 1 0 . 1 0 0 7 / s 0 0 3 9 4 - 0 
2 4 - 0 3 5 1 1 - x     .  

methods in energy and nutrient intake research [50]. The 
gross misclassification of more than 10% of subjects into 
the opposite quartiles illustrates a poor outcome, while more 
than 70% of subjects correctly classified into the same or 
adjacent quartiles indicate a satisfactory agreement [50]. 
Here, all agreements in the derivation and ABP validation 
datasets met these satisfactory criteria. However, some 
dietary patterns in the other two validation datasets slightly 
missed the standard, such as A-MED and MIND in the two 
datasets, DASH in the TwinsUK dataset, and uPDI in the 
POLYNTAKE cohort with plasma sample for the correctly 
classified criteria, and O-MED in the two datasets for oppo-
site quartiles. The ABP dataset, a subcohort of the POLYN-
TAKE cohort, shares the same participants’ characteristics 
and biospecimens as the derivation dataset, serving as an 
internal validation dataset. Thus, the metabolic signature 
derived from the overall derivation dataset is highly appli-
cable to the ABP cohort, yielding similar validation results 
in terms of correctly classified and opposite quartile percent-
ages. Additionally, certain dietary patterns, such as A-MED, 
O-MED, hPDI, and uPDI, exhibited superior correctly clas-
sified percentages compared to the derivation dataset. In 
contrast, the TwinsUK cohort, an external dataset, differs 
in both participants characteristics and biospecimens. These 
variations in biofluids and participant characteristics in the 
external validation datasets likely contribute to the slight 
deviations from the criteria observed in dietary patterns 
other than hPDI. The hPDI algorithm prioritizes plant-based 
food components and aligns with our plant-derived metabo-
lites, ensuring satisfactory agreement across all validation 
datasets despite variations in participant characteristics or 
biospecimens.

The plant-rich dietary patterns investigated in this study 
also included animal-derived food items, for instance, fish, 
poultry, and meat products, which are high in choline and 
carnitine. Previous studies indicated that the metabolic sig-
natures of meat intake included multiple metabolites such 
as lipids, amino acids, and xenobiotics [31]. Our targeted 
metabolomic profiling assay did not include any biomarkers 
of meat or fish consumption, for instance, trimethylamine-
N-oxide (TMAO) [14]. The disagreement in classification 
between dietary patterns and their respective metabolic sig-
nature when ranking participants into quartiles in the allu-
vial plots may be attributed to the lack of animal-derived 
food metabolites. In addition, negative correlations were 
found between red and processed meat and dietary patterns, 
except for uPDI. Although it is hard to untangle the origin of 
each of the metabolites, some metabolites could come from 
non-plant sources. These results strengthened the validity 
of the metabolic signatures, assuming that higher consump-
tion of plant foods may indicate a lower consumption of 
red and processed meat. Further research is required to 
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