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Abstract
Background Pediatric non-alcoholic fatty liver disease (NAFLD) is a chronic steatosis of the liver associated with energy 
metabolism in children and adolescents, failure to intervene promptly can elevate the risk of developing hepatocellular car-
cinoma. Therefore, this study aimed to understand the underlying mechanism of pediatric NAFLD and investigate potential 
biomarkers and therapeutic targets.
Methods We investigated genes using the GSE185051 data set related to energy metabolism from the GeneCards database, 
constructed protein–protein interaction network, identified hub genes and established networks representing interactions 
between these hub genes and miRNA, RNA-binding proteins, transcription factors, and drugs. Subsequently, we performed 
Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis, Gene Set Enrich-
ment Analysis (GSEA), and immune infiltration analysis.
Results Our analysis identified 9 hub genes through the PPI network. The target molecules were identified through the 
interaction network between hub genes and miRNAs, RNA-binding proteins, transcription factors, and drugs. GO analysis 
revealed that hub genes were associated with oxidative stress responses and other pathways. KEGG analysis highlighted their 
involvement in pathways such as insulin resistance, among others. GSEA revealed that hub genes were highly enriched in 
pathways related to Omega-9 fatty acid synthesis, among others. Immune infiltration analysis suggested that mast cells and 
T follicular helper cells play significant roles in the pathogenesis of NAFLD.
Conclusion We identified the hub genes in pediatric NAFLD closely related to energy metabolism. These findings offer the 
potential for identifying potential novel diagnostic biomarkers, and establishing therapeutic targets for pediatric NAFLD.

Keywords Pediatric non-alcoholic fatty liver disease · Chronic steatosis · Integrative analyses · Genes · Energy 
metabolism · Hepatocellular carcinoma
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Introduction

Pediatric non-alcoholic fatty liver disease (NAFLD) is a 
clinicopathologic syndrome characterized by chronic stea-
tosis of the liver in children and adolescents under the age 
of 18 years. It involves the accumulation of fat in the liver, 
affecting more than 5% of the liver cells, except in cases 
where chronic fat deposition in the liver is attributed to 
alcohol consumption or other definitive pathogenic fac-
tors. Over the past two decades, the prevalence of NAFLD 
among American children and adolescents has increased 
by over 100 percent, making it the predominant cause of 
chronic liver disease in many nations [1]. In European 
children (aged 3–18 years), prevalence varies from 1.3 to 
22.5%, with an average of 11% in children (average age of 
12.4 ± 2.6 years) [2]. In China, an estimated 45% of obese 
adolescents are affected by NAFLD [3]. Without timely 
intervention, NAFLD poses a risk of hepatocellular carci-
noma in the future. Presently, research on NAFLD primar-
ily focuses on adults, despite the unique characteristics of 
pediatric NAFLD. The incidence of NAFLD in pediatrics 
is alarming, and there are presently no biological indica-
tors or measures that can be used to properly diagnose 
and track the course of the condition [4], emphasizing the 
urgent need to determine whether uniform and distinct 
pathogenic mechanisms exist in pediatrics. Furthermore, 
there are currently no authorized therapies for NAFLD in 
adults or children and no medications in phase 3 trials for 
pediatric patients. Therefore, elucidating the mechanisms 
of pediatric NAFLD and the investigation of new biomark-
ers and therapeutic targets is crucial for the precise diag-
nosis and management of NAFLD [5].

There exists substantial evidence supporting the notion 
that metabolic dysfunction plays a pivotal role in the 
development and progression of NAFLD [6]. In 2021, 
an international panel of experts renamed NAFLD as 
“metabolism-associated fatty liver disease” [4]. Research 
has shown that the only effective therapies for mitigating 
hepatic steatosis and improving the metabolic phenotype in 
adults include weight loss achieved through dietary mod-
ifications or bariatric surgery, increased physical activ-
ity, and reduced fructose consumption [7, 8]. Although 
NAFLD is closely associated with metabolic dysfunction, 
the causal relationships and underlying pathogenesis have 
yet to be fully elucidated. Therefore, further research into 
the relationship between energy metabolism and NAFLD 
is warranted.

Effective bioinformatics analysis can provide valuable 
insights into the molecular-level origins and progression of 
diseases. Therefore, utilizing differentially expressed genes 
(DEGs) associated with NAFLD and energy metabolism in 
pediatrics, we created a Protein–Protein Interaction (PPI) 

network, identified key genes (referred to as “hub genes”), 
and established mRNA-miRNA, mRNA-RBP, mRNA-TF, 
and mRNA-drugs interactions networks involving these 
hub genes. We also conducted Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) func-
tional enrichment analyses, Gene Set Enrichment Analy-
sis (GSEA), and immune infiltration analysis to study the 
pathogenesis of pediatric NAFLD from the perspective of 
energy metabolism, as well as to identify potential novel 
diagnostic biomarkers and therapeutic targets.

Methods

Data Download

The expression profile data set GSE185051 [9] of pediatric 
NAFLD was downloaded from the GEO database [10]using 
the R package GEOquery [11]. The data set GSE185051 per-
tains to Homo sapiens and comprises expression profiles of 
samples of the GSE185051 obtained from high-throughput 
sequencing of liver biopsies from 52 pediatric NAFLD cases 
and 5 corresponding healthy liver control samples. The data 
platform utilized was GPL24676 Illumina NovaSeq 6000.

The expression profile data of 52 pediatric NAFLD sam-
ples (NAFLD group) and 5 healthy liver control samples 
(Control group) from the data set GSE185051, measured 
by RNA-seq, were included in subsequent analyses. Any 
references to probe annotations were related to earlier steps 
or additional comparative analyses, not the RNA-seq data 
itself. Energy metabolism is an important factor affecting 
biological metabolic activities. Energy Metabolism Related 
Genes (EMRGs) were identified through the GeneCards 
database [12] (https:// www. GeneC ards. org/). GeneCards is 
a comprehensive database containing extensive information 
on human genomes. We used the term “Energy metabolism” 
as a search keyword and only retained 69 EMRGs with “Pro-
tein Coding” and “Relevance score > 6.000.” In addition, 
we also used “Energy metabolism” as the search keyword 
in Molecular Signatures Database (MSigDB) [13] (https:// 
www. gsea- msigdb. org/), resulting in two reference gene sets 
REACTOME_INTEGRATION_OF_ENERGY_METAB-
OLISM and WP_ENERGY_METABOLISM totaling 153 
EMRGs. Overall, 137 EMRGs were obtained after merging 
and deduplication in the GSE185051 data set. Specific gene 
names were provided in Table S1.

DEGs Related to Pediatric NAFLD

To elucidate the potential mechanisms, biological charac-
teristics, and pathways related to differential gene expres-
sion in pediatric NAFLD, we first standardized the data set 
GSE185051 using the limma package [14] and performed 

https://www.GeneCards.org/
https://www.gsea-msigdb.org/
https://www.gsea-msigdb.org/
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differential analysis to obtain DEGs between the NAFLD 
group and the Control group. DEGs were selected based 
on the criteria of |logFC|> 1.5 and P. adj. < 0.05 as the dif-
ference for our further research. Among them, genes with 
logFC > 1.5 and P. adj. < 0.05 were considered up-regulated 
DEGs, and genes with logFC < 1.5 and P. adj. < 0.05 were 
considered down-regulated DEGs.

To identify Energy Metabolism Related Differentially 
Expressed Genes (EMRDEGs) in pediatric NAFLD, we 
determined the intersection of DEGs and EMRGs using 
a Venn diagram. The outcomes of the differential analysis 
were further visualized through heatmaps generated with 
the R package heatmap and volcanic plots created using the 
R program ggplot2.

ROC Curve

The Receiver Operating Characteristic (ROC) [15] curve is 
a graphical tool used to assess model performance, select 
optimal models, or establish ideal thresholds. It reflects the 
connection between sensitivity and specificity. The area 
under the curve (AUC) of ROC typically ranges from 0.5 to 
1. The diagnostic impact increases as the AUC gets closer 
to 1. AUC values between 0.5 and 0.7 suggest low accuracy, 
while those between 0.7 and 0.9 indicate moderate accu-
racy, and AUC values above 0.9 represent high accuracy. 
To assess the diagnostic potential of EMRDEGs in pediatric 
NAFLD, we computed the AUC using the pROC package of 
R to create the ROC curve of EMRDEGs.

Differential Gene Function Enrichment GO Analysis 
and Pathway Enrichment KEGG Analysis

GO [16] analysis is a widely adopted approach for exam-
ining functional enrichment on a large scale, including 
biological processes (BP), molecular functions (MF), and 
cellular components (CC). KEGG [17] is an extensively 
used repository that contains comprehensive data related to 
genomes, BP, and medications, among others. The R pack-
age clusterProfiler [18] was utilized to perform GO and 
KEGG analysis on EMRDEGs. The Benjamini–Hochberg 
approach was used for P-value correction. P.adj. is directly 
utilized for filtering significant enriched terms, while FDR 
measures the rate of false positives introduced by multiple 
testing. We first screened potential enriched terms using 
p.adj. and then validated their significance using FDR. This 
approach provides a double check that ensures both statisti-
cal significance and reproducibility of the enriched pathways 
we have identified. The statistical significance of the entry 
screening criterion was determined using P. adj. < 0.1 and 
an FDR < 0.05.

GSEA

GSEA [19] is a computational method used to assess the 
distribution pattern of genes within a predetermined gene 
set in a sorted gene table based on their association with a 
specific phenotype. This analysis enables the determination 
of the potential contribution of the gene set to the observed 
phenotype. In this study, genes from the GSE185051 data set 
were categorized into two distinct groups based on positive 
and negative logFC values. Subsequently, the clusterProfiler 
tool was used to conduct enrichment analysis on all DEGs 
within the positive and negative logFC value cohorts. The 
GSEA was conducted with the following parameters: seed 
value set to 2023, 1000 calculations, a minimum of 10 genes 
per gene set, and a maximum of 500 genes per gene set. The 
P value correction method employed was Benjamini–Hoch-
berg method. The c2.cp.all.v2022.1.Hs.symbols.gmt gene 
set was acquired from the MSigDB. The criteria used to 
determine substantial enrichment was a P.adj. value < 0.05 
and an FDR value (q.value) < 0.25.

PPI Network

The PPI network comprises interactions between various 
proteins, playing pivotal roles in numerous BP, including 
the transmission of biological signals, regulation of gene 
expression, production of energy and materials, and cell 
cycle control. Understanding the operating principles of 
proteins within biological systems, the response mecha-
nism of biological signals and the mechanisms governing 
biological signal responses, and the role of energy-related 
substances in specific physiological states like diseases all 
depend on a systematic analysis of the interactions among 
a large number of proteins within these biological systems. 
The STRING database [20] is a comprehensive and search-
able database that contains information on both confirmed 
and hypothesized PPI. In this study, we established a PPI 
network from the screened EMRDEGs using the STRING 
database (minimum required interaction score: medium 
confidence (0.400)). To visualize the PPI network model, 
we utilized Cytoscape (version 3.9.1) [21] and designated 
these EMRDEGs as the central hub genes associated with 
pediatric NAFLD.

Construction of mRNA‑miRNA, mRNA‑RBP, mRNA‑TF, 
mRNA‑Drugs Interaction Network

The MiRDB database [22] serves as a platform for the pre-
diction of target genes and functional annotation of miR-
NAs. We predicted miRNAs that interacted with hub genes 
and created a network of mRNA-miRNA interactions using 
summarized data from MiRDB database with a Target 
Score > 80.
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The ENCORI database (version 3.0) [23], accessible at 
https:// starb ase. sysu. edu. cn/, is an extension of the starBase 
database. It encompasses interactions involving miRNA-
ncRNA, miRNA-mRNA, ncRNA-RNA, RNA-RNA, RBP-
ncRNA, and RBP-mRNA all of which are derived from 
CLIP-seq and degradome sequencing (for plants) data 
mining. ENCORI offers multiple visualization interfaces 
for exploring miRNA targets. In addition, we utilized the 
ENCORI database to predict interactions between RNA-
binding proteins (RBPs) and hub genes. We screened 
mRNA-RBP interaction pairs using the criteria of cluster-
Num > 4 and clipExpNum > 4 and subsequently constructed 
mRNA-RBP interaction network.

CHIPBase database (version 3.0) [24], accessible at 
https:// rna. sysu. edu. cn/ chipb ase/, is capable of identifying 
binding motif matrices and their corresponding binding sites 
by analyzing ChIP-seq data obtained from DNA-binding 
proteins. Additionally, it can predict the transcriptional regu-
latory connections between numerous transcription factors 
(TFs) and genes. The hTFtarget database [25], accessible at 
http:// bioin fo. life. hust. edu. cn/ hTFta rget, is a comprehensive 
repository containing information on human TFs and their 
corresponding regulatory targets. Utilizing the CHIPBase 
and hTFtarget databases, we conducted a search for TFs that 
bind to hub genes and subsequently presented our findings 
using Cytoscape.

Additionally, using the comparative toxicogenomics data-
base CTD [26], available at http:// ctdba se. org/, we further 
predicted potential medications or small molecule com-
pounds interacting with hub genes. Subsequently, we visual-
ized mRNA-miRNA, mRNA-RBP, mRNA-TF, and mRNA-
drugs interaction networks using the Cytoscape software.

Immune Infiltration Assay (CIBERSORT)

To determine the composition and number of immune cells 
within mixed cell populations, we used the immune infiltra-
tion analysis algorithm CIBERSORT [27]. This algorithm 
deconvolutes the transcriptome expression matrix based on 
the principles of linear support vector regression. In order 
to filter out data with an enrichment score of immune cells 
greater than zero, we integrated the pediatric NAFLD data 
set matrix data using the CIBERSORT package [28] in 
conjunction with the LM22 characteristic gene matrix. The 
integration yielded precise results regarding the abundance 
matrix of infiltrating immune cells. The Spearman correla-
tion method was used to determine the associations among 
various immune cell types within samples from the pediatric 
NAFLD data set, and the ggplot2 R package was used to dis-
play the results. Furthermore, using the R package ggplot2, 
we merged the gene expression matrix from the pediatric 
NAFLD data set to determine the associations between 

immune cells and hub genes in various groups, ultimately 
creating a correlation dot map.

Statistical Analysis

The R program (Version 4.1.2) was used for all data process-
ing and analysis in this study. Continuous variables were 
presented as mean ± standard deviation. The Wilcoxon rank 
sum test was used to compare the two groups. Unless stated 
otherwise, the results represened the Spearman correlation 
analysis' correlation coefficients between various molecules, 
with a significance threshold set at a P value of less than 
0.05 to identify significant differences.

Results

This study utilized the GSE185051 data set, which contains 
52 NAFLD samples and 5 control samples. The data were 
first standardized to ensure consistency among samples. 
Through differential expression analysis, significantly DEGs 
between NAFLD and control samples were identified, and 
GSEA was performed to identify gene sets and pathways 
associated with NAFLD. After identifying the DEGs, the 
focus shifted to genes related to energy metabolism, screen-
ing these genes and conducting detailed expression differ-
ence analysis. Subsequently, GO analysis and KEGG path-
way enrichment analysis were performed on the EMRDEGs 
to reveal their roles in biological processes and signaling 
pathways. PPI analysis was conducted to identify the interac-
tion relationships between these genes, to further understand 
their role in NAFLD. To gain deeper insights into the regula-
tory network of genes and potential drug targets, correlation 
analyses were also performed between mRNA and miRNA, 
mRNA and RBP, mRNA and TF, as well as mRNA and 
drugs. Finally, CIBERSORT was used to analyze immune 
cell infiltration, providing insights into the changes in the 
immune microenvironment in NAFLD. The workflow of 
bioinformatics analysis of the present study was shown in 
Fig. 1.

Standardization and Differential Analysis 
of Pediatric NAFLD

While all the samples in the GSE185051 dataset originate 
from the same cohort (pediatric NAFLD and healthy con-
trols), technical variations during high-throughput sequenc-
ing data processing can introduce batch effects, we standard-
ized the pediatric NAFLD data set GSE185051 using the R 
package “limma” (Fig. 2A–D). The dataset consisted of 57 
samples in the GSE185051 data set: including 5 healthy liver 
samples in the Control group and 52 samples from pedi-
atric NAFLD patients in the NAFLD group (Fig. 2A–B). 

https://starbase.sysu.edu.cn/
https://rna.sysu.edu.cn/chipbase/
http://bioinfo.life.hust.edu.cn/hTFtarget
http://ctdbase.org/
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As illustrated in Fig. 2A–B, the expression profile data of 
the pediatric NAFLD data set GSE185051 were effectively 
normalized, resulting in consistent expression patterns of 
the sample data. Next, we assessed the effectiveness of batch 
effect removal using principal component analysis (PCA). 
As evident from comparing the two figures (Fig. 2C–D), the 
corrected plot showed a tighter clustering of samples across 
different experimental groups, indicating that batch effects 
have been mitigated to a certain extent. This ensured the 
accuracy of subsequent differential expression analyses.

To examine the disparities in gene expression between the 
NAFLD group and the Control group, we used the “limma” 

software to conduct differential analysis on the GSE185051 
data set, resulting in the identification of DEGs.

Overall, 22,808 genes were obtained from the data set 
GSE185051, among which 3175 genes matched the thresh-
old of |logFC|> 1.5 and P. adj. < 0.05. Under this threshold, 
1439 genes exhibited higher expression in the NAFLD group 
(with positive logFC indicating lower expression in the Con-
trol group), while 1736 genes showed lower expression in 
the NAFLD group (with negative logFC, indicating higher 
expression in the Control group). A volcano plot was dis-
played to visualize the outcomes of the differential analysis 
of the data sets. (Fig. 2E).

Fig. 1  The workflow of bioin-
formatics analysis



4378 Digestive Diseases and Sciences (2024) 69:4373–4391

We identified 16 EMRDEGs in pediatric NAFLD, and 
a Venn diagram was constructed to illustrate their overlap 
(Fig. 2F). These 16 EMRDEGs included ACSL4, C1QBP, 

CACNB2, CD36, FOXO1, GNG12, HIF1A, MLXIPL, 
PKLR, PPARGC1A, PPP2R1B, PRKAA2, PRKAR2A, 
RAPGEF3, SLC2A2, and UCP2.
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According to the findings from the Venn diagram, we 
examined the differential expression of these 16 EMRDEGs 
in the NAFLD group compared to the Control group within 
the GSE185051 data set (Fig. 2G). Subsequently, we created 
a heatmap using the R package “pheatmap” to visualize the 
expression patterns of these 16 EMRDEGs.

Expression Difference Analysis of EMRDEGs

To further investigate the expression differences of the 16 
EMRDEGs, we conducted an analysis of their expression 
levels in the GSE185051 dataset and their association with 
the relationship between the concentrated expression level 
of EMRDEGs in the GSE185051 data set and the NAFLD 
group and Control group (Fig. 3A).

Firstly, we assessed the expression differences of the 16 
EMRDEGs in the GSE185051 data set between the NAFLD 
group and the Control group using the Wilcoxon signed 
rank test. The results showed that 14 EMRDEGs (ACSL4, 
C1QBP, CACNB2, CD36, FOXO1, GNG12, HIF1A, PKLR, 
PPARGC1A, PRKAA2, PRKAR2A, RAPGEF3, SLC2A2, 
and UCP2) in the GSE185051 data set exhibited statistically 
significant differences in expression between the NAFLD 
group and the Control group (Fig.  3A) (Symbol * was 
equivalent to P < 0.05, symbol ** was equivalent to P < 0.01, 
symbol *** was equivalent to P < 0.001. The significant dif-
ferential expression of these genes in NAFLD may be asso-
ciated with the occurrence and progression of the disease, 
deserving further investigation and research).

Overall, 14 EMRDEGs exhibited statistically signifi-
cant expression differences in the GSE185051 data set 
and the results were displayed (Fig.  3B–O). The ROC 
curve analysis revealed the diagnostic accuracy of these 
EMRDEGs for pediatric NAFLD. Notably, the expres-
sion levels of CACNB2 (AUC = 0.965, Fig. 3D), CD36 
(AUC = 1.000, Fig. 3E), GNG12 (AUC = 0.965, Fig. 3G), 
HIF1A (AUC = 0.946, Fig.  3H), PKLR (AUC = 0.992, 
Fig. 3I), PRKAA2 (AUC = 0.988, Fig. 3K), PRKAR2A 
(AUC = 1.000, Fig.  3L), and SLC2A2 (AUC = 0.973, 
Fig. 3N) demonstrated high diagnostic accuracy for pediat-
ric NAFLD. Additionally, ACSL4 (AUC = 0.823, Fig. 3B), 
C1QBP (AUC = 0.881, Fig. 3C), FOXO1 (AUC = 0.881, 
Fig. 3F), PPARGC1A (AUC = 0.862, Fig. 3J), RAPGEF3 
(AUC = 0.808, Fig. 3M), UCP2 (AUC = 0.792, Fig. 3O) 

demonstrated a reasonable level of diagnostic accuracy for 
pediatric NAFLD.

EMRDEGs GO and KEGG Analysis

To elucidate the relationship between BP, MF, CC, and other 
biological pathways associated with 14 EMRDEGs (ACSL4, 
C1QBP, CACNB2, CD36, FOXO1, GNG12, HIF1A, PKLR, 
PPARGC1A, PRKAA2, PRKAR2A, RAPGEF3, SLC2A2, 
and UCP2) and pediatric NAFLD, we conducted a GO 
analysis on the 14 EMRDEGs (Table 1). Enrichment items 
with a P. adj. < 0.1 and an FDR value (q.value) < 0.05 were 
considered statistically significant. The results indicated that 
these 14 EMRDEGs were primarily enriched in BP related 
to energy homeostasis, cellular glucose homeostasis, posi-
tive regulation of carbohydrate metabolic process, responses 
to oxidative stress, responses to muscle activity, and other 
BP in pediatric NAFLD. Furthermore, they were associated 
with CC, such as the brush border, plasma membrane raft, 
protein kinase complex, cluster of actin-based cell projec-
tions, and cAMP-dependent protein kinase complex, among 
others. Additionally, these genes were found to be involved 
in MF, including enrichment in ubiquitin protein ligase bind-
ing, ubiquitin-like protein ligase binding, cAMP binding, 
cyclic nucleotide binding, and chromatin DNA binding, 
among others. The results of the GO analysis were visu-
ally presented in a bubble plot (Fig. 4A) and network maps 
(Fig. 4B–D), illustrating the results of the BP, CC, and MF 
pathways. 

Next, we conducted a KEGG analysis (Table 2) on these 
14 EMRDEGs. The analysis revealed significant enrichment 
of these genes in pathways such as Insulin resistance, Insulin 
signaling, Adipocytokine signaling, Glucagon signaling, and 
AMPK signaling pathways. We used histograms (Fig. 4E) 
and network diagrams (Fig. 4F) to display the gene expres-
sion in these five enriched KEGG pathways.

GSEA of Pediatric NAFLD Data Set

To investigate the influence of gene expression levels on the 
risk of pediatric NAFLD, we used GSEA to assess the BP, 
affected cell types, and the expression of individual genes 
within the GSE185051 data set. We employed stringent 
screening criteria, requiring a P. adj. < 0.05 and an FDR 
value (q. value) < 0.25. According to the findings, the GSEA 
of the GSE185051 data set had five main biological charac-
teristics (Fig. 5A), the DEGs were considerably enriched in 
Biosynthesis of Unsaturated Fatty Acids (Fig. 5B), Glycoly-
sis Gluconeogenesis (Fig. 5C), Omega-9 Fatty Acid Synthe-
sis (Fig. 5D), Fatty Acid Metabolism (Fig. 5E), Hedgehog 
Ligand Biogenesis (Fig. 5F) and various other pathways 

Fig. 2  Standardization processing of pediatric NAFLD dataset. A–B 
Boxplot diagrams of GSE185051 data  set before (A) and after (B) 
normalization. The Y-axis represented the gene expression values 
(after log2 transformation). C–D PCA plots of GSE185051 before 
(C) and after (D) batch effect removal. E Volcano plot of DEGS 
between the NAFLD group and the Control group of the GSE185051 
data  set. F Venn diagram of DEGs and EMRGs in the dataset. G 
Complex numerical heatmap of EMRDEGs in the GSE185051 
data set

◂
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(Fig. 5B–F, Table 3). These findings offer insights into how 
specific biological processes and pathways may contribute 
to the risk of pediatric NAFLD based on gene expression 
patterns. 

EMRDEGs PPI Network, mRNA‑miRNA, mRNA‑RBP, 
mRNA‑TF, and mRNA‑Drugs Interaction Network

We used the STRING database to analyze 14 EMRDEGs 
(ACSL4, C1QBP, CACNB2, CD36, FOXO1, GNG12, 
HIF1A, PKLR, PPARGC1A, PRKAA2, PRKAR2A, 

Fig. 3  Expression difference analysis of EMRDEGs. A Group com-
parison chart of the expression difference analysis of EMRDEGs in 
the GSE185051 data  set. The “value” on the Y-axis represented the 
normalized expression value of the gene. B–O ROC curve analy-
sis  results for  ACSL4 (B), C1QBP (C), CACNB2 (D), CD36 (E), 
FOXO1 (F), GNG12 (G), HIF1A (H), PKLR (I), PPARGC1A (J), 

PRKAA2 (K), PRKAR2A (L), RAPGEF3 (M), SLC2A2 (N), UCP2 
(O) in the GSE185051 data set. The symbol ns was equal to P ≥ 0.05, 
not statistically significant; the symbol * was equal to P < 0.05, statis-
tically significant; the symbol ** was equal to P < 0.01, highly statis-
tically significant; the symbol *** was equal to P < 0.001, very statis-
tically significant
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RAPGEF3, SLC2A2, and UCP2) for PPI network (minimum 
required interaction score: medium confidence (0.400)). We 
retained only EMRDEGs connected to other nodes, result-
ing in a PPI network comprising 12 EMRDEGs (CACNB2, 
CD36, FOXO1, GNG12, HIF1A, PKLR, PPARGC1A, 
PRKAA2, PRKAR2A, RAPGEF3, SLC2A2, and UCP2) 
all considered as hub genes. We visualized this PPI network 
using Cytoscape software (Fig. 6A).

To identify the hub genes within the PPI network, we 
analyzed the nodes connected to other nodes through the 
cytoHubba plug-in in the Cytoscape software. The cyto-
Hubba [29] plug-in is used to identify hub genes in PPI 
networks. This plug-in implements various algorithms 
to evaluate the importance of genes in PPI networks. 
Through the cytoHubba plug-in, we used three algo-
rithms: Matthews correlation coefficient metric (Fig. 6B), 
differential metabolic network construction (Fig. 6C), 
maximal neighborhood coefficient (Fig. 6D). Matthews 
Correlation Coefficient is a statistical metric that takes 
into account true positives, true negatives, false positives, 
and false negatives to measure the performance of binary 
classification models in classification tasks. It is also a 
measurement method to evaluate the importance of nodes 
in a network. Its value ranges from -1 to 1, where 1 rep-
resents complete correlation, 0 indicates no correlation, 
and -1 represents negative correlation. Through ranking 
by scores, genes with high centrality and importance in 
PPI networks can be identified. Differential metabolic 
network reconstruction is a method that identifies sig-
nificantly changed network nodes and edges in a meta-
bolic network by comparing different conditions (such as 
healthy and pathological groups) to determine the changes 
that occur under specific diseases or physiological states. 

In this study, it was utilized to analyze and identify hub 
genes involved in the pathological process of NAFLD. 
The maximal neighborhood coefficient is an indicator 
used to evaluate the importance of network nodes. It is 
calculated based on the neighborhood density surround-
ing a node. Maximal neighborhood coefficient measures 
the degree of interconnection between a node and its 
neighboring nodes. A high maximal neighborhood coef-
ficient indicates that the node has higher connectivity in 
the network, potentially playing a more important biologi-
cal function. By combining these three methods, we were 
able to identify hub genes with biological importance 
under specific conditions in the PPI network. The top 10 
EMRDEGs with the highest scores were selected for each 
algorithm (Fig. 6B–D). These scores gradually increased 
from yellow to red in the figures. We then identified the 
intersection of the top 10 EMRDEGs obtained by each 
algorithm (Matthews correlation coefficient, differen-
tial metabolic network construction, maximal neighbor-
hood coefficient), respectively, to acquire the hub genes 
of the EMRDEGs PPI network and displayed the results 
in a Venn diagram (Fig. 6E). Overall, we identified 9 
hub genes: CD36, FOXO1, HIF1A, PKLR, PPARGC1A, 
PRKAA2, PRKAR2A, SLC2A2, and UCP2.

For miRNA interactions with these 9 hub genes 
(CD36, FOXO1, HIF1A, PKLR, PPARGC1A, PRKAA2, 
PRKAR2A, SLC2A2, UCP2), we utilized the mRNA-
miRNA data from the miRDB database. The mRNA-miRNA 
interaction network was then displayed using Cytoscape 
software (Fig. 7A). The sky blue circles in the mRNA-
miRNA interaction network represented mRNAs, and the 
green circles represented miRNAs. The mRNA-miRNA 
interaction network revealed that our network included 5 

Table 1  GO enrichment analysis results of hub genes

Ontology ID Description Gene ratio Bg ratio p value p.adjust

BP GO:0097009 Energy homeostasis 4/14 40/18800 1.73e-08 1.93e-05
BP GO:0001678 Cellular glucose homeostasis 5/14 154/18800 6.52e-08 3.62e-05
BP GO:0045913 Positive regulation of carbohydrate metabolic process 4/14 77/18800 2.52e-07 9.35e-05
BP GO:0006979 Response to oxidative stress 6/14 433/18800 3.7e-07 9.65e-05
BP GO:0014850 Response to muscle activity 3/14 21/18800 4.34e-07 9.65e-05
CC GO:0005903 Brush border 2/14 102/19594 0.0023 0.0821
CC GO:0044853 Plasma membrane raft 2/14 113/19594 0.0029 0.0821
CC GO:1902911 Protein kinase complex 2/14 115/19594 0.0030 0.0821
CC GO:0098862 Cluster of actin-based cell projections 2/14 158/19594 0.0055 0.0929
CC GO:0005952 cAMP-dependent protein kinase complex 1/14 10/19594 0.0071 0.0929
MF GO:0031625 Ubiquitin protein ligase binding 4/14 298/18410 5.93e-05 0.0043
MF GO:0044389 Ubiquitin-like protein ligase binding 4/14 317/18410 7.53e-05 0.0043
MF GO:0030552 cAMP binding 2/14 23/18410 0.0001 0.0051
MF GO:0030551 Cyclic nucleotide binding 2/14 37/18410 0.0004 0.0100
MF GO:0031490 Chromatin DNA binding 2/14 105/18410 0.0028 0.0591
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hub genes (FOXO1, HIF1A, PPARGC1A, PRKAA2, and 
PRKAR2A), 117 pairs of mRNA-miRNA interactions, and 
101 miRNA molecules. The results were shown in Table S2.

Additionally, we predicted RBPs interacting with 9 
hub genes (CD36, FOXO1, HIF1A, PKLR, PPARGC1A, 
PRKAA2, PRKAR2A, SLC2A2, UCP2) via the ENCORI 

Fig. 4  GO analysis and KEGG analysis of EMRDEGs. A Bub-
ble diagram display of GO functional enrichment analysis results of 
EMRDEGs. B–D Circular network diagrams of BP pathway (B), CC 
pathway (C), and MF pathway (D) in the GO functional enrichment 
analysis results of EMRDEGs. E–F The results of KEGG pathway 
enrichment analysis of EMRDEGs were shown in bar graphs (E) and 

network graphs (F). The ordinate in the bubble diagram (A) was GO 
terms, and the bubble color indicated the P. adj. value of the path-
way. Blue dots in network diagrams (B, C, D, F) represented specific 
genes, and red circles represented specific pathways. The screening 
criteria for GO and KEGG enrichment items were P.adj. < 0.1 and 
FDR value (q.value) < 0.05
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Table 2  KEGG enrichment 
analysis results of EMRDEGs

Ontology ID Description Gene ratio Bg Ratio p value p. adjust

KEGG hsa04931 Insulin resistance 5/12 108/8164 2.72e-07 2.34e-05
KEGG hsa04910 Insulin signaling pathway 5/12 137/8164 8.91e-07 3.83e-05
KEGG hsa04920 Adipocytokine signaling pathway 4/12 69/8164 2.2e-06 6.3e-05
KEGG hsa04922 Glucagon signaling pathway 4/12 107/8164 1.27e-05 0.0003
KEGG hsa04152 AMPK signaling pathway 4/12 121/8164 2.07e-05 0.0004

Fig. 5  GSEA of pediatric NAFLD data  set GSE185051. A The 
GSEA of the GSE185051 dataset revealed five main biological char-
acteristics. The X-axis represented the LogFC (Log2 Fold Change) 
value of gene expression changes. B–E The DEGs in the GSE185051 
data  set were significantly enriched in Biosynthesis of Unsaturated 

Fatty Acids (B), Glycolysis Gluconeogenesis (C), Omega-9 Fatty 
Acid Synthesis (D), Fatty Acid Metabolism (E), Hedgehog Ligand 
Biogenesis (F) pathway. The significant enrichment screening criteria 
for GSEA enrichment analysis were P. adj. < 0.05 and FDR value (q.
value) < 0.25
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database, retaining mRNA-RBP interaction pairs with clus-
terNum > 4 and clipExpNum > 4, then visualized the mRNA-
RBP interaction network by Cytoscape software (Fig. 7B). 
This network included 7 hub genes (CD36, FOXO1, HIF1A, 
PPARGC1A, PRKAA2, PRKAR2A, and UCP2), 40 RBP 
molecules and 102 pairs of mRNA-RBP interaction rela-
tionships. Notably, hub gene HIF1A had interactions with 

31 RBP molecules. The specific mRNA-RBP interaction 
relationships were shown in Table S3.

We identified TFs that bind to hub genes through the CHIP-
Base database (version 2.0) and the hTFtarget database. These 
interactions overlapped with 9 hub genes, resulting in 7 hub 
genes (FOXO1, HIF1A, PPARGC1A, PRKAA2, PRKAR2A, 
SLC2A2, and UCP2) and 100 TFs, which we mapped out 

Table 3  GSEA analysis results of dataset GSE185051

Description Set size Enrichment score NES p.adjust q value

KEGG_BIOSYNTHESIS_OF_UNSATU RAT ED_FATTY_ACIDS twenty two 0.754905 2.271131 0.027132 0.020635
KEGG_GLYCOLYSIS_GLUCONEOGENESIS 61 0.571754 2.170466 0.027132 0.020635
REACTOME_FATTY_ACID_METABOLISM 174 0.465028 2.060954 0.027132 0.020635
WP_OMEGA9_FATTY_ACID_SYNTHESIS 14 0.756823 2.026126 0.027132 0.020635
REACTOME_HEDGEHOG_LIGAND_BIOGENESIS 64 0.50621 1.938256 0.027132 0.020635
REACTOME_TNFR2_NON_CANONICAL_NF_KB_PATHWAY 100 0.455465 1.884371 0.027132 0.020635
WP_GLYCOLYSIS_AND_GLUCONEOGENESIS 44 0.524923 1.860042 0.027132 0.020635
WP_FATTY_ACID_OMEGAOXIDATION 14 0.689731 1.84651 0.027132 0.020635
WP_OMEGA3_OMEGA6_FATTY_ACID_SYNTHESIS 15 0.667767 1.82177 0.027132 0.020635
REACTOME_SIGNALING_BY_TGFB_FAMILY_MEMBERS 122 0.34902 1.486172 0.038322 0.029146

Fig. 6  EMRDEGs PPI network. 
A PPI network of EMRDEGs. 
B–E MCC (B), DMNC (C), 
and MNC (D) algorithm 
top 10 node networks of the 
PPI network of EMRDEGs. E 
The top 10 node Venn diagram 
results of the four algorithms 
MCC, DMNC, MNC, and 
Degree in the EMRDEGs PPI 
network were displayed
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using Cytoscape (Fig. 7C). The sky blue circles were mRNAs 
and the purple circles were TFs. In the mRNA-TF interaction 
network, we found 65 pairs of significant mRNA-TF inter-
actions particularly involving the hub gene UCP2. Table S4 
displayed the precise interactions between mRNAs and TFs.

To find potential medications or chemical compounds 
targeting 9 hub genes, as shown in the mRNA-drugs inter-
action network (Fig. 7D), we searched 76 potential drugs 
or molecular compounds corresponding to 8 hub genes 
(CD36, HIF1A, PKLR, PPARGC1A, PRKAA2, PRKAR2A, 
SLC2A2, and UCP2) through the CTD database. The sky 
blue circles represented mRNAs, and the pink circles rep-
resented drugs. We identified 43 medications or chemical 
substances that target the CD36 gene among them. Vari-
ous mRNA-drug interaction correlations were shown in 
Table S5.

Immune Infiltration Analysis of Pediatric NAFLD 
Data Set (CIBERSORT)

We used the CIBERSORT package and the Pearson algo-
rithm [30] to evaluate the correlation between 22 distinct 
immune cell types and the expression profile data of pedi-
atric NAFLD data set GSE185051. A graphical representa-
tion of the immune cell infiltration in each sample of the 
GSE185051 data set was created (Fig. 8A), focusing on 21 
immune cell types where the cumulative infiltration abun-
dance was greater than 0.

The association between the infiltration abundance of 21 
immune cell types and the expression profiles within the 
pediatric NAFLD data set GSE185051 was computed and 
presented (Fig. 8B). The findings revealed that the majority 
of the infiltration abundances among these 21 immune cell 
categories exhibited a negative correlation.

Simultaneously, we investigated the relationships between 
the expression levels of 9 hub genes (CD36, FOXO1, 
HIF1A, PKLR, PPARGC1A, PRKAA2, PRKAR2A, 
SLC2A2, and UCP2) and the infiltration abundance of 21 
immune cell types (Fig. 8C). Notably, mast cells had a sig-
nificantly positive correlation with CD36 and PRKAR2A, 
while T follicular helper cells exhibited positive correlation 
with FOXO1 and PPARGC1A. Conversely, B cells memory 
had a significant negative correlation with CD36, HIF1A, 
PRKAR2A, and UCP2, and T follicular helper cells showed 
negative correlation with CD36, HIF1A, PKLR, PRKAR2A, 
and UCP2.

Discussion

Pediatric NAFLD is closely linked to disruptions in energy 
metabolism. Numerous studies [31, 32] have shown that 
abnormalities in energy metabolic processes, particularly 

mitochondrial dysfunction and oxidative stress, are crucial 
factors in the pathogenesis of NAFLD. Therefore, investi-
gating EMRDEGs can help us gain a deeper understand-
ing of the underlying pathological mechanisms of NAFLD. 
Furthermore, energy metabolism plays a pivotal role in the 
interplay of multiple systems and organs. In the liver, its 
dysregulation not only affects hepatic metabolic functions 
but can also trigger other metabolic syndromes, including 
obesity and insulin resistance. Therefore, a focused study 
of these genes provides a systematic and biologically plau-
sible integration perspective, revealing the complex patho-
physiological mechanisms of NAFLD. In this study, we 
comprehensively analyzed the data set GSE185051, col-
lected EMRGs through the GeneCards database, identified 
EMRDEGs, and extracted 9 hub genes through the PPI net-
work. Furthermore, we determined target molecules through 
mRNA-miRNA, mRNA-RBP, mRNA-TF, and mRNA-drugs 
interaction networks. GO analysis revealed associations 
with functions such as response to oxidative stress, and 
KEGG analysis involved pathways related to insulin resist-
ance. GSEA showed gene sets enriched in pathways such 
as omega-9 fatty acid synthesis. Immune infiltration analy-
sis suggested that mast cells and immune cells such as T 
follicular helper cells played an important part in pediatric 
NAFLD. Our research provided new insights into the patho-
genesis of pediatric NAFLD, offering potential novel diag-
nostic biomarkers and therapeutic targets from an energy 
metabolic perspective.

We identified 14 EMRDEGs from the GSE185051 data 
set and GeneCards database and plotted the ROC curves to 
demonstrate that the AUCs of CACNB2, HIF1A, PKLR, 
PRKAA2, PRKAR2A, and SLC2A2 were all greater than 
0.9. The results not only showcase the differential expression 
of EMRDEGs between NAFLD group and the control group, 
but also provide the possibility of using these genes as 
potential biomarkers for NAFLD diagnosis. These findings 
offer new perspectives and promising directions for further 
clinical research and the identification of therapeutic targets. 
We compared the results with adult NAFLD studies, and 
a bioinformatics analysis proposed that NDUFA4, TFAM, 
and CDKN1B have significant diagnostic value for NAFLD 
[33]. In another study, the author proposed that the SIRT 
family plays a crucial role in regulating mitochondrial func-
tion during the development of NAFLD [34]. Govaere [35] 
established a model for identifying risky steatohepatitis that 
includes four proteins: ADAMTSL2, AKR1B10, CFHR4, 
and TREM2. From the above studies, it is apparent that the 
genes related to NAFLD in adults are significantly different 
from those in children. In our study, we did not find that 
these genes played a role in pediatric NAFLD, which further 
highlights the necessity of conducting research on pediatric 
NAFLD. Another adult study [36] found that hepatic ACSL4 
levels were elevated in patients with NAFLD. Suppressing 
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ACSL4 expression promoted mitochondrial respiration, 
thereby enhancing the capacity of hepatocytes to mediate 
β-oxidation of fatty acids and minimize lipid accumulation 

by up-regulating peroxisome proliferator-activated recep-
tor coactivator-1 alpha. Our study also found that ACSL4 
is closely related to pediatric NAFLD, but it may play 
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different biological roles in different age groups. The sig-
nificant expression of ACSL4 in pediatric NAFLD may be 
related to the special metabolic needs during the growth and 
development stage, while in adults, these genes may be more 
related to lifestyle. We need to conduct further experiments 
to validate this viewpoint. In a study of genes related to 
pediatric NAFLD, PNPLA3 I148M variant has been shown 
to increase susceptibility to the whole spectrum of liver 
damage related to NAFLD and to be a general modifier of 
liver disease progression [37]. Carriage of the I148M variant 
increases the risk of liver disease, particularly in children 
(< 18 years), and interacts with dietary factors such as intake 
of fructose-enriched drinks. Another study showed variants 
in the genes encoding glucokinase regulator (GCKR) and 
membrane bound O-acyl transferase 7 (MBOAT7) also con-
tribute to the risk of pediatric NAFLD [37]. The EMRDEGs 
in this study are all distinct from those reported previously, 
the novel genes we have identified will provide new insights 
into the pathogenesis of NAFLD in children.

In our network analysis, we utilized the STRING database 
and Cytoscape software for PPI network analysis, identi-
fying 12 EMRDEGs with close interactions. Through the 
MCC, DMNC, and MNC algorithms, we further identified 
9 hub genes (CD36, FOXO1, HIF1A, PKLR, PPARGC1A, 
PRKAA2, PRKAR2A, SLC2A2, UCP2), which are likely 
to play significant roles in the crucial regulation of NAFLD. 
Additionally, our mRNA-miRNA interaction network analy-
sis revealed 117 interactions between five of these hub genes 
and 101 miRNA molecules, indicating that these miRNAs 
may represent novel gene regulatory layers in the pathologi-
cal process of NAFLD. Among them, the increased activity 
of hub gene FOXO1, on the one hand, promotes the activity 
of genes involved in gluconeogenesis, on the other hand, 
leads to lipid metabolism disorder, which is characterized 
by hyperglycemia and hypertriglyceremia. The upregula-
tion of FOXO1 expression by long non-coding Gomafu has 
been shown to contribute to the promotion of hepatic insulin 
resistance via the mechanism of miR-139-5p sponging, sug-
gesting that FOXO1 and miRNA interactions could promote 
insulin resistance [38]. This is consistent with our findings 
and could be a potential target for the treatment of insulin 
resistance in pediatric NAFLD.

Our mRNA-RBP interaction network analysis identified 
102 interactions between 7 hub genes and 40 RBP mol-
ecules. Notably, the close interaction between the HIF1A 
gene and 31 RBP molecules suggests its central regulatory 
role in NAFLD, among which HIF1A was most closely asso-
ciated with RBPs. HIF1A is an important transcription factor 
for cellular response to hypoxia and regulates angiogenesis, 
cell adhesion, energy metabolism, apoptosis, and other 
important physiological processes. Increased expression of 
HIF1A could lead to liver injury, whereas its inhibitor, gen-
istein, could protect against liver failure by inhibiting cel-
lular reactive oxygen species production, reducing necrosis, 
and decreasing permeability transition pores in mitochondria 
[39]. It has been shown that insulin-like growth factor bind-
ing protein-3 (IGF2BP3), acting as a m6A reader, recognizes 
m6A modification in HIF1A mRNA, enhancing HIF1A pro-
duction by improving RNA stability [40]; this is consist-
ent with our results. Additionally, a study in adolescents 
also demonstrated that IGF2BP3 was elevated in pediatric 
NAFLD, unchanged in adult NAFLD, and could serve as a 
unique biomarker for pediatric NAFLD [9].

The mRNA-TF interaction network analysis identified 
interactions between 7 hub genes and 100 transcription fac-
tors. The UCP2 gene exhibited the most interactions with 
transcription factors, indicating that it may be an important 
transcriptional regulatory node. UCP2 is an inner mitochon-
drial membrane ion carrier that controls insulin secretion, 
free fatty acid concentration, and lipid metabolism, all of 
which are crucial to maintaining stable energy levels. It has 
been reported that HNRNPK is linked to UCP2 mRNA via 
locations in the transcript's 3'-untranslated region, promoting 
the production of mitochondrial UCP2 in response to insulin 
[41]. It is hypothesized that UCP2 and HNRNPK interac-
tion contributes to the progression of NAFLD through an 
insulin resistance mechanism. Furthermore, we also identi-
fied a total of 65 pairs of interaction relationships between 
UCP2 and TFs. Among these, ATF3, E2F1, FOXA1, 
FOXA2, HDAC1, MYC, NOTCH1, USF1, and YY1 could 
be involved in lipid metabolism in NAFLD; however, no 
interaction with UCP2 has been reported in the previous 
studies. Our study suggested that the expression of TFs regu-
latory UCP2 might be involved in the pathogenesis of pedi-
atric NAFLD; however, the specific regulatory mechanism 
requires further exploration.

Currently, there are no medications with definitive effi-
cacy against pediatric NAFLD; therefore, we searched for 76 
possible medications or chemical compounds that matched 
to the 8 hub genes through the CTD database and found 
43 drugs or molecular compounds targeting CD36, includ-
ing thiazolidinediones such as rosiglitazone, pioglitazone, 
and troglitazone. CD36 is a fatty acid transporter protein 
that is involved in transport and/or acts as a regulator of 
fatty acid transport. Studies have found that rosiglitazone, 

Fig. 7  Hub genes mRNA-miRNA, mRNA-RBP, mRNA-TF, and 
mRNA-drugs interaction network. A–D mRNA-miRNA (A), mRNA-
RBP (B), mRNA-TF (C), mRNA-drugs (D) interaction network of 
hub genes. The sky blue circles in the mRNA-miRNA (A) interac-
tion network were mRNAs; the green circles were miRNAs. In the 
mRNA-RBP (B) interaction network, the sky blue circles were 
mRNAs; the orange circles were RBPs. The sky blue circles in the 
mRNA-TF (C) interaction network were mRNAs; the purple circles 
were TFs. In the mRNA-drugs (D) interaction network, the sky blue 
circles were mRNAs; the pink circles were drugs. RBP RNA-Binding 
Protein, TF Transcription Factors

◂
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pioglitazone, and troglitazone could be used to improve 
insulin resistance and lipid metabolic abnormalities in 
NAFLD [42–44], offering new options for the treatment 
of pediatric NAFLD. Another drug, Resveratrol, regulates 
SIRT1-FoxO1 pathway-mediated cholesterol metabolism 
[45] and also inhibits ethanol-induced insulin production 
in INS-1 cells through the SIRT1-UCP2 axis [46]. Several 
studies [47, 48] have demonstrated the therapeutic potential 
of Resveratrol in NAFLD, and further research is needed to 
explore its use in children.

The GO analysis showed that the key biological processes 
related to NAFLD include energy homeostasis, cellular 
glucose homeostasis, positive regulation of carbohydrate 
metabolism, response to oxidative stress, and response to 
muscle activity. Among them, Oxidative stress may play a 
crucial role in the occurrence and development of NAFLD. 
Oxidative stress-induced cellular senescence may affect 
hepatocyte function and metabolism, contributing to the 

progression of NAFLD from mild steatosis to inflamma-
tion, fibrosis, or hepatocellular cancer [49]; thus, various 
drugs that inhibit oxidative stress could be potential thera-
peutic targets for NAFLD. Regarding the identification of 
“response to muscle activity” and “brush border” pathways 
in the GO analysis of EMRDEGs from liver biopsy sam-
ples, these findings likely reflect the multifaceted functions 
of these genes. Although these samples originate from liver 
biopsies, it is worth noting that the genes identified can 
potentially play a role in other tissues or physiological pro-
cesses. For instance, the expression and function of certain 
genes in muscle activity or cellular membrane structures 
may also influence their detection in liver samples [50, 51]. 
KEGG analysis showed that the majority of EMRDEGs 
were linked to insulin resistance pathways. Prior research 
has suggested that activating the PI3K/AKT pathway might 
reduce inflammation and modulate insulin sensitivity in 
NAFLD patients [52], which was consistent with our result. 

Fig. 8  Immune infiltration analysis of pediatric NAFLD (CIB-
ERSORT). A Histogram display of immune infiltration results of 
immune cells in the pediatric NAFLD data set GSE185051. B Corre-
lation heatmap analysis results of immune cell infiltration abundance 
in the GSE185051 data set. C Correlation dot plots of immune cells 

and hub genes in the GSE185051 data set. The absolute value of the 
correlation coefficient (r) in the correlation heat map was strong if 
the absolute value was above 0.8; if the absolute value was 0.5–0.8, 
it was moderately correlated; if the absolute value was 0.3–0.5, it was 
weak; if the absolute value was below 0.3, it was weak or not relevant



4389Digestive Diseases and Sciences (2024) 69:4373–4391 

Many traditional Chinese medicines have also been verified 
to improve NAFLD through PI3K/AKT pathways [52, 53]. 
Many biomarkers in mRNA-miRNA, mRNA-RBP, mRNA-
TF, and mRNA-drugs interaction networks in this study 
were also associated with insulin resistance. Thus, insulin 
resistance is an important mechanism of pediatric NAFLD 
and should be a key target for NAFLD treatment. GSEA of 
EMRDEGs was significantly enriched in the biosynthesis 
of unsaturated fatty acids, glycolysis gluconeogenesis, fatty 
acid metabolism, omega9 fatty acid synthesis, and hedgehog 
ligand biogenesis. Lipid metabolism plays a central role in 
the pathogenesis of NAFLD. A study in adults found that 
NAFLD severity was associated with reduced liver Omega-3 
polyunsaturated fatty acids [54], Omega-3 dietary supple-
ments showed the potential to be employed as a treatment 
for NAFLD [55], but there were no studies about Omega-9. 
Omega-9 are monounsaturated and non-essential fatty acids 
that can be synthesized in vivo, and whether NAFLD has 
the same potential to treat NAFLD as Omega-3 in children 
requires further investigation.

Several studies have shown that inflammation exacer-
bates metabolic disturbances in NAFLD and that immune 
cell infiltration is critical in the establishment and progres-
sion of adipose tissue inflammation in NAFLD [56, 57]. In 
this study, it was found that mast cells were strongly linked 
with CD36 and PRKAR2A. In a mouse study, mast cells 
promoted hepatobiliary injury and might cause microve-
sicular steatosis development during the transition from 
NAFLD to NASH via miR-144-3p/ALDH1A3 signaling 
[58]. Additionally, mast cells from the portal vein region 
and fiber spacing were implicated in the pathophysiology of 
NAFLD-related liver fibrosis [59]. Thus, inhibition of mast 
cell activation might be a therapeutic approach for NAFLD 
treatment. T follicular helper cells express the chemokine 
receptor CXCR5, which controls the differentiation and 
clonal selection of memory and antibody-secreting B cells, 
hence regulating the development of antibody memory and 
affinity. In this study, T follicular helper cells were positively 
correlated with FOXO1 and PPARGC1A and negatively cor-
related with CD36, HIF1A, PKLR, and PRKAR2A. T fol-
licular helper cells played a significant role in the process of 
liver damage. In acetaminophen-induced acute liver failure, 
it was found that the number of CD4 naive T cells, CD8 T 
cells, and T follicular helper cells increased [60]. T follicular 
helper cells infiltration and enhanced IL-21 production may 
be linked to the development of AIH in patients with high 
blood IgG4 [61]. The absence of previous studies on T fol-
licular helper cells in NAFLD suggests a new direction for 
future research in NAFLD.

Although our study initially identified EMRDEGs in 
pediatric NAFLD, further research is needed to compre-
hensively understand the pathological mechanisms of pedi-
atric NAFLD and confirm the roles of these genes. Future 

studies can be conducted in several directions. Firstly, the 
same analytical methods should be applied to RNA-seq data-
sets from adult NAFLD to conduct systematic comparative 
studies, aiming to clarify the differences and similarities 
in gene expression and pathological mechanisms between 
pediatric and adult NAFLD. Secondly, to improve the reli-
ability and generalizability of the research results, future 
studies should expand the sample size and conduct large-
scale multi-center studies by combining RNA-seq data from 
multiple centers for pediatric NAFLD. Additionally, in vitro 
and in vivo experiments are necessary to validate the specific 
roles and mechanisms of these key energy metabolism genes 
in NAFLD. These experiments can include gene knockout, 
overexpression, and pharmacological interventions. Finally, 
future research should focus on the potential clinical applica-
tions of the biomarkers we have discovered in the diagnosis 
and treatment of NAFLD. Exploring their feasibility and 
effectiveness as diagnostic tools or therapeutic targets will 
facilitate the translation of research findings into practical 
clinical applications. Through these research directions, we 
will gain a deeper and more comprehensive understanding 
of the pathological mechanisms of pediatric NAFLD and 
provide new scientific evidence and strategies for its diag-
nosis and treatment.

However, there are some limitations in this study. Firstly, 
obtaining pathologic specimens from young children for 
invasive liver puncture was clinically challenging, and per-
forming liver puncture on healthy children would be ethi-
cally questionable, making experimental validation difficult. 
Secondly, our current study completed the later stage of crit-
ical data analysis and validation, and we have not included 
new pediatric NAFLD studies as a validation cohort for the 
time being. This may impact the external validation of our 
results. However, we recognize the importance of introduc-
ing more similar pediatric studies for validation and plan to 
expand our research scope in future studies, continuing to 
search for and integrate similar pediatric datasets to further 
validate and consolidate our findings.

Conclusion

Our study combined the GEO data set and GeneCards data-
base of EMRGs to identify hub genes and interacting miR-
NAs, RBPs, TFs, and drugs. Through GO, KEGG analy-
ses, and GSEA and immune infiltration analyses, we have 
provided new insights, biomarkers, and therapeutic targets 
for common molecular mechanisms in pediatric NAFLD, 
focusing on the energy metabolism perspective.
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