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Measuring topological invariants for higher-
order exceptional points in quantum three-
mode systems

Pei-RongHan 1,2,WenNing 1, Xin-JieHuang1, Ri-HuaZheng1, Shou-BangYang1,
Fan Wu1, Zhen-Biao Yang 1,3 , Qi-Ping Su4, Chui-Ping Yang 4 &
Shi-Biao Zheng 1,3

Owing to the presence of exceptional points (EPs), non-Hermitian (NH) sys-
tems can display intriguing topological phenomena without Hermitian ana-
logs. However, experimental characterizations of exceptional topological
invariants have been restricted to second-order EPs (EP2s) in classical or
semiclassical systems.Wehere propose anNHmulti-mode systemwith higher-
order EPs, each of which is underlain by a multifold-degenerate multipartite
entangled eigenstate. We implement the NHmodel by controllably coupling a
Josephson-junction-based electronic mode to two microwave resonators. We
experimentally quantify the topological invariant for an EP3, by mapping out
the complex eigenspectra of the tripartite system along a loop surrounding
this EP3 in the parameter space. The nonclassicality of the realized topology is
manifested by the observed quantum correlations in the corresponding
eigenstates. Our results extend research of exceptional topology to fully
quantum-mechanical models with multipartite entangled eigenstates.

As one of the most well-tested physical theories, quantum mechanics
has successfully passed numerous experimental tests. In most
quantum-mechanical experiments, the system of interest is well iso-
lated from its surrounding environment1,2, so that its dynamics is
governed by the Schrödinger equation with an energy operator often
called Hamiltonian. The Hermiticity of the Hamiltonian ensures that
the system evolves unitarily. However, any real quantum system is
inevitably coupled to the environment3, which functions by entangling
its degrees of freedom with the system state4. Through this entangle-
ment, the environment continuously monitors the system state, which
inevitably produces a measurement backaction5. Under this dis-
turbance, the system dynamics could significantly deviate from the
unitary evolution even when it does not make any quantum jump.
Mathematically, the state trajectory, associated with this conditional
evolution, is also governed by a Schrödinger equation but with a non-
Hermitian (NH) Hamiltonian6.

Due to the non-Hermiticity, two or more eigenvectors of the NH
Hamiltonian can coalesce into a single one with the same eigenenergy
at exceptional points (EPs)7,8. These singularities can bring aboutmany
unique phenomena, exemplified by exotic topological phenomena
that are absent in Hermitian systems8–12. The past two decades have
witnessed a number of experimental explorations on the NH singular
features, including spectral parity-time phase transitions13–21, dynami-
cal chiral behaviors22–28, exceptional entanglement transitions29, and
NH topology30–44. The topological invariant of an NH system can be
quantified in terms of the eigenvectors or the complex
eigenenergies8–12. This is in distinct contrast with the Hermitian case,
where the topology cannot be defined by the eigenenergies which are
always real. So far, NH topology has been observed in several experi-
ments, all of which were restricted to second-order EPs (EP2s) realized
in classical systems35–39 or with a classically-driven qubit40–42. Com-
pared to EP2s, higher-order EPs can exhibit much richer topological
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properties11,12,43–45, and the associated spectral topological invariants
are defined in a fundamentally different manner12. Despite the funda-
mental interest, such invariants have not been unambiguously char-
acterized in experiment.

We here investigate both theoretically and experimentally the
quantum-mechanical exceptional topology associated with higher-
order EPs in an NH composite system consisting of multiple inter-
acting modes. These EPs result from continuous and nonunitary
evolutions in the single-excitation subspace without quantum
jumps46. The topological property associated to each higher-order EP
can be quantified by the homotopy invariant, recently proposed by
Delplace et al.12. We experimentally engineer the NH three-mode
system in a superconducting circuit, where a nonlinear Xmon mode
is controllably coupled to two photonic modes stored in two sepa-
rated microwave resonators. The non-Hermiticity of the system is
manifested by the non-negligible dissipation of one photonic mode.
We find that the resulting NH Hamiltonian possesses four EP3s in the
real parameter space. We quantify the homotopy invariant asso-
ciated to the EP3 in the first quadrant of the parameter space, by
mapping out the eigenenergies of the NH Hamiltonian along a loop
surrounding this EP3. The system eigenenergies are extracted from
the output states of the three-mode system in the single-excitation
subspace, measured for different evolution times. As far as we know,
this is the first experimental characterization of the topological
invariant associated with a higher-order EP. We further note that the
winding number defined by Eq. (3) is zero for the degenerate points
in both the two-dimensional (2D) and 3DHermitian systems, referred
to as diabolical points (DPs), as well as for EP2s in a 2D NH system, as
detailed in the Supplementary Material. Therefore, such a winding
number serves as a homotopy invariant that uniquely characterizes
the topology of EP3s.

Results
NH multi-mode system
The system under consideration corresponds to a multi-mode system
with competing coherent nearest-neighboring interactions and inco-
herent dissipation, as shown in Fig. 1a. Under the competition, the
system evolution is a weighted mixture of infinitely many trajectories,
amongwhich of special interest is the onewithout quantum jump. This
trajectory is governed by the NH Hamiltonian (setting ℏ = 1)

HNH = � 1
2
i
XN
j = 1

κja
y
j aj +

XN�1

j = 1

λjðay
j aj + 1 +H:c:Þ, ð1Þ

where ay
j and aj denote the creation and annihilation operators of the

jth mode with a decaying rate κj, λj represents the coupling coefficient
between the jth and (j + 1)th modes, and H.c. is the Hermitian con-
jugate. The excitation number of the total system is conserved along
the no-jump trajectory, as the excitation number operator,
Ne =

PN
j = 1 a

y
j aj , commutes with HNH. Hereafter, we will consider the

system behaviors restricted in the single-excitation subspace
∣1102 . . .0N

�
, . . . , ∣01 . . .0N�11N

�� �
, where ∣0ji and ∣1ji respectively

denote the ground and first excited states for the jth mode with j
ranging from 1 to N.

For κj = 0 (j = 1,…,N), the Hamiltonian (1) hasN real eigenenergies,
which display an N-fold degeneracy for λj = 0. When one or more
modes are subjected to dissipations, the eigenenergies become com-
plex. The resulting spectral structure can display exotic topological
featureswithoutHermitian analogs. To clearly illustrate the underlying
NH quantum topological physics, we consider a three-mode system.
For simplicity, we assume κ2 = κ3 = 0 and drop off the subscript of κ1.
Figure 1b, c shows themaximal real (imaginary) part of the gaps among
the three complex eigenenergies versus λ1 and λ2. The results clearly
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Fig. 1 | Sketch of the NH multi-mode system and the spectral structure.
a Theoretical model. The system involves N modes (Rj), arranged in a linear array.
The NH Hamiltonian dynamics features the competition between the nearest-
neighbor swapping couplings (λj) and the energy dissipations (κj). b, c Maxima for
the real (b) and imaginary (c) gaps versus λ1 and λ2 in the three-mode system. For
simplicity, we set κ2 = κ3 = 0, and assume κ1 has a fixednonzero value κ. At the three-

fold degeneracy points ± λc1 , ± λ
c
2

� �
, the maximum gap among the three complex

eigenenergies vanishes. Here the parameters λ1 and λ2 are scaled in units of κ. Δn,m

denotes the differencebetween two eigenenergies, i.e., En − Em (n ≠m,n,m = 1, 2, 3).
dThe solid linesdenote EP2swhere apair of eigenstates coalesce. Along thedashed
lines, all three eigenenergies have the same imaginary part. Their intersection
points (red dots) are EP3s connecting Fermi arcs and i-Fermi arcs.
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show that the non-Hermiticity splits the real degeneracy into four EP3s
at ± λc1 , ± λ

c
2

� �
with λc1 =

ffiffiffi
2

p
κ=3

ffiffiffi
3

p
and λc2 = κ=6

ffiffiffi
3

p
. At each EP3, the

three eigenenergies have a vanishing real part and the same nonzero
imaginary part.

The spectrum of the NH Hamiltonian exhibits a rich structure,
where each of the four EP3s is connected to two curves of EP2s (solid
lines in Fig. 1d), at which a pair of eigenstates and eigenenergies coa-
lesce. The details of these eigenenergies are shown in Section S5 of
the Supplementary Material. Enclosed in the EP2 contour is an iso-
frequency region, where all three eigenenergies have the same real
part. This is a 2D generalization of the linear-like two-fold degenerate
Fermi arc, which connects 2 EP2s existing in a 2D system30. In the
isofrequency region, the real parts of the three complex eigenenergies
vanish, so that the state evolution of the system is determined by the
imaginaryparts of these eigenenergies, eachofwhich corresponds to a
gaining or losing rate depending upon its sign. After a long-time evo-
lution, only the eigenvector with the largest imaginary part can survive
for the no-jump case. Since such an eigenvector is essentially a tri-
partite entangled state, the dynamics in the isofrequency region pro-
vides a way for robust generation and conditional stabilization of
tripartite entanglement47. Such an entanglement generation and sta-
bilization process is illustrated by the simulations presented in Sec-
tion S2 of the Supplementary Material.

In addition to the real Fermi arc, eachof the four EP3s emanates an
i-Fermi arc (dashed lines in Fig. 1d)11, along which the imaginary parts
are three-fold degenerate. With a global shift of the spectrum by a
suitable imaginary value, the four i-Fermi arcs correspond to the
regions where the eigenenergies are all real. In view of spectral phase
transitions, each of the four EP3s corresponds to a tripoint, where
three distinct phases (featuring imaginary, real, and complex energy
gaps) meet together.

Experimental implementation
We perform the experiment using a circuit quantum electrodynamics
device with five nonlinear Xmon modes (qubits), each controllably

coupled to the common bus resonator (Rb) of a fixed frequency ωb/
2π = 5.58GHz. The NH quantum multipartite system is realized with
one of these qubits (labeled as Q), the bus resonator Rb, and the
readout resonator of Q, (Rr), which has a frequency ωr/2π = 6.66GHz.
The on-resonance coupling strength between Q and Rb (Rr) is
gb = 2π × 20MHz (gr = 2π × 41MHz). The decaying rate ofQ (Rb) is 0.06
(0.08) MHz, which is two orders smaller than that of Rr (κ = 5MHz).
Thus, the dissipations of Q and Rb are negligible. To realize the NH
tripartite Hamiltonian in a controllable manner, two parametric mod-
ulations are simultaneously applied to Q to modulate its transition
frequency as ωq =ω0 +

P
j = 1, 2 εj cosðνjtÞ, where ω0 is the mean fre-

quency of Q, and εj and νj respectively denote the amplitude and fre-
quency of the jth modulation, as depicted in Fig. 2a. Under the
conditionω0 + ν1 =ωr, the qubitQ interacts with the readout resonator
Rr at thefirst upper sideband for thefirstmodulation,with the strength
λ1 = gr J1(ε1/ν1). Here, J1(μ) is the first-order Bessel function of the first
kind. The second modulation is used to induce the sideband interac-
tion between Q and Rb, with the effective photonic swapping rate λ2
controlled by ε2. The sideband interactions and the systemparameters
are detailed in Section S3 of the Supplementary Material. When the Rr-
Q-Rb system initially has one excitation, its dynamics, associated with
no-jump trajectory, is described by the NH Hamiltonian (1) with N = 3,
where Rr, Q, and Rb correspond to three modes sharing a single
excitation.

The experiment starts with the preparation of an initial single-
excitation state, following which the parametric modulations are
applied toQ, with the experimental pulse sequence depicted in Fig. 2b.
After a preset interaction time t, the parametric modulations are
switched off to have Q decoupled from both Rb and Rr. The output
state of the system, associated with the no-jump trajectory, is given by

ψðtÞ
�� �

= c1ðtÞ 0r0q1b
��� E

+ c2ðtÞ 0r1q0b

��� E
+ c3ðtÞ 1r0q0b

��� E
: ð2Þ

Here the subscripts r, q, and b label Rr, Q, and Rb, respectively. As the
excitation is conserved by the NH Hamiltonian while the quantum
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Fig. 2 | Experimental implementation. a Synthesis of the NH three-mode system.
TheNHHamiltonian is realized in a circuit, where a Josephson-junction-based qubit
(Q), together with a bus resonator (Rb) and a readout resonator (Rr), comprises an
effective three-mode system in the single-excitation subspace. The decaying rates
of Q and Rb are respectively 0.06MHz and 0.08MHz, both of which can be
neglected compared to thatofRr, κ = 5MHz.Q is coupled toRr (Rb) at the first upper
(lower) sideband with respect to the first (second) parametric modulation. b Pulse
sequence. The qubit Q is first prepared in the excited state at its idle frequency,
followed by the application of two sine modulations. The modulation frequencies
(ν1, ν2) and amplitudes are tunable for controlling λ1 and λ2. After the modulating

pulse, the evolved Rr-Q-Rb output state is mapped to the Q-Q2-Q1 system for read-
out, where Q1 and Q2 are two ancilla qubits, each of which can be controllably
coupled to thebus resonator.cObservedevolutions of thepopulations. All data are
measured for the initial state j0r1q0bi at the point λ1 = 2π ×0.21MHz and
λ2 = 2π ×0.31MHz. The results are obtained by discarding the measurement out-
come ∣0r0q0bi and renormalizing the remaining populations of ∣0r0q1bi, ∣0r1q0bi,
and ∣1r0q0bi in the single-excitation subspace. The solid curves are theoretical
predictions using the NH Hamiltonian (1), while the fast oscillating curves are
numerical simulation results using the original Hamiltonian (given in Section S3 of
the Supplementary material) with frequency modulations included.
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jump breaks down this conservation, the no-jump state trajectory can
be postselected by discarding the outcome with null excitation. The
joint tripartite output state is readoutwith the assistance of two ancilla
qubits, denoted asQ1 andQ2. TheRr-Q-Rboutput state ismapped to the
Q-Q2-Q1 system, which is realized by swapping gates (see Section S4 in
the Supplementary Material). Bloch vectors of the three qubits along
different axes are thenmeasured. By correlating the outcomes of these
measurements, the three-qubit density matrix is reconstructed.
Removing the ground state element and renormalizing the remaining
ones, we obtain the final state of the system evolving under the NH
Hamiltonian. With a correction for the infidelity of the state mapping,
the resulting Q-Q2-Q1 output state corresponds to the Rr-Q-Rb output
state right before the state mapping. Figure 2c shows the evolution of
the populations j0r0q1bi, jt0r1q0bti, and ∣1r0q0bi for the initial state
∣0r1q0bi, measured at the point λ1 = 2π ×0.21MHz and
λ2 = 2π × 0.31MHz. These populations are obtained by discarding the
measurement outcome ∣0r0q0bi and then renormalizing the prob-
abilities for occurrences of the three single-excitation outcomes.

Measurement of the winding number
The topological invariant associated with each EP3 can be quantified
by the winding number, calculated in terms of the resultant vectorR12

W =
1
2π

X
j = 1, 2

I
Cλ

1

Rk k2 R1
∂R2

∂λj
�R2

∂R1

∂λj

 !
dλj , ð3Þ

where the integral loop Cλ encloses the EP3 in the 2D parameter space.
R1 andR2 depend upon the eigenenergies (for details, see Section S7
in the Supplementary Material), which can in principle be extracted
from the output states measured for different interaction times. To
simplify the measurement, we choose a square-shaped loop on the
λ1–λ2 plane. The loop has four vertices (0, 0), (λm, 0), (0, λm), and
(λm, λm), as shown in Fig. 3a.With this choice, the eigenspectrumcanbe
extracted in a relatively easy manner (see Section S5 in the Supple-
mentary Material). In our experiment, λm is set to be 2π × 1MHz.

The eigenenergies, measured along the four edges of the square-
shaped loop, are detailed in Section S8 of the SupplementaryMaterial.
For different values of λ1 or λ2,R1, and R2 are calculated from the
corresponding measured eigenenergies, as shown in Fig. 3b–e. The
dashed lines denote the functions fitted with the measured data. We
note that the rescaled unit resultant vector, defined as
Ru = ðR1 + iR2Þ=jRj, is changed along a circle when the control para-
meter (λ1, λ2) is varied along a loop enclosing the EP3, as illustrated in
Fig. 3f. On the edge with λ2 = 0, there is an EP2, within the vicinity of
which the resultant vector undergoes a π rotation, as detailed in the
insets of Fig. 3b. This rotation occurs in a very narrow region of the
control parameter (λ1, λ2), but contributes half of the circular trajectory
ofRu. Thewinding number basedon thus-obtainedR1 andR2 isW = 1,
which confirms that the loop encircles an EP3. In addition to the EP3,
the loop surrounds infinitely multiple EP2s, which form two excep-
tional arcs that cross at the EP3, as illustrated in Fig. 3a. These EP2s
have no contribution to the characterized topological invariant, which
corresponds to the winding number of the relative angle between R1

and R2
12. This implies that the spectral topological features of higher

EPs are fundamentally distinct from those of EP2s. As detailed in ref. 12,
the winding number defined in Eq. (3) is the simplest example of the
homotopy invariants, which can quantify topological properties of
multifold symmetry-protected EPs but have not been experimentally
characterized so far.

In a recent acoustic experiment43, the measured local phase
rigidities of the eigenvectors near an EP3 have a critical exponent
coinciding with the winding number quantifying the calculated global
Berry phase. However, the Berry phase itself, which characterizes the
topological charge associated to the eigenvectors, has not been
experimentally extracted, and neither has the eigenspectral topologi-
cal invariant. In a recent experiment48, a third-order exceptional line
was observed with a nitrogen-vacancy system, where the NH Hamil-
tonian for a single electron with three levels was constructed by the
dilation method. However, the topological properties of the realized
EP3 have not been experimentally characterized. As far as we know,

a b c

d ef

1
2

3 4

Fig. 3 | Characterization of the NH topology. a Loop traversed for extracting the
winding number. The loop (gray solid line) is square-shaped with four vertices
(0, 0), (λm, 0), (0, λm), and (λm, λm), where λm = 2π × 1MHz. This loop surrounds an
EP3 (red star), which connects two Fermi arcs consisting of EP2s (blue solid line).
The arrow denotes the direction of the integral along the loop. b, e Normalized
resultant vectors measured against λ1 with λ2 = 0 (b) and λm (d), and against λ2 with

λ1 = λm (c) and 0 (e). The squares represent the components R1=jRj (blue) and
R2=jRj (orange), respectively. The dotted lines denote the fitted R1=jRj and
R2=jRj as functions of λ1 or λ2. The winding number, calculated with these fitted
functions, is 1. f Trajectory of the rescaled unit resultant vectorRu = ðR1 + iR2Þ=jRj.
The symbols “1'', “2'', “3'', and “4'', label the sections associated with the four edges
of the parameter-space loop, shown in (b–e), respectively.
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our work represents the first measurement of homotopy invariants, of
which the winding number for EP3s is the simplest example12.

To reveal the quantum correlations among the three modes, we
performquantum state tomography on the output state of the system.
For different values of the control parameters, the evolutions of the
measured pairwise concurrences are detailed in Section S5 of
the SupplementaryMaterial. For the edges λ1 = 0 and λ2 = 0, the system
reduces to a two-mode system, so that the eigenstates can be extrac-
ted from the state evolution in a relatively easy way. At point (0, λm),
the measured concurrences of the two eigenstates (jΦ± i) for the Rb-Q
subsystem, which is decoupled from Rr, are 0.997 and 0.997, respec-
tively. At point (λm, 0), the concurrences for two measured Q-Rr

eigenstates (jΦ0
± i) are respectively 0.971 and 0.971. When λ1 ≠0 and

λ2 ≠0, each of the three eigenstates corresponds to a tripartite
entangled eigenstate, for which each mode is quantum-mechanically
correlated to either of the other two modes. Experimental extraction
of these eigenstates is a challenging task because each eigenstate
involves four parameters to be determined. However, the observation
of tripartite entangled states evolved from the initial product state
j0b1q0r ti, indicates that there exists tripartite entanglement in the
underlying eigenstates. These observed nonclassical correlations
represent another unique feature that fundamentally distinguishes the
presently observed topology from those previously demonstrated in
classical or semiclassical systems30–45.

Discussion
In conclusion, we have investigated the exceptional topology in
interacting many-body quantum systems, with a competition between
coherent couplings and incoherent dissipation. The quantum topol-
ogy ismanifested by the presence ofmultiple higher-order EPs, each of
which carries a quantized topological charge and is associated with a
multifold degenerate eigenstate displaying highly nonclassical corre-
lations. The NH model is experimentally realized with a super-
conducting qubit, which is correlated to a lossless bus resonator and a
decaying readout resonator by swapping a single photon. The topo-
logical charge at each EP3 is quantified by the winding number,
extracted from the eigenspectra measured with the assistance of two
ancilla qubits. Each of the corresponding eigenstates exhibits quantum
entanglement, confirming the nonclassical origin of the topology.
Besides fundamental interest, the demonstrated NH dynamics asso-
ciated with higher-order EPs may have applications in quantum tech-
nologies, such as sensitivity enhancement in quantum metrology49 as
well as fast and robust generation of quantum entanglement50.

Data availability
The data that support the findings of this study are available from the
corresponding author upon request.
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