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In the process of exploring the field of circuits, obtaining the exact solution of the equivalent resistance 
between two nodes in a resistor network has become an important problem. This paper aims to 
introduce Chebyshev polynomial of the second kind to improve the equivalent resistance formula of 
m × n rectangular resistor network, thereby improving the calculation efficiency. Additionally, the 
discrete sine transform of the first kind (DST-I) is utilized to solve the modeling equation. Under the 
condition of applying the new equivalent resistance formula, several equivalent resistance formulas 
with different parameters are given, and three-dimensional views are used to illustrate them. Six 
comparison tables are provided to showcase the advantages of the improved explicit formula in terms 
of computational efficiency, as well as the relationship between resistivity and the maximum size of 
the resistor network that the formula can effectively handle. This may provide more convenient and 
effective technical support for research and practice in electronic engineering and other related fields.

The resistor network is an important research direction in the field of circuit analysis and design. These play a 
vital role in various electronic systems and applications, and are widely used in signal processing, power systems, 
communication systems and so on. Accurate analysis and efficient calculation of the equivalent resistance in a 
resistor network is essential for understanding its behavior and optimizing performance. Tan’s1–10 innovative 
work in establishing various resistor network models has provided significant theoretical support and has 
far-reaching implications for scientific researchers. By improving the efficiency of calculating the equivalent 
resistance formula, researchers can better solve complex scientific and technical problems. Therefore, in order to 
enhance the numerical processing of the formula, this paper re-expresses the original formula using Chebyshev 
polynomials to save calculation time.

According to research, many practical problems have been solved by establishing resistor network models11–18 
and neural network models20–27. In the past few decades, researchers have extensively studied resistor networks, 
focusing on research directions such as electromigration phenomenon, graph theory, studies of impedance 
network, infinite network, finite network and the other Laplace matrix (LM) methods17–19,28–41,43–46. The neural 
network proposed by Shi et al.20–23 has similarities with the resistor network in processing and analyzing complex 
systems.

In recent years, the Recursion-Transform (RT) method proposed by Tan1–10,47–52 has attracted extensive 
attention in the research of resistor networks as a novel computational method. The RT method calculates 
the equivalent resistance by establishing a tridiagonal matrix and using matrix transformation and operation. 
Currently, there are many research results on tridiagonal matrices53–63. The traditional Green′s function 
method41–43 is usually employed to solve infinite resistor network problems or those with periodic boundary 
conditions by calculating equivalent resistance through the construction of a point source in the network. The 
Green′s function approach relies on network symmetry and Fourier transforms, making it suited for obtaining 
analytical solutions in infinite or periodic networks. However, for finite networks, the resistance formulas derived 
from the Green’s function method are less suitable for numerical computation, as the integral convergence slows 
with increasing grid points, thereby complicating the calculations. In contrast, the RT method is applicable to 
finite network models of various sizes and complexities, offering greater flexibility in engineering applications. In 
2015, the method is further improved, Tan2 studies the hard problem of two-point resistance on irregular m × n 
spider webs with an arbitrary longitude. Additionally, Tan conducted research and analysis on spherical3 and 
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sector8 network models. The RT method has become an important technical mean to study various topological 
resistor networks1–10,47–52, which has the potential to bring new breakthroughs and development opportunities 
to the field of electronic engineering and other fields.

This paper is organized as follows: In Sect. 2, the original equivalent resistance formula of rectangular resistor 
network is given. In Sect. 3, a new formula of equivalent resistance expressed by Chebyshev polynomials is given. 
In Sect. 4, the derivation of the new formula is introduced in detail. In Sect. 5, the equivalent resistance formulas 
and their three-dimensional diagrams for several special cases are presented. In Sect. 6, the efficiency of the 
original formula and the new formula for calculating equivalent resistance is analyzed. In Sect. 7, the paper is 
concluded.

Original equivalent resistance formula
In this section, the equivalent resistance formula for an m × n resistor network with an arbitrary boundary, 
derived by Tan7, is provided, along with the key equations necessary for solving it.

In 2016, Tan7 proposed an m × n rectangular resistor network, as shown in Fig. 1. The resistance in the 
vertical and horizontal directions are r0 and r, where r1 is the right boundary resistor, m and n are the number 
of resistors between two nodes on each vertical line and horizontal line, respectively. r1 is an arbitrary resistor on 
the right boundary. Various geometric structures can be obtained by adjusting the right boundary. For example, 
when r1 = 0, a fan-shaped network model is obtained, and when r1 = r0, a regular rectangular network 
model is formed. The nodes in the resistor network are represented by coordinates (x, y). Where d1(x, y1) and 
d2(x, y2) are two arbitrary nodes on the common vertical axis of the m × n resistor network. A part of the 
rectangular resistor network is selected for analysis and study using Kirchhoff ’s law. The schematic diagram of 
the partial resistor network is shown in Fig. 2, which represents all current distributions and parameters in the 
resistor network.

Fig. 2. Partial resistor network with current directions and parameters.

 

Fig. 1. An m × n rectangular resistor network, except the right boundary resistor in the vertical direction is 
r1, its horizontal and vertical resistors are r and r0, respectively.
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The equivalent resistance Rm×n(d1, d2) between two arbitrary nodes d1(x, y1) and d2(x, y2) in an m × n 
rectangular resistor network is shown below

 

Rm×n(d1, d2) = r0

m + 1

m∑
i=1

(C1,i − C2,i)2

1 − cos θi
×




[
∆F

(i)
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(i)
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]
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(i)
x

F
(i)
n+1 + (h1 − 1)F (i)

n


 , (1)

where

 

h1 = r1/r0, Ck,i = cos(yk + 1
2)θi, θi = iπ

m + 1 ,

F
(i)
k =

(
λk

i − λ̄k
i

)
/(λi − λ̄i), ∆F

(i)
k = F

(i)
k+1 − F

(i)
k ,

 (2)

 

λi = 1 + h − h cos θi +
√

(1 + h − h cos θi)2 − 1,

λ̄i = 1 + h − h cos θi −
√

(1 + h − h cos θi)2 − 1, h = r/r0.
 (3)

Tan analyzed and studied the resistor network, and established a resistor network model based on Kirchhoff ’s 
law. The general matrix equation is given below.

 Ik+1 = AmIk − Ik−1 − JHxδk,x, (4)

the function δk,x is defined as δk,x =
{ 1, x = k

0, x ̸= k  , Ik  and Hx are the m × 1 column matrices which can 

be described as

 

Ik =
[
I

(1)
k , I

(2)
k , ..., I

(m)
k

]T

(0 ≤ k ≤ n),

(Hx)j = h(−δj,y1 + δj,y1+1 + δj,y2 − δj,y2+1),

where (Hx)j  is the element of Hx when injecting current J at d1(x, y1) and exiting at d2(x, y2) ,

 

Am =




2 + 2h −h 0 · · · 0

−h 2 + 2h −h
. . .

...

0
. . .

. . .
. . . 0

...
. . . −h 2 + 2h −h

0 · · · 0 −h 2 + 2h




m×m

, (5)

where h = r/r0.

New formula of equivalent resistance represented by Chebyshev polynomials
For the equivalent resistance formula (1), Eq. (2) is an explanation of the symbols in formula (1), which involves 
complex exponential operations and has high computational complexity. In order to improve the calculation 
efficiency of equivalent resistance, this section introduces the improved equivalent resistance formula using the 
Chebyshev polynomial of the second kind.

Let the current J be input at d1(x, y1) and output at d2(x, y2), the equivalent resistance between two nodes 
in the m × n resistor network is given by

 
Rm×n(d1, d2) = r0

m + 1

m∑
j=1

(S1,j − S2,j)2

1 − cos θj
×

(
[∆B

(j)
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(j)
n−x−1]∆B

(j)
x

B
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n+1 + (h1 − 1)B(j)

n

)
, (6)

where

 ∆B
(j)
k = B

(j)
k+1 − B

(j)
k , (7)

 

Sq,j = cos
(q + 1

2 )jπ

m + 1 , q = y1, y2,

θj = jπ

m + 1 ,

 (8)

 

B
(j)
k = B

(j)
k (cosh µj) = sinh(kµj)

sinh µj
, cosh µj = σj

2 ,

k = n − x + 1, n − x, n − x − 1, x + 1, x, n + 1, n, j = 1, 2, . . . , m.

 (9)
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σj = 2 + 2r

r0
− 2r

r0
cos jπ

m + 1 . (10)

Derivation of the new equivalent resistance formula
In this section, Chebyshev polynomial of the second kind is adopted to signify the Horadam sequence64, which 
improves the calculation efficiency. And the discrete sine transform is introduced to obtain the solution of the 
model equations, the equivalent resistance formula is re-derived.

Horadam sequence represented by Chebyshev polynomials
Horadam sequence contains the following conditions:

 Wk = dWk−1 − qWk−2, W0 = A, W1 = B, (11)

where k ∈ N, k ≥ 2, A, B, d, q ∈ C, N is the set of all natural numbers and C is the set of all complex 
numbers.

Horadam sequence65 represented by Chebyshev polynomial of the second kind is

 
Wk = (√q)k

(
B
√

q
Uk−1

(
d

2√
q

)
− AUk−2

(
d

2√
q

))
, (12)

where

 
Uk = sin(k + 1)η

sin η
, cos η = d

2√
q

, η ∈ C, (13)

is the Chebyshev polynomial of the second kind66.

Equation (13) contains complex numbers, since d
2√

q
> 1, which in this study can be described as

 
Bk = Uk = sinh(k + 1)µ

sinh µ
, cosh µ = d

2√
q

, µ ∈ R, (14)

where iµ = η, i is the imaginary unit.

Discrete sine transform
Let

 
SI

m =
√

2
m + 1

(
sin jkπ

m + 1

)m

k,j=1
. (15)

The matrix SI
m is a well-known discrete sine transform of the first kind (DST-I)67,68. SI

m is an orthogonal matrix, 
and the inverse and transpose of SI

m are still itself, i.e.

 (SI
m)−1 = (SI

m)T = SI
m. (16)

For Eq. (5), perform the following orthogonal diagonalization

 (SI
m)−1AmSI

m = diag(σ1, σ2, . . . , σm), (17)

therefore,

 Am = SI
mdiag(σ1, σ2, . . . , σm)(SI

m)−1, (18)

where

 
σj = 2 + 2h − 2h cos (j − 1)π

m
, j = 1, 2, . . . , m. (19)

From Eq. (17), it is known that the matrix Am is similar to diag(σ1, σ2, . . . , σm), so σj  is the eigenvalue of 
Am.

By left-multiplying Eq. (17) by SI
m, we obtain the following equation

 AmSI
m = SI

mdiag(σ1, σ2, . . . , σm),

i.e.,
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(
T (1), T (2), . . . , T (m)) =

(
T (1), T (2), . . . , T (m)) diag(σ1, σ2, . . . , σm), (20)

where T (j) =
(

T (j)
1 , T (j)

2 , . . . , T (j)
m

)
,

 
T (j)

k =
√

2
m + 1 sin jkπ

m + 1 , k = 1, 2, . . . , m, j = 1, 2, . . . , m.

Equation (20) can be expressed as

 AmT (j) = σjT (j), j = 1, 2, . . . , m. (21)

 Based on Eq. (21), the eigenvector T (j) =
(

T (j)
1 , T (j)

2 , . . . , T (j)
m

)
 corresponding to σj  is obtained.

Let

 

√
m + 1

2 SI
mIk = Lk, (22)

where the m × 1 column matrix Lk  is

 
Lk =

[
L

(1)
k , L

(2)
k , ..., L

(m)
k

]T

(0 ≤ k ≤ n).

According to Eqs. (16) and (22), it can be obtained as follows

 
Ik =

√
2

m + 1SI
mLk. (23)

Considering the boundary conditions of the rectangular resistor network, the following current equations are 
established based on Kirchhoff ’s law

 I1 = [Am − Em]I0, (24)

 

In−1 = [Am − (2 − h1)Em]In,

h1In + In−2 = AmIn−1,
 (25)

where h1 = r1
r0

 , Am is given by Eq.(5) and Em is the m × m identity matrix.

Equations (4), (24) and (25) are multiplied by 
√

2
m+1 SI

m on the left, and then combine with Eq. (22) to 

obtain the following equations

 L
(j)
k+1 = σjL

(j)
k − L

(j)
k−1 − Jhδk,xζj , (26)

 

L
(j)
1 = (σj − 1)L(j)

0 ,

L
(j)
n−1 = (σj + h1 − 2)L(j)

n ,
 (27)

 h1L(j)
n + L

(j)
n−2 = σjL

(j)
n−1, (28)

where

 
ζj = 2 sin(1

2θj)
[[

cos(y1 + 1
2)θj − cos(y2 + 1

2)θj

]]
. (29)

Solving the matrix equations
The homogeneous equation of Eq. (26) is expressed as follows

 L
(j)
k+1 = σjL

(j)
k − L

(j)
k−1,

let W0 = Lx, W1 = Lx+1, d = σj  and q = 1 in Eq. (11), combine Eqs. (12), (13) and (14) to get the following 
equation

 L
(j)
k = L

(j)
x+1B

(j)
k−x − L(j)

x B
(j)
k−x−1, (30)
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where

 
B

(j)
k = B

(j)
k (cosh µj) = sinh(kµj)

sinh µj
, cosh µj = σj

2 , (31)

σj  is defined by Eq. (19).
Next, consider the solution of Eq. (26) with the current input at d1(x1, y1) and output at d2(x2, y2). 

According to Eq. (30), the piecewise solutions of Eq. (26) are obtained as follows

 L
(j)
k = L

(j)
1 B

(j)
k − L

(j)
0 B

(j)
k−1, 0 ≤ k ≤ x, (32)

 L
(j)
x+1 = σjL(j)

x − L
(j)
x−1 − Jhζj , (33)

 L
(j)
k = L

(j)
x+1B

(j)
k−x − L(j)

x B
(j)
k−x−1, x ≤ k ≤ n, (34)

where B(j)
k  is defined by Eq. (31).

Based on Eqs. (27), (28), (32), (33) and (34), the expression of L(j)
x  can be described as

 
L(j)

x = Jh
[(σj − 2)B(j)

n−x + h1∆B
(j)
n−x−1]∆B

(j)
x

(σj − 2)(∆B
(j)
n + h1B

(j)
n )

ζj . (35)

From Eqs. (15), (23) and (35), the sum of currents between two nodes can be expressed as

 

y2∑
j=y1+1

I(j)
x = J

m + 1

m∑
j=1

(S1,j − S2,j)2

1 − cos θj
×

(
[(σj − 2)B(j)

n−x + h1∆B
(j)
n−x−1]∆B

(j)
x

∆B
(j)
n + h1B

(j)
n

)
. (36)

According to Ohm’s law, the equivalent resistance formula between two nodes is described as

 
Rm×n(d1, d2) = 1

J
|Ud1 − Ud2 | = 1

J

(
y2∑

j=y1+1

I(j)
x

)
r0, (37)

due to Eqs. (36) and (37), the explicit formula (6) for the equivalent resistance between two nodes can be 
obtained.

Demonstrating the equivalent resistance formulas for some special cases
Formula (6) is a general conclusion for rectangular resistor networks that includes all cases. The influence of 
different variables on the explicit equivalent resistance formula is analyzed from two aspects as follows, and 3D 
views are used to demonstrate them.

Influence of current input node on equivalent resistance
This part gives examples of the change of equivalent resistance when the current input node is different.

Case 1. Assume that the current J is input at node d1(x1, y1)(x1 = x, y1 = 0), and the current flows out of 
the resistor network at node d2(x2, y2)(x2 = x, y2 = y), the equivalent resistance between nodes d1 and d2 
can be written as

 
Rm×n({x, 0}, {x, y}) = r0

m + 1

m∑
j=1

[cos θj

2 − cos(y + 1
2 )θj ]2

1 − cos θj
×

(
[∆B

(j)
n−x + (h1 − 1)∆B

(j)
n−x−1]∆B

(j)
x

B
(j)
n+1 + (h1 − 1)B(j)

n

)
,

where ∆B
(j)
k , θj  and B(j)

k  are defined by Eqs. (7), (8) and (8), respectively.
When m = n = 80, J = 10, y1 = 0, r0 = r = 1 and r1 = 11 , in other words, h1 = 11, the following 

formula is obtained

 
R80×80({x, 0}, {x, y}) = 1

81

80∑
j=1

[
cos θj

2 − cos(y + 1
2 )θj

]2

1 − cos θj
×

(
(∆B

(j)
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(j)
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(j)
x

B
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81 + 10B

(j)
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)
, (38)

where

 ∆B
(j)
80−x = B

(j)
81−x − B

(j)
80−x, (39)

 ∆B
(j)
79−x = B

(j)
8−x − B

(j)
79−x, (40)

 
θj = jπ

m + 1 , (41)
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B

(j)
k = B

(j)
k (cosh µj) = sinh(kµj)

sinh µj
, cosh µj = 1 + r

r0
− r

r0
cos jπ

m + 1 , (42)

 k = 81 − x, 80 − x, 79 − x, x + 1, x, 81, 80, j = 1, 2, . . . , 80.

A three-dimensional view of Eq. (38) is shown in Fig. 3.

Case 2. If the current J is input at node d1(x1, y1)(x1 = x, y1 = 30) in the resistor network and output at node 
d2(x2, y2)(x2 = x, y2 = y), the equivalent resistance formula between d1 and d2 can be characterized as

 
Rm×n({x, 30}, {x, y}) = r0

m + 1

m∑
j=1

[
cos 61θj

2 − cos(y + 1
2 )θj

]2

1 − cos θj
×

(
[∆B

(j)
n−x + (h1 − 1)∆B

(j)
n−x−1]∆B

(j)
x

B
(j)
n+1 + (h1 − 1)B(j)

n

)
, (43)

where ∆B
(j)
k , θj  and B(j)

k  are defined by Eqs. (7), (8) and (8), respectively.
In a resistor network of size 80 × 80, when J = 10, y1 = 30, h1 = 11 and r0 = r = 1, Eq. (43) is defined 

as

 
R80×80({x, 30}, {x, y}) = 1

81

80∑
j=1

[cos 61θj

2 − cos(y + 1
2 )θj ]2

1 − cos θj
×

(
(∆B

(j)
80−x + 10∆B

(j)
79−x)∆B

(j)
x

B
(j)
81 + 10B

(j)
80

)
, (44)

where ∆B
(j)
80−x, ∆B

(j)
79−x, θj  and B(j)

k  (k = 81 − x, 80 − x, 79 − x, x + 1, x, 81, 80, j = 1, 2, . . . , 80

) are the same as Eqs. (39), (40), (41) and (42), respectively.
A three-dimensional view of Eq. (44) is shown in Fig. 4.
Case 3. Assume that the current J is input into the resistor network, d1(x1, y1)(x1 = x, y1 = 80) is the input 

node of the current and d2(x2, y2)(x2 = x, y2 = y) is the output node, then the equivalent resistance formula 
between these two nodes can be expressed as

 
Rm×n({x, 80}, {x, y}) = r0

m + 1

m∑
j=1

[cos 161θj

2 − cos(y + 1
2 )θj ]2

1 − cos θj
×

(
[∆B

(j)
n−x + (h1 − 1)∆B

(j)
n−x−1]∆B

(j)
x

B
(j)
n+1 + (h1 − 1)B(j)

n

)
, (45)

where ∆B
(j)
k , θj  and B(j)

k  are defined by Eqs. (7), (8) and (8), respectively.
When J = 10, y1 = 80, r1 = 11 and r0 = r = 1, Eq. (45) is described in the resistor network of size 

80 × 80 as

 
R80×80({x, 80}, {x, y}) = 1

81

80∑
j=1

[cos 161θj

2 − cos(y + 1
2 )θj ]2

1 − cos θj
×

(
(∆B

(j)
80−x + 10∆B

(j)
79−x)∆B

(j)
x

B
(j)
81 + 10B

(j)
80

)
, (46)

where ∆B
(j)
80−x, ∆B

(j)
79−x, θj  and B(j)

k  (k = 81 − x, 80 − x, 79 − x, x + 1, x, 81, 80, j = 1, 2, . . . , 80

) are the same as Eqs. (39), (40), (41) and (42), respectively.
A three-dimensional view of Eq. (46) is shown in Fig. 5.

Fig. 3. The 3D equivalent resistance distribution diagram of R80×80({x, 0}, {x, y}) in Eq. (38).
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Effect of resistivity h (h = r
r0

) on equivalent resistance
The following discusses the values of the equivalent resistance between nodes d1 and d2 on each vertical axis of 
the resistor network when the value of y1 at the current input node d1 remains constant and the resistivity h is 
different. The resistivity here is the ratio of r to r0, denoted by h, i.e., h = r

r0
.

Case 4. If the node d1(x1, y1)(x1 = x, y1 = 40) in the resistor network is used as the input node of the 
current J, and d2(x2, y2)(x2 = x, y2 = y) is used as the output node, then the equivalent resistance formula 
between the two nodes d1 and d2 is written as

 
Rm×n({x, 40}, {x, y}) = r0

m + 1

m∑
j=1

[cos 81θj

2 − cos(y + 1
2 )θj ]2

1 − cos θj
×

(
[∆B

(j)
n−x + (h1 − 1)∆B

(j)
n−x−1]∆B

(j)
x

B
(j)
n+1 + (h1 − 1)B(j)

n

)
,

where ∆B
(j)
k , θj  and B(j)

k  are defined by Eqs. (7), (8) and (8), respectively.
When m = n = 80, J = 10, y1 = 40, r1 = 11, r0 = 1 and r = 0.1, the following formula is obtained

 
R80×80({x, 40}, {x, y}) = 1

81

80∑
j=1

[cos 161θj

2 − cos(y + 1
2 )θj ]2

1 − cos θj
×

(
(∆B

(j)
80−x + 10∆B

(j)
79−x)∆B

(j)
x

B
(j)
81 + 10B

(j)
80

)
, (47)

where ∆B
(j)
80−x, ∆B

(j)
79−x, θj  and B(j)

k  (k = 81 − x, 80 − x, 79 − x, x + 1, x, 81, 80, j = 1, 2, . . . , 80

) are the same as Eqs. (39), (40), (41) and (42), respectively.
A three-dimensional view of Eq. (47) is shown in Fig. 6.
Case 5. Assume that the current J = 10 flows from a fixed input node d1(x1, y1)(x1 = x, y1 = 40) to a 

fixed output node d2(x2, y2)(x2 = x, y2 = y) in a rectangular resistor network.
In this case, given h1 = 11, h = 0.01, in other words, r1 = 11, r0 = 1, r = 0.01 the equivalent resistance 

formula between these two nodes is described as

Fig. 5. The 3D equivalent resistance distribution diagram of R80×80({x, 80}, {x, y}) in Eq. (46).

 

Fig. 4. The 3D equivalent resistance distribution diagram of R80×80({x, 30}, {x, y}) in Eq. (44).
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Rm×n({x, 40}, {x, y}) = r0

m + 1

m∑
j=1

[cos 81θj

2 − cos(y + 1
2 )θj ]2

1 − cos θj
×

(
[∆B

(j)
n−x + (h1 − 1)∆B

(j)
n−x−1]∆B

(j)
x

B
(j)
n+1 + (h1 − 1)B(j)

n

)
, (48)

where ∆B
(j)
k , θj  and B(j)

k  are defined by Eqs. (7), (8) and (8), respectively.

When the size of the resistor network is 80 × 80, ie m = 80, n = 80, Eq. (48) is represented as

 
R80×80({x, 40}, {x, y}) = 1

81

80∑
j=1

[cos 161θj

2 − cos(y + 1
2 )θj ]2

1 − cos θj
×

(
(∆B

(j)
80−x + 10∆B

(j)
79−x)∆B

(j)
x

B
(j)
81 + 10B

(j)
80

)
, (49)

where ∆B
(j)
80−x, ∆B

(j)
79−x, θj  and B(j)

k  (k = 81 − x, 80 − x, 79 − x, x + 1, x, 81, 80, j = 1, 2, . . . , 80

) are the same as Eqs. (39), (40), (41) and (42), respectively.
A three-dimensional view of Eq. (49) is shown in Fig. 7.
Case 6. Suppose the current J = 10 flows into resistor network through d1(x1, y1)(x1 = x, y1 = 40) and 

out at d2(x2, y2)(x2 = x, y2 = y), at this time, the equivalent resistance formula between d1 and d2 can be 
expressed as

 
Rm×n({x, 40}, {x, y}) = r0

m + 1

m∑
j=1

[cos 81θj

2 − cos(y + 1
2 )θj ]2

1 − cos θj
×

(
[∆B

(j)
n−x + (h1 − 1)∆B

(j)
n−x−1]∆B

(j)
x

B
(j)
n+1 + (h1 − 1)B(j)

n

)
,

where ∆B
(j)
k , θj  and B(j)

k  are defined by Eqs. (7), (8) and (8), respectively.

Let m = n = 80, h1 = 11, h = 0.001, that is , r1 = 11, r0 = 1, r = 0.001 the following formula is 
obtained

 
R80×80({x, 40}, {x, y}) = 1

81

80∑
j=1

[cos 161θj

2 − cos(y + 1
2 )θj ]2

1 − cos θj
×

(
(∆B

(j)
80−x + 10∆B

(j)
79−x)∆B

(j)
x

B
(j)
81 + 10B

(j)
80

)
, (50)

where ∆B
(j)
80−x, ∆B

(j)
79−x, θj  and B(j)

k  (k = 81 − x, 80 − x, 79 − x, x + 1, x, 81, 80, j = 1, 2, . . . , 80

) are the same as Eqs. (39), (40), (41) and (42), respectively.
A three-dimensional view of Eq. (50) is shown in Fig. 8.

Calculation efficiency of different equivalent resistance formulas
In this section, examples are shown that demonstrate the computational efficiency of two equivalent resistor 
formulas. In the m × n rectangular resistor network, d1(x, y1) and d2(x, y2) represent the current input and 
output nodes, respectively. In the experiment, the y1 value of the input node is fixed, and each y2 node on 
each vertical axis is traversed. The CPU processing times t1 and t2 represent the time required to calculate the 
equivalent resistance using formula (1) and formula (6), respectively, and demonstrate the calculation efficiency 
of the two different formulas.

These experiments are done on an Intel Core i7-12700H laptop with 2.30 GHz CPU and NVIDIA GeForce 
RTX 3060 GPU. In the following tables, the calculation time is in seconds,  “m × n” denotes the scale of resistor 
network,  “*”  and the dashed empty bar indicate computer memory overflow.

Fig. 6. The 3D equivalent resistance distribution diagram of R80×80({x, 40}, {x, y}) in Eq. (47).
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When y1 = 30, r/r0 = 1, the CPU time spent calculating the equivalent resistance by formula (1) and 
formula (6), respectively is shown in Fig. 9.

Fig. 9. CPU time to calculate equivalent resistance using formula (1) and formula (6), respectively.

When y1 = 30, r/r0 = 0.1, the CPU time spent calculating the equivalent resistance by formula (1) and 
formula (6), respectively is shown in Fig. 10.

Fig. 8. The 3D equivalent resistance distribution diagram of R80×80({x, 40}, {x, y}) in Eq. (50).

 

Fig. 7. The 3D equivalent resistance distribution diagram of R80×80({x, 40}, {x, y}) in Eq. (49).
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Fig. 10. CPU time to calculate equivalent resistance using formula (1) and formula (6), respectively.

When y1 = 30, r/r0 = 0.01, the CPU time spent calculating the equivalent resistance by formula (1) and 
formula (6), respectively is shown in Fig. 11.

Fig. 11. CPU time to calculate equivalent resistance using formula (1) and formula (6), respectively.

When y1 = 50, r/r0 = 1, the CPU time spent calculating the equivalent resistance by formula (1) and 
formula (6), respectively is shown in Fig. 12.

Fig. 12. CPU time to calculate equivalent resistance using formula (1) and formula (6), respectively.

When y1 = 50, r/r0 = 0.1, the CPU time spent calculating the equivalent resistance by formula (1) and 
formula (6), respectively is shown in Fig. 13.
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Fig. 13. CPU time to calculate equivalent resistance using formula (1) and formula (6), respectively.

When y1 = 50, r/r0 = 0.01, the CPU time spent calculating the equivalent resistance by formula (1) and 
formula (6), respectively is shown in Fig. 14.

Fig. 14. CPU time to calculate equivalent resistance using formula (1) and formula (6), respectively.

It can be clearly seen from the above six visualization charts that the computational efficiency of the improved 
formula (6) is higher than that of formula (1), and as the scale of the resistor network increases, the advantages 
of formula (6) become more obvious. As the resistivity decreases, the size of the data that can be processed using 
the equivalent resistance formula increases.

Conclusion
This paper uses Chebyshev polynomial of the second kind to improve the equivalent resistance formula of the 
m × n rectangular resistor network. Some special and interesting equcations of the resistor network, such as Eqs. 
(38), (44), (46), (47), (49) and (50) were introduced. To provide a visual representation, their three-dimensional 
views were plotted using MATLAB. Finally, several comparison tables were provided to show the calculation 
efficiency of two equivalent resistance formulas. The design philosophy and formulas presented in this study will 
inspire further research in fields such as neural networks and other related areas.
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