Abstract
1. Conventional and ion-selective double-barrelled microelectrodes were used in an in vitro bovine retinal pigment epithelium (RPE)-choroid preparation to measure the changes in membrane voltage, resistance and intracellular K+ and Cl- activities produced by small, physiological changes in extracellular potassium ([K+]o). 2. In the intact eye, light-induced changes in [K+]o occur in the extracellular (or subretinal) space that separates the neural retina and the RPE apical membrane. These [K+]o changes can be approximated in vitro by decreasing apical bath [K+]o from 5 to 2 mM. 3. This in vitro change in [K+]o simultaneously decreased intracellular Cl- and K+ activities (aCli and aKi) by 25 +/- 6 mM (n = 8) and 19 +/- 7 mM (n = 4) (mean +/- S.D.), respectively. In control Ringer solution (5 mM [K+]o) aCli and aKi were 65 +/- 10 mM (n = 28) and 65 +/- 8 mM (n = 6), respectively. 4. The [K+]o-induced decreases in aCli and aKi were both significantly inhibited, either by blocking the apical membrane K+ conductance with Ba2+ or the basolateral membrane Cl- conductance with DIDS (4,4'-diisothiocyano-stilbene-2,2'-disulphonic acid). 5. Transepithelial current pulses were used to determine the relative basolateral membrane Cl- conductance, TClBAS, was approximately 0.6 (n = 3), and the relative apical membrane K+ conductance, TKAP, was approximately 0.7 (n = 2). Step changes in basal bath [K+]o were used to estimate the relative basolateral membrane K+ conductance, TKBAS, was approximately 0.34 (n = 3). 6. These data show that the apical membrane K+ conductance and the basolateral membrane Cl- conductance are electrically coupled. In vivo, this coupling could have significant functional importance by modulating the relative hydration of the subretinal space, regulating RPE cell volume, and buffering the chemical composition of the subretinal space.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adorante J. S., Miller S. S. Potassium-dependent volume regulation in retinal pigment epithelium is mediated by Na,K,Cl cotransport. J Gen Physiol. 1990 Dec;96(6):1153–1176. doi: 10.1085/jgp.96.6.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Besharse J. C., Hollyfield J. G., Rayborn M. E. Turnover of rod photoreceptor outer segments. II. Membrane addition and loss in relationship to light. J Cell Biol. 1977 Nov;75(2 Pt 1):507–527. doi: 10.1083/jcb.75.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biagi B. A. Effects of the anion transport inhibitor, SITS, on the proximal straight tubule of the rabbit perfused in vitro. J Membr Biol. 1985;88(1):25–31. doi: 10.1007/BF01871210. [DOI] [PubMed] [Google Scholar]
- Cavallaro B., Burnside B. Prostaglandins E1, E2, and D2 induce dark-adaptive retinomotor movements in teleost retinal cones and RPE. Invest Ophthalmol Vis Sci. 1988 Jun;29(6):882–891. [PubMed] [Google Scholar]
- Dearry A., Burnside B. Light-induced dopamine release from teleost retinas acts as a light-adaptive signal to the retinal pigment epithelium. J Neurochem. 1989 Sep;53(3):870–878. doi: 10.1111/j.1471-4159.1989.tb11785.x. [DOI] [PubMed] [Google Scholar]
- Dornonville de la Cour M. Ion transport in the retinal pigment epithelium. A study with double barrelled ion-selective microelectrodes. Acta Ophthalmol Suppl. 1993;(209):1–32. [PubMed] [Google Scholar]
- Edelman J. L., Miller S. S. Epinephrine stimulates fluid absorption across bovine retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1991 Nov;32(12):3033–3040. [PubMed] [Google Scholar]
- Foskett J. K. [Ca2+]i modulation of Cl- content controls cell volume in single salivary acinar cells during fluid secretion. Am J Physiol. 1990 Dec;259(6 Pt 1):C998–1004. doi: 10.1152/ajpcell.1990.259.6.C998. [DOI] [PubMed] [Google Scholar]
- Fujii S., Gallemore R. P., Hughes B. A., Steinberg R. H. Direct evidence for a basolateral membrane Cl- conductance in toad retinal pigment epithelium. Am J Physiol. 1992 Feb;262(2 Pt 1):C374–C383. doi: 10.1152/ajpcell.1992.262.2.C374. [DOI] [PubMed] [Google Scholar]
- Gardner-Medwin A. R. Possible roles of vertebrate neuroglia in potassium dynamics, spreading depression and migraine. J Exp Biol. 1981 Dec;95:111–127. doi: 10.1242/jeb.95.1.111. [DOI] [PubMed] [Google Scholar]
- Griff E. R. Potassium-evoked responses from the retinal pigment epithelium of the toad Bufo marinus. Exp Eye Res. 1991 Aug;53(2):219–228. doi: 10.1016/0014-4835(91)90077-r. [DOI] [PubMed] [Google Scholar]
- Griff E. R., Shirao Y., Steinberg R. H. Ba2+ unmasks K+ modulation of the Na+-K+ pump in the frog retinal pigment epithelium. J Gen Physiol. 1985 Dec;86(6):853–876. doi: 10.1085/jgp.86.6.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griff E. R., Steinberg R. H. Changes in apical [K+] produce delayed basal membrane responses of the retinal pigment epithelium in the gecko. J Gen Physiol. 1984 Feb;83(2):193–211. doi: 10.1085/jgp.83.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hadjiconstantinou M., Cohen J., Neff N. H. Epinephrine: a potential neurotransmitter in retina. J Neurochem. 1983 Nov;41(5):1440–1444. doi: 10.1111/j.1471-4159.1983.tb00843.x. [DOI] [PubMed] [Google Scholar]
- Huang B., Karwoski C. J. Light-evoked expansion of subretinal space volume in the retina of the frog. J Neurosci. 1992 Nov;12(11):4243–4252. doi: 10.1523/JNEUROSCI.12-11-04243.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes B. A., Adorante J. S., Miller S. S., Lin H. Apical electrogenic NaHCO3 cotransport. A mechanism for HCO3 absorption across the retinal pigment epithelium. J Gen Physiol. 1989 Jul;94(1):125–150. doi: 10.1085/jgp.94.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes B. A., Steinberg R. H. Voltage-dependent currents in isolated cells of the frog retinal pigment epithelium. J Physiol. 1990 Sep;428:273–297. doi: 10.1113/jphysiol.1990.sp018212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Immel J., Steinberg R. H. Spatial buffering of K+ by the retinal pigment epithelium in frog. J Neurosci. 1986 Nov;6(11):3197–3204. doi: 10.1523/JNEUROSCI.06-11-03197.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoue I. Modification of K conductance of the squid axon membrane by SITS. J Gen Physiol. 1986 Oct;88(4):507–520. doi: 10.1085/jgp.88.4.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joseph D. P., Miller S. S. Alpha-1-adrenergic modulation of K and Cl transport in bovine retinal pigment epithelium. J Gen Physiol. 1992 Feb;99(2):263–290. doi: 10.1085/jgp.99.2.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joseph D. P., Miller S. S. Apical and basal membrane ion transport mechanisms in bovine retinal pigment epithelium. J Physiol. 1991 Apr;435:439–463. doi: 10.1113/jphysiol.1991.sp018518. [DOI] [PMC free article] [PubMed] [Google Scholar]
- La Cour M. Cl- transport in frog retinal pigment epithelium. Exp Eye Res. 1992 Jun;54(6):921–931. doi: 10.1016/0014-4835(92)90156-m. [DOI] [PubMed] [Google Scholar]
- Lasansky A., De Fisch F. W. Potential, current, and ionic fluxes across the isolated retinal pigment epithelium and choriod. J Gen Physiol. 1966 May;49(5):913–924. doi: 10.1085/jgp.49.5.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin H., Kenyon E., Miller S. S. Na-dependent pHi regulatory mechanisms in native human retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1992 Dec;33(13):3528–3538. [PubMed] [Google Scholar]
- Lin H., Miller S. S. pHi regulation in frog retinal pigment epithelium: two apical membrane mechanisms. Am J Physiol. 1991 Jul;261(1 Pt 1):C132–C142. doi: 10.1152/ajpcell.1991.261.1.C132. [DOI] [PubMed] [Google Scholar]
- Linsenmeier R. A., Braun R. D. Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia. J Gen Physiol. 1992 Feb;99(2):177–197. doi: 10.1085/jgp.99.2.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linsenmeier R. A., Steinberg R. H. Delayed basal hyperpolarization of cat retinal pigment epithelium and its relation to the fast oscillation of the DC electroretinogram. J Gen Physiol. 1984 Feb;83(2):213–232. doi: 10.1085/jgp.83.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Midgley J. M., Watson D. G., Macfarlane R. G., Macfarlane S. C., McGhee C. N. Analysis of acidic metabolites of biogenic amines in bovine retina and vitreous and aqueous humour by gas chromatography-negative ion chemical ionisation mass spectrometry. J Neurochem. 1990 Sep;55(3):842–848. doi: 10.1111/j.1471-4159.1990.tb04568.x. [DOI] [PubMed] [Google Scholar]
- Miller S. S., Edelman J. L. Active ion transport pathways in the bovine retinal pigment epithelium. J Physiol. 1990 May;424:283–300. doi: 10.1113/jphysiol.1990.sp018067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller S. S., Steinberg R. H. Active transport of ions across frog retinal pigment epithelium. Exp Eye Res. 1977 Sep;25(3):235–248. doi: 10.1016/0014-4835(77)90090-2. [DOI] [PubMed] [Google Scholar]
- Miller S. S., Steinberg R. H. Passive ionic properties of frog retinal pigment epithelium. J Membr Biol. 1977 Sep 15;36(4):337–372. doi: 10.1007/BF01868158. [DOI] [PubMed] [Google Scholar]
- Newman E. A., Frambach D. A., Odette L. L. Control of extracellular potassium levels by retinal glial cell K+ siphoning. Science. 1984 Sep 14;225(4667):1174–1175. doi: 10.1126/science.6474173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oakley B., 2nd, Flaming D. G., Brown K. T. Effects of the rod receptor potential upon retinal extracellular potassium concentration. J Gen Physiol. 1979 Dec;74(6):713–737. doi: 10.1085/jgp.74.6.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oakley B., 2nd, Green D. G. Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram. J Neurophysiol. 1976 Sep;39(5):1117–1133. doi: 10.1152/jn.1976.39.5.1117. [DOI] [PubMed] [Google Scholar]
- Oakley B., 2nd, Katz B. J., Xu Z., Zheng J. Spatial buffering of extracellular potassium by Müller (glial) cells in the toad retina. Exp Eye Res. 1992 Oct;55(4):539–550. doi: 10.1016/s0014-4835(05)80166-6. [DOI] [PubMed] [Google Scholar]
- Oakley B., 2nd Potassium and the photoreceptor-dependent pigment epithelial hyperpolarization. J Gen Physiol. 1977 Oct;70(4):405–425. doi: 10.1085/jgp.70.4.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oakley B., 2nd, Steinberg R. H. Effects of maintained illumination upon [K+]0 in the subretinal space of the frog retina. Vision Res. 1982;22(7):767–773. doi: 10.1016/0042-6989(82)90007-4. [DOI] [PubMed] [Google Scholar]
- Orkand R. K., Nicholls J. G., Kuffler S. W. Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol. 1966 Jul;29(4):788–806. doi: 10.1152/jn.1966.29.4.788. [DOI] [PubMed] [Google Scholar]
- Quinn R. H., Miller S. S. Ion transport mechanisms in native human retinal pigment epithelium. Invest Ophthalmol Vis Sci. 1992 Dec;33(13):3513–3527. [PubMed] [Google Scholar]
- Ritchie J. M. Voltage-gated ion channels in Schwann cells and glia. Trends Neurosci. 1992 Sep;15(9):345–351. doi: 10.1016/0166-2236(92)90052-a. [DOI] [PubMed] [Google Scholar]
- Steinberg R. H., Oakley B., 2nd, Niemeyer G. Light-evoked changes in [K+]0 in retina of intact cat eye. J Neurophysiol. 1980 Nov;44(5):897–921. doi: 10.1152/jn.1980.44.5.897. [DOI] [PubMed] [Google Scholar]
- Uehara F., Matthes M. T., Yasumura D., LaVail M. M. Light-evoked changes in the interphotoreceptor matrix. Science. 1990 Jun 29;248(4963):1633–1636. doi: 10.1126/science.2194288. [DOI] [PubMed] [Google Scholar]
- Yamamoto F., Borgula G. A., Steinberg R. H. Effects of light and darkness on pH outside rod photoreceptors in the cat retina. Exp Eye Res. 1992 May;54(5):685–697. doi: 10.1016/0014-4835(92)90023-l. [DOI] [PubMed] [Google Scholar]
- la Cour M., Lund-Andersen H., Zeuthen T. Potassium transport of the frog retinal pigment epithelium: autoregulation of potassium activity in the subretinal space. J Physiol. 1986 Jun;375:461–479. doi: 10.1113/jphysiol.1986.sp016128. [DOI] [PMC free article] [PubMed] [Google Scholar]