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Abstract

Objective. Bariatric surgery effectively treats non-alcoholic fatty liver disease (NAFLD). The glutamate-serine-glycine 
(GSG) index has emerged as a non-invasive diagnostic marker for NAFLD, but its ability to monitor treatment response 
remains unclear. This study investigates the GSG index's ability to monitor NAFLD's response to bariatric surgery.

Methodology. Ten NAFLD participants were studied at baseline and 6 months post-bariatric surgery. Blood samples were 
collected for serum biomarkers and metabolomic profiling. Hepatic steatosis [proton density fat fraction (PDFF)] and 
fibroinflammation (cT1) were quantified with multiparametric magnetic resonance imaging (mpMRI), and hepatic stiffness 
with magnetic resonance elastography (MRE). Amino acids and acylcarnitines were measured with mass spectrometry. 
Statistical analyses included paired Student’s t-test, Wilcoxon-signed rank test, and Pearson’s correlation.

Results. Eight participants provided complete data. At baseline, all had hepatic steatosis (BMI 39.3 ± 5.6 kg/m2, PDFF 
≥5%). Post-surgery reductions in PDFF (from 12.4 ± 6.7% to 6.2 ± 2.8%, p = 0.013) and cT1 (from 823.3 ± 85.4 ms to 757.5 
± 41.6 ms, p = 0.039) were significant, along with the GSG index (from 0.272 ± 0.03 to 0.157 ± 0.05, p = 0.001). 
 
Conclusion. The GSG index can potentially be developed as a marker for monitoring the response of patients with NAFLD 
to bariatric surgery. 
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INTRODUCTION 

Non-alcoholic fatty liver disease (NAFLD) refers to the 
presence of hepatic steatosis in the absence of other causes 
of secondary hepatic fat accumulation, such as alcohol 
consumption. NAFLD encompasses a spectrum of liver 
pathologies, ranging from benign steatosis in non-alcoholic 
fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH), 
characterized by inflammation that can lead to fibrosis and 
cirrhosis. The incidence of NAFLD in Asia is rising and 
is projected to increase up to 20% within this decade.1 

Weight reduction remains the primary treatment modality 
for NAFLD, and bariatric surgery is more effective than 
lifestyle interventions in combination with the best medical 
treatment.2 However, bariatric surgery may be associated 
with worsening hepatic fibrosis, cirrhosis, and liver failure. 
Rapid weight loss occurs after bariatric surgery, leading 

to the mobilization of lipids from peripheral depots and a 
large influx of free fatty acids (FFAs), which could cause 
hepatotoxicity.3 For these reasons, post-bariatric surgery 
patients need to be monitored for improvements in NAFLD 
and worsening of hepatic fibrosis.

The glutamate-serine-glycine (GSG) index has been 
investigated as a novel marker for the severity of NAFLD. 
This index involves the measurement of glutamate, 
serine, and glycine, which are precursors of GSH, and is 
calculated as the ratio of Glutamate/(Serine + Glycine).4 The 
GSG index has been studied in both adult and paediatric 
NAFLD populations. It correlates with the degree of 
hepatic steatosis and hepatic aminotransaminase levels, 
independent of traditional risk factors such as adiposity.4,5 

However, the ability of this index to monitor the response 
of NAFLD to treatment has yet to be evaluated. 
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UPLC BEH C18 column (1.7 µm, 2.1x50 mm) using a Waters 
Acquity I-Class liquid chromatography system coupled to a 
Waters Xevo TQ-XS mass spectrometer (Waters). The liquid 
chromatography run was performed with 0.2% formic 
acid in water as mobile phase A and 0.2% formic acid in 
acetonitrile as mobile phase B. The gradient started at 5% 
B, before increasing to 12% B at 1.5 minutes, 17.5% B at 2.7 
minutes, 50% B at 4 minutes, and 100% B at 4.5 - 5.0 minutes, 
before returning to 5% B at 5.1 - 5.8 minutes. The flow rate 
was maintained at 0.8 mL/min except at 4.7 - 5.1 minutes 
where it was increased to 1.0 mL/min. Temperature of the 
column was fixed at 50 °C, and the the injection volume 
at 5 µL. Compounds were ionized in positive mode using 
electrospray ionization. Data processing was carried out 
with the Waters TargetLynx software v4.2 (Waters).

For the quantitative analysis of acylcarnitines species, 
samples were enriched with 10 μL of a deuterium-labelled 
mixture of acylcarnitines and diluted with 400 µL of 
methanol. Following centrifugation at 13,000 rpm for 5 
minutes at 4°C, the supernatant was collected for analysis. 
Methanol extracts were erivatised with 3M hydrochloric acid 
in methanol (Sigma Aldrich) and reconstituted with 80% 
methanol for LC-MS analysis. Compounds were ionized in 
positive mode using electrospray ionization. Data acquisition 
and analysis were conducted using Agilent MassHunter 
Workstation B.06.00 Software (Agilent Technologies).

Multiparametric MRI 

Non-contrast T1, T2*, and proton density fat fraction 
(PDFF) were acquired using the LiverMultiScan® protocol 
(Perspectum Ltd., Oxford, UK).10,11 PDFF measures hepatic 
steatosis, and iron-corrected T1 mapping (cT1) indicates 
hepatic fibroinflammatory disease activity. Four transverse 
slices positioned at the porta hepatis were captured using a 
shortened modified look-locker inversion (shMOLLI) and a 
multiecho-spoiled gradient-echo sequence to quantify liver 
T1 and iron (T2*) fat (PDFF), respectively. During image 
analysis, cT1 and PDFF maps of the liver were delineated 
into whole liver segmentation maps using a semiautomatic 
method. Three 15-mm diameter circular regions of interest 
were placed on the transverse T2* maps for each slice, 
covering a representative sample of the liver, to calculate 
average T2* values for T1 correction. Non-parenchymal 
structures such as bile ducts and large blood vessels as well 
as image artifacts were excluded from image analysis.

Magnetic resonance elastography 

MRE measures liver stiffness and was performed using 
a 2-dimensional MRE protocol and interpreted by abdo-
minal radiologists.12,13

Body composition

Lean body mass (LBM), fat-free mass (FFM), and fat mass 
(FM) were measured using dual-energy X-ray absorptio-
metry (Hologic Discovery Wi densitometer, Hologic, Inc., 
Massachusetts, USA).

The primary objective of this study is to investigate the 
ability of the GSG index to monitor the improvement 
in the severity of NAFLD following bariatric surgery. 
NAFLD status will be evaluated using multiparametric 
magnetic resonance imaging (mpMRI) and magnetic 
resonance elastography (MRE), which measures the degree 
of hepatic steatosis, fibroinflammation, and fibrosis. We 
hypothesize that the GSG index decreases in the first 6 
months post-bariatric surgery, and the post-surgery change 
in the GSG index correlates with improvement in hepatic 
fibroinflammation. Apart from dysregulated amino acid 
pathways, lipid metabolism is also altered in NAFLD 
resulting in the accumulation of various intermediates of 
incomplete lipid oxidation such as acylcarnitines.6-8 Altered 
serum acylcarnitine profiles are associated with NAFLD,9 

and this study also aims to explore post-surgery changes 
in serum acylcarnitines in patients with NAFLD. 

Methodology

Study design and participants 

This prospective observational study was conducted at 
Singapore General Hospital. Ethics approval was obtained 
from the SingHealth Institutional Review Board (CIRB 
Ref: 2019/2179), and informed consent was obtained from 
participants. Participants were eligible for the study if they: 
(i) were between 21 and 65 years of age, (ii) had a BMI of ≥ 
32.5 kg/m2 with obesity-related complications. Participants 
were ineligible for the study if they: (i) consumed excessive 
alcohol (defined as >1 unit/day for females and >2 units/
day for males); (ii) had chronic liver disorders other than 
NAFLD; (iii) took medications that may induce hepatic 
steatosis; (iv) had contraindications to MRI. All eligible 
participants under the care of the study team members were 
invited to participate. Sample size calculation and sampling 
strategies were not employed due to the exploratory nature 
of this study. 

Participants were assessed at baseline and 6 months 
post-surgery. Blood samples were collected for serum 
biochemical analyses and comprehensive metabolomic 
profiling. mpMRI and MRE were conducted to assess the 
severity of NAFLD. 

Biochemical analyses and metabolomic profiling

Liver function tests, lipid profiles, and serum creatinine, 
glucose, and insulin levels were analysed with Abbott 
Architect i200 (Abbott Diagnostics). HbA1c levels were 
measured with Roche Cobas c501 (Roche Diagnostics). 
Amino acids and acylcarnitines were measured by liquid 
chromatography-mass spectrometry (LC-MS). To extract 
the amino acids, 30 µL of sample was dried and derivatized 
using phenyl isothiocyanate by incubating at room 
temperature for 1 hour. The sample was then reconstituted 
in 5 mM ammonium acetate in methanol and centrifuged 
to obtain the precipitate. To separate the individual amino 
acid components, the precipitated protein pellets were 
diluted with water and analysed on a Waters Acquity 
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Effects of bariatric surgery on serum amino acid profiles 
and the GSG index 

Changes in the serum amino acid profiles and the GSG 
index are listed in Table 3. There was a significant reduction 
in the GSG index post-surgery (0.272 ± 0.03 vs. 0.157 ± 
0.05, p = 0.001). Aspartic acid (15.7 ± 4.1 vs. 12.1 ± 3.0, p = 
0.037), glutamic acid (83.0 ± 28.6 vs. 55.9 ± 16.1, p = 0.014), 
phenylalanine (79.0 ± 10.3 vs. 62.8 ± 8.4, p = 0.002), tyrosine 
(78.8 ± 17.3 vs. 64.2 ± 9.7, p = 0.004), leucine (192.4 ± 31.7 
vs. 121.4 ± 23.7, p = 0.001), isoleucine (116.0 ± 16.6 vs. 79.5 ± 
19.4, p = 0.002), valine (414.7 ± 42.2 vs. 267.0 ± 51.3, p <0.001), 
and proline (261.3 ± 63.7 vs. 213.2 ± 48.5, p = 0.005) also 
decreased, whereas levels of arginine (113.7 ± 18.3 vs. 126.4 
± 22.4, p = 0.012) increased. 

Correlation between post-surgery changes in the GSG 
index, mpMRI and MRE parameters 

The post-surgery change in the GSG index and cT1 showed 
a correlation coefficient of 0.658, although statistical 
significance was not achieved (p = 0.076) (Figure 1). No 
statistically significant correlations were found between 
the post-surgery change in the GSG index and MRE LSM 
(r = 0.232, p = 0.580) or PDFF (r = -0.405, p = 0.320). 

Statistical analysis

The distribution of quantitative data was assessed with 
the Shapiro-Wilk test. Variables with a normal distribution 
were expressed as mean ± standard deviation and those 
with a non-normal distribution as median (interquartile 
range). The statistical significance of the post-surgery 
changes in clinical parameters, mpMRI and MRE 
parameters, serum amino acid and acylcarnitine profiles, 
and the GSG index were analysed either with the paired 
Student’s t-test (for data following a normal distribution) 
or the Wilcoxon signed-rank test (for data following a non-
normal distribution). Correlations between post-surgery 
changes in the GSG index with cT1, PDFF, and MRE were 
examined using Pearson's correlation. Multiple variable 
analysis was not performed due to the small sample size 
and exploratory nature of this study. P-value <0.05 was 
considered statistically significant.

Results 

Baseline characteristics 

Two participants did not provide data at all time points 
and were excluded from the analysis. The characteristics of 
participants at baseline (5 males, 3 females) are summarized 
in Table 1. Participants had a mean age of 44.6 ± 9.4 years 
and a body mass index (BMI) of 39.3 ± 5.6 kg/m2. All 
had hepatic steatosis at baseline, defined as PDFF ≥ 5%. 

Effects of bariatric surgery on clinical, mpMRI and MRE 
parameters

All participants underwent laparoscopic sleeve gastrectomy 
and had their post-surgery follow-up at 21.9 ± 1.9 weeks. 
There were significant reductions in weight, BMI, fat mass, 
fat mass percentage, hip and waist circumference, HbA1c, 
insulin, ALT, GGT, albumin, total protein, PDFF, and cT1. 
Serum HDL levels increased significantly post-surgery. 
However, the decrease in MRE liver stiffness measurements 
(LSM) was not significant. 

Effects of bariatric surgery on serum acylcarnitine 
profiles

Changes in serum acylcarnitine profiles are listed in Table 
2. Short-chain acylcarnitines including C2 (12768.7 (12969.3) 
nM vs. 10032.5 (4857.2) nM, p = 0.023), C5 (122.8 ± 19.1 nM 
vs. 67.6 ± 23.0 nM, p <0.001), and C5:1 (12.6 ± 3.5 nM vs. 7.9 
± 4.9 nM, p = 0.041) decreased post-surgery. Medium-chain 
acylcarnitines including C6 (72.1 ± 18.7 nM vs. 60.8 ± 13.2 
nM, p = 0.042), C6-OH (48.6 ± 12.7 nM vs. 35.8 ± 7.2 nM, p = 
0.019) and C12-OH (4.8 ± 1.6 nM vs. 3.1 ± 1.2 nM, p = 0.019), 
and long-chain acylcarnitines including C18:2 (96.5 ± 22.6 
nM vs. 84.0 ± 21.6 nM, p = 0.048) and C18:3 (8.2 ± 2.7 nM vs. 
5.5 ± 1.8 nM, p = 0.001) also decreased. On the other hand, 
serum levels of C18:2-OH (7.0 ± 3.6 nM vs. 10.5 ± 3.9 nM, 
p = 0.048) and C22 (2.7 ± 0.6 nM vs. 3.3 ± 0.9 nM, p = 0.014) 
increased. 

Table 1. Baseline and post-surgery characteristics and 
clinical parameters

Baseline Post-surgery p-value
Age 44.6 ± 9.4 - -
Weight (kg) 106.9 ± 12.1 87.0 ± 12.4 <0.001*
BMI (kg/m2) 39.3 ± 5.6 32.0 ± 5.0 <0.001*
Fat mass (kg) 49.5 ± 14.3 31.0 ± 9.2 0.002*
Fat-free mass (kg) 57.4 ± 16.2 56.0 ± 10.8 0.723*
Fat mass (%) 46.5 ± 12.8 35.6 ± 9.7 0.012*
Hip circumference (cm) 127.1 ± 13.8 105.6 ± 13.4 0.004*
Waist circumference (cm) 117.7 ± 11.8 103.1 ± 11.0 <0.001*
HbA1c (%) 6.9 ± 1.0 5.9 ± 0.8 0.009*
Glucose (mmol/L) 6.3 (2.0) 5.3 (1.0) 0.375**
Insulin (mU/L) 16.8 ± 9.3 7.0 ± 4.2 0.018*
Creatinine 69.8 ± 19.0 66.4 ± 15.7 0.397*
Total cholesterol (mmol/L) 4.0 ± 1.2 4.7 ± 0.6 0.175*
HDL (mmol/L) 1.1 ± 0.3 1.3 ± 0.3 0.037*
Triglycerides (mmol/L) 1.4 (0.9) 1.2 (0.2) 0.742**
LDL (mmol/L) 2.2 ± 1.0 2.8 ± 0.5 0.154*
Total protein (U/L) 77.1 ± 4.9 71.4 ± 3.8 0.010*
ALT (U/L) 26.5 (55.5) 21.0 (7.0) 0.0391**
AST (U/L) 38.9 ± 18.9 25.1 ± 5.6 0.095*
ALP (U/L) 80.6 ± 12.7 76.6 ± 10.1 0.101*
GGT (U/L) 39.5 (12.5) 24.0 (9.5) 0.008**
Bilirubin (U/L) 9.5 (3.5) 13.0 (6.5) 0.175**
Albumin (U/L) 43.6 ± 2.3 40.6 ± 2.3 0.011*
PDFF (%) 12.4 ± 6.7 6.2 ± 2.8 0.013*
cT1 (ms) 823.3 ± 85.4 757.5 ± 41.6 0.039*
MRE LSM (kPa) 2.3 (0.2) 2.2 (0.3) 0.813**
Data presented as mean ± SD or median (IQR)
SD: standard deviation; IQR: interquartile range; ALT: alanine transaminase; 
AST: aspartate transaminase; ALP: alkaline phosphatase; GGT: gamma-
glutamyl transferase; HDL: high-density lipoprotein; LDL: low-density 
lipoprotein; BMI: body mass index; PDFF: proton density fat fraction; cT1: 
iron-corrected T1; MRE: magnetic resonance elastography; LSM: liver 
stiffness measurement. Bolded p values indicate statistical significance 
(p <0.05).
*p values obtained by paired Student’s t-test
**p values obtained by Wilcoxon signed-rank test
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Discussion

The study aimed to investigate the ability of the GSG 
index to monitor the effects of bariatric surgery in 
NAFLD patients. We demonstrated that the post-bariatric 
surgery improvement in hepatic steatosis and hepatic 
fibroinflammation was significant, along with the reduction 
in the GSG index. 

Figure 1. Correlation between the post-surgery decrease in 
cT1 and the decrease in GSG index.

Table 3. Baseline and post-surgery serum amino acid 
profiles (umol/L) and the GSG index

Baseline Post-surgery p-value*
Glycine 212.9 ± 47.5 249.6 ± 34.3 0.078
Serine 142.4 ± 33.3 134.6 ± 26.0 0.605
Threonine 111.7 ± 30.5 89.3 ± 30.3 0.137
Alanine 495.8 ± 122.7 442.4 ± 118.5 0.155
Aspartic acid 15.7 ± 4.1 12.1 ± 3.0 0.037
Asparagine 87.3 ± 12.5 78.0 ± 13.2 0.136
Glutamic acid 83.0 ± 28.6 55.9 ± 16.1 0.014
Glutamine 1276.4 ± 79.7 1302.2 ± 211.3 0.764
Histidine 90.8 ± 86.2 8.7 ± 6.1 0.278
Phenylalanine 79.0 ± 10.3 62.8 ± 8.4 0.002
Tyrosine 78.8 ± 17.3 64.2 ± 9.7 0.004
Tryptophan 58.2 ± 12.1 51.8 ± 6.8 0.153
Leucine 192.4 ± 31.7 121.4 ± 23.7 0.001
Isoleucine 116.0 ± 16.6 79.5 ± 19.4 0.002
Valine 414.7 ± 42.2 267.0 ± 51.3 <0.001
Methionine 29.8 ± 5.6 27.0 ± 4.1 0.232
Arginine 113.7 ± 18.3 126.4 ± 22.4 0.012
Ornithine 83.3 ± 27.5 70.6 ± 11.5 0.085
Citrulline 32.5 ± 7.1 35.3 ± 7.6 0.267
Proline 261.3 ± 63.7 213.2 ± 48.5 0.005
GSG index 0.272 ± 0.03 0.157 ± 0.05 0.001
Data presented as mean ± SD
SD: standard deviation. Bolded p values indicate statistical significance 
(p <0.05).
*p values obtained by paired Student’s t-test 

Baseline Post-surgery p-value
C2:0 12768.7 (12969.3) 10032.5 (4857.2) 0.023**
C3:0 470.9 (149.7) 313.4 (70.1) 0.148**
C4:0 282.8 ± 66.1 235.9 ± 93.4 0.254*
C5:1 12.6 ± 3.5 7.9 ± 4.9 0.041*
C5:0 122.8 ± 19.1 67.6 ± 23.0 <0.001*
C4-OH 52.9 (163.8) 16.2 (31.4) 0.078**
C6 72.1 ± 18.7 60.8 ± 13.2 0.042*
C5-OH/C3-DC 28.1 ± 9.4 20.9 ± 5.5 0.067*
C4-DC,C6-OH 48.6 ± 12.7 35.8 ± 7.2 0.019*
C8:1 176.7 ± 75.0 115.0 ± 61.4 0.091*
C8 150.7 ± 60.8 148.4 ± 35.6 0.859*
C5-DC 52.5 ± 10.9 53.0 ± 11.8 0.897*
C8:1-OH/C6:1-DC 36.9 ± 12.6 33.8 ± 7.2 0.595*
C8-OH/C6-DC 86.1 ± 39.4 69.3 ± 22.0 0.222*
C10:3 34.9 (49.1) 21.6 (11.6) 0.078**
C10:2 15.0 ± 6.1 13.1 ± 5.9 0.589*
C10:1 126.6 (24.1) 103.2 (46.3) 0.844**
C10 241.8 ± 99.4 251.6 ± 54.5 0.698*
C7-DC 20.8 ± 4.4 20.9 ± 5.1 0.630*
C8:1-DC 18.3 ± 6.7 22.5 ± 14.6 0.309*
C8-DC 47.0 ± 26.3 33.4 ± 11.1 0.083*
C12:2 13.2 ± 5.0 15.2 ± 9.5 0.512*
C12:1 107.2 ± 43.7 92.9 ± 33.3 0.424*
C12 90.9 ± 39.9 74.7 ± 20.2 0.169*
C12:2-OH/C10:2-DC 6.7 ± 3.4 5.5 ± 1.9 0.419*
C12:1-OH 14.1 (7.7) 11.9 (5.1) 0.742**
C12-OH/C10-DC 4.8 ± 1.6 3.1 ± 1.2 0.019*
C14:3 4.9 ± 1.6 3.9 ± 1.8 0.238*
C14:2 32.1 (14.2) 26.9 (14.0) 0.229**
C14:1 72.3 (57.0) 66.0 (19.5) 0.461**
C14 34.5 ± 11.4 27.6 ± 9.2 0.203*
C14:3-OH/C12:3-DC 1.2 ± 0.5 1.2 ± 0.6 0.942*
C14:2-OH 5.7 ± 2.1 4.6 ± 2.0 0.096*
C14:1-OH 16.5 ± 4.8 13.3 ± 3.7 0.113*
C14-OH/C12-DC 12.5 ± 4.1 9.7 ± 3.5 0.247*

Baseline Post-surgery p-value
C16:3 7.9 ± 2.8 6.2 ± 2.9 0.082*
C16:2 8.2 (2.2) 7.5 (1.6) 0.313**
C16:1 26.2 (21.3) 26.2 (7.9) 0.250**
C16 148.3 ± 24.9 138.7 ± 31.7 0.415*
C16:3-OH/C14:3-DC 1.6 ± 0.8 1.3 ± 0.6 0.340*
C16:2-OH 6.8 ± 1.4 5.1 ± 1.5 0.051*
C16:1-OH/C14:1-DC 7.9 (3.0) 7.3 (1.5) 0.313**
C16-OH 13.2 ± 4.6 10.7 ± 2.3 0.098*
C18:3 8.2 ± 2.7 5.5 ± 1.8 0.001*
C18:2 96.5 ± 22.6 84.0 ± 21.6 0.048*
C18:1 181.4 ± 52.9 172.1 ± 26.6 0.643*
C18 38.9 ± 5.6 45.2 ± 9.3 0.062*
C18:3-OH/C16:3-DC 4.4 ± 1.3 5.0 ± 2.0 0.524*
C18:2-OH/C16:2-DC 7.0 ± 3.6 10.5 ± 3.9 0.048*
C18:1-OH/C16:1-DC 9.0 ± 4.9 6.7 ± 2.8 0.165*
C18-OH/C16-DC 9.0 ± 3.1 6.8 ± 2.2 0.194*
C20:4 5.6 ± 1.6 6.3 ± 2.7 0.495*
C20:3 6.0 (2.2) 7.1 (2.3) 0.863**
C20:2 5.5 ± 2.3 7.2 ± 1.3 0.102*
C20:1 7.6 ± 1.2 8.2 ± 2.2 0.510*
C20 4.4 ± 1.2 4.9 ± 1.7 0.340*
C20:3-OH/C18:3-DC 2.5 (0.2) 3.1 (1.6) 0.945**
C20:2-OH/C18:2-DC 2.1 ± 1.0 3.4 ± 1.5 0.118*
C20:1-OH/C18:1-DC 9.0 ± 5.0 8.0 ± 2.7 0.513*
C20-OH/C18-DC 8.7 ± 3.3 8.6 ± 2.5 0.970*
C22:5 2.4 ± 0.8 1.8 ± 0.9 0.223*
C22:4 1.5 ± 0.8 1.9 ± 1.2 0.316*
C22:3 0.9 ± 0.6 0.7 ± 0.4 0.529*
C22:2 0.9 (0.5) 0.9 (0.7) 1.000**
C22:1 2.1 ± 0.7 2.5 ± 0.8 0.410*
C22 2.7 ± 0.6 3.3 ± 0.9 0.014*
C24 21.4 ± 6.8 21.1 ± 7.5 0.947*
C26 30.5 ± 10.0 38.0 ± 7.4 0.104*
C28 2.2 ± 0.9 3.0 ± 0.8 0.187*

Table 2. Baseline and post-surgery serum acylcarnitine profiles (nM)

Data presented as mean ± SD or median (IQR)
SD: standard deviation; IQR: interquartile range. Bolded p values indicate statistical significance (p <0.05).
*p values obtained by paired Student’s t-test
**p values obtained by Wilcoxon signed-rank test
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The liver participates in protein and amino acid metabolism. 
NAFLD and NASH are characterized by alterations in 
pathways involving several aspects of amino acid and 
lipid metabolism.29-31 One such pathway is the synthesis of 
glutathione (GSH),32,33 an important cellular redox buffer 
and defender against oxidative stress in hepatocytes.34 
Increased oxidative stress in the liver is associated with 
liver damage and the progression of NAFLD to NASH. 
GSH levels have been shown to regulate hepatocyte 
cell death.35-37 Thus, measuring GSH levels may serve 
as a marker of NAFLD. Various methods for measuring 
GSH include enzymatic assays, high-performance liquid 
chromatography (HPLC), and mass spectrometry. 
However, HPLC techniques have poor detection limits 
for GSH.38 GSH is also sensitive to oxidation, and careful 
sample preparation is required for analyses, affecting 
measurement accuracy and reliability. GSH measurements 
are also not routinely available in clinical laboratories. 
Measurements of amino acids related to GSH biosynthesis 
can be a more reliable method for quantifying GSH status. 

Previous studies have demonstrated the role of the GSG 
index as a marker of the severity of NAFLD, independent 
of traditional risk factors such as adiposity. The GSG index 
was previously found to be higher among NAFLD patients 
and positively correlated with levels of liver enzymes and 
the degree of hepatic steatosis.4,5 Our findings extend these 
earlier observations by demonstrating a reduction in the 
GSG index post-surgery along with reductions in hepatic 
steatosis and fibroinflammation. We also found a near 
statistically significant correlation between the changes in 
GSG index and hepatic fibroinflammation. 

Glutamate and glycine, two amino acids that constitute 
the GSG index, are independent risk factors for hepatic 
fibrosis.39 Glycine functions as a rate-limiting substrate 
for the synthesis of GSH,33 and decreased glycine level is 
associated with altered liver metabolism in patients with 
hepatic fibrosis.39 It was also previously demonstrated 
that plasma glycine concentrations and de novo glycine 
synthesis increased after bariatric surgery, suggesting 
impaired glycine synthesis due to obesity-induced insulin 
resistance in NAFLD.40 On the other hand, increased 
levels of glutamate were associated with altered liver 
metabolism.39 A previous study also demonstrated an 
association between glutamate concentrations with GGT. 
Among other amino acids, glutamate was more strongly 
associated with the severity of hepatic fibrosis.4 

Apart from amino acids that constitute the GSG index, 
branched-chain amino acids (BCAAs) such as leucine, 
isoleucine, and valine are increased in insulin-resistant 
states,4,41 which is a major phenotype in NASH.42 Higher 
levels of BCAAs are associated with an increased risk 
of NAFLD.43-45 BCAA oxidation reduces after bariatric 
surgery due to the slower breakdown of body proteins as 
the ability of insulin to suppress proteolysis is restored.46-48 
Our study also showed that these amino acids decreased 
post-bariatric surgery. 

Bariatric surgery effectively achieves sustained weight 
loss and can reverse risk factors contributing to NAFLD's 
pathogenesis, such as dyslipidemia, insulin resistance, and 
inflammation.14,15 This concurs with our findings, which 
demonstrated reduced adiposity and improved lipid and 
glycemic control. Bariatric surgery also reduces hepatic 
steatosis, inflammation, and hepatocyte ballooning.16 Our 
study similarly showed post-surgery improvements in liver 
biochemistry, hepatic fat content, and fibroinflammation. 
However, there was no significant post-surgery change in 
hepatic fibrosis. This may be because none of the participants 
had significant fibrosis at baseline and the improvement 
in fibrosis is slower than steatosis and inflammation.17,18

Metabolomic profiling involves analyzing a broad range 
of metabolites from cellular processes and biochemical 
pathways, including amino acids, lipids, carbohydrates, 
nucleotides, organic acids, and various small molecules. 
Compared to general laboratory parameters, it reflects the 
current metabolic state of the body more accurately. It can 
be a sensitive and specific biomarker of NAFLD, and the 
progression of NAFLD has previously been associated 
with higher serum acylcarnitines levels.19 Acylcarnitines, 
especially medium- and long-chain species, activate 
proinflammatory signaling pathways that are involved in 
the pathogenesis and progression of NAFLD.20-22 Serum 
acylcarnitine levels also reflect fatty acid oxidation23 and 
altered fatty acid oxidation has been linked to hepatic 
steatosis and insulin resistance and is an important factor 
behind NAFLD.24-26 Though not demonstrated in this 
study, levels of unsaturated long-chain acylcarnitine 
species such as C14:1 and C18:1 were found to be increased 
with the progression of fibrosis.9 Likewise, this may also 
be attributed to the fact that none of the participants had 
significant fibrosis at baseline and that improvements in 
fibrosis are seen over longer periods of time.17,18 

Liver biopsy is the gold standard for diagnosing and staging 
liver diseases, including NAFLD. However, biopsies 
are invasive with significant risks and complications 
and repeated biopsies to track changes in the severity of 
NAFLD are challenging to perform in clinical practice. 
Biopsy results are also subject to sampling error and inter- 
and intra-observer variability. Laboratory parameters 
such as blood concentrations of hepatic transaminases are 
non-invasive indicators of liver function. However, these 
indirect measurements cannot reliably predict the severity 
of liver disease.27 As such, advanced imaging methods such 
as mpMRI and MRE have been developed as non-invasive 
tools to diagnose and monitor the progression of NAFLD. 
We previously showed that improvements in the severity 
of NAFLD after bariatric surgery can be monitored with 
mpMRI and MRE.28 Although these imaging methods 
have a place in secondary and tertiary care settings, MRI 
can be costly and may not be widely available, limiting 
their accessibility for routine clinical care. Therefore, 
there is a clinical need to develop alternative methods to 
determine the severity of the condition and monitor the 
response of NAFLD to treatment in a way that is accurate, 
non-invasive, and accessible. 
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Moreover, increased levels of aromatic amino acids such 
as tyrosine and phenylalanine have also been found to be 
associated with an increased severity of liver diseases.32,49-51 

Phenylalanine is converted to tyrosine in the liver, which 
is further metabolized. NAFLD patients exhibit increased 
tyrosine concentrations, which is likely due to impaired 
hepatic metabolism.32,51 Our findings are corroborated 
by another study, which also found that levels of these 
amino acids are reduced post-bariatric surgery among 
NAFLD patients.48 

This is the first study investigating the ability of the GSG 
index to monitor changes in hepatic steatosis, inflammation, 
and fibrosis following bariatric surgery. Metabolomics may 
provide a more sensitive understanding of the metabolic 
changes associated with NAFLD, and our study illustrates 
the potential of the GSG index as an accessible and non-
invasive biomarker to diagnose NAFLD and monitor its 
response to various interventions. 

Our study is exploratory in nature and has a small sample 
size with a relatively short duration of follow-up. Future 
studies with larger sample sizes and regression analysis 
with the addition of other variables will be needed to 
validate the effectiveness of the GSG index in monitoring 
NAFLD treatment response. Future work should also 
evaluate the utility of these biomarkers over longer follow-
up periods. In addition, although liver biopsies were not 
performed to evaluate the response of NAFLD to bariatric 
surgery, MRI parameters such as PDFF and cT1 have been 
shown to correlate with histopathological findings.52 Our 
study also recruited NAFLD patients with morbid obesity 
undergoing bariatric surgery. The ability of the GSG index 
to monitor the response to other pharmacological or lifestyle 
interventions will, therefore, also need to be examined.

Conclusion 

The post-surgery change in the GSG index is in the same 
direction as the improvements in hepatic steatosis and 
fibroinflammation. The GSG index can potentially be 
developed as a marker for monitoring the response of 
patients with NAFLD to bariatric surgery.
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