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SUMMARY
Single-cell cytometry data are crucial for understanding the role of the immune system in diseases and re-
sponses to treatment.However, traditionalmethods forannotatingcytometrydata facechallenges in scalability,
robustness, and accuracy.We propose a cytometrymasked autoencoder (cyMAE), which automates immuno-
phenotyping tasks including cell type annotation. The model upholds user-defined cell type definitions, facili-
tating interpretability and cross-study comparisons. The training of cyMAE has a self-supervised phase, which
leverages large amounts of unlabeled data, followed by fine-tuning on specialized tasks using smaller amounts
of annotateddata. Thecostof traininganewmodel isamortizedover repeated inferencesonnewdatasetsusing
the same panel. Through validation across multiple studies using the same panel, we demonstrate that cyMAE
delivers accurate and interpretable cellular immunophenotyping and improves the prediction of subject-level
metadata. This proof of concept marks a significant step forward for large-scale immunology studies.
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INTRODUCTION

High-throughput single-cell protein expression data, acquired

through flow andmass cytometry, are essential to understanding

the role of the immune system in infectious diseases, autoimmu-

nity, cancer, and the response of immune cells post-treatment.

Cytometry assays are designed to profile millions of cells from

a biological sample, precisely quantifying biomarkers specific

to various cell types. In contrast, single-cell RNA sequencing

(scRNA-seq) approaches are generally on the scale of thou-

sands of cells. This substantial difference in scale grants cytom-

etry significant advantages for the identification and character-

ization of rare cell population and enhances the overall

comprehensiveness of the data collected. For example, cytom-

etry can pinpoint cell populations that are differentially abundant

or proteins that are differentially expressed between subject

groups. This process of immune profiling effectively delineates

both similarities and diversities within the immune landscape of

different subjects, contributing significantly to precision medi-

cine by enabling predictions at an individual level.

The most prevalent approach for analyzing cytometry data is

manual gating, a process involving user-applied sequential filters

to bivariate plots of protein markers, thereby isolating specific

cell subsets for focused analysis.1 These bivariate plots visually

represent the distribution of protein markers, allowing a human

analyst to manually identify and select cells based on their prior

knowledge of these distributions. Despite widespread use of this

approach, manual gating faces several significant challenges.

Firstly, it is a time-intensive process, particularly for panels

with over a dozen markers,2,3 as the number of biaxial plots to

consider increases quadratically with the number of parameters

measured. Secondly, manual gating is prone to subjectivity and

bias.2,3 Each analysis is influenced by pre-existing knowledge,

which can lead to a bias toward anticipated results. Subjectivity

also enters through the selection of the order of marker combina-

tions and the definition of gate boundaries. Thirdly, results from

manual gating can be challenging to replicate.2,3 Different

studies may employ varied gating strategies, including distinct

gating sequences, shapes, and boundaries for gates, impacting

the robustness and consistency of identified cell subsets. More-

over, the level of gating stringency also varies between individual

analysts, contributing to inconsistent results.

The ability to simultaneously measuremultiple proteinmarkers

has significantly increased the complexity of cytometry data.

This complexity has led to the development of automated anal-

ysis techniques, particularly unsupervised clustering methods

like FlowSOM,4 PhenoGraph,5 Scaffold Maps,6 and X-shift.7

Although these clustering approaches address some limitations

ofmanual gating, they also introduce their own set of constraints.

Notably, while unsupervised clustering methods can detect data

variability, they struggle to differentiate between biological or

technical sources of this variability. This limitation makes these

methods susceptible to batch effects, shifts in data distribution,

and non-specific binding of antibodies.8 Another challenge

arises in cross-study comparisons, where minor variations in

panel selection, sample collection, measurement noise, or

random seeding can lead to abrupt changes in cluster bound-

aries. For example, CD4 T cells might be clustered differently
2 Cell Reports Medicine 5, 101808, November 19, 2024
in studies based on memory or functional subtypes, compli-

cating direct comparisons between even highly overlapping

datasets.

To remedy these limitations and provide cell annotations

that conform to predictable cell type ontologies, supervised

or semi-supervised methods have been proposed, such as

ACDC,9 SCINA,10 LDA,11 and CyAnno.12 ACDC and SCINA

use information about marker proteins across cell types to

inform clustering, while LDA and CyAnno directly train super-

vised models using training data in which individual cells have

been annotated. However, the approaches used by ACDC

and SCINA have the drawback of overly relying on prior

knowledge. If the manual gating is not comprehensive or con-

tains errors, these will propagate through the automated pro-

cess. CyAnno, which relies on the original Flow Cytometry

Standard (FCS) feature space, may fail to create robust cell

representations that are less sensitive to noise and technical

variations. Additionally, given the trend of increasing data

sizes nowadays, methods that heavily depend on manual

gating results are not scalable. Therefore, there is a need for

supervised methods that can effectively utilized large, unla-

beled datasets. In this study, we aim to leverage large-scale

unlabeled cytometry data to improve cell representation

learning, ultimately achieving automated immunophenotyping

and enhancing predictive accuracy. To this end, we draw

inspiration from recent advances in computer vision and nat-

ural language processing.

In the broader context of big data and advanced computa-

tional models, artificial intelligence (AI) has achieved great suc-

cess in fields like computer vision and natural language process-

ing. The effort needed to manually label data makes it extremely

difficult to fully leverage the vast amounts of existing unlabeled

data in the supervised learning paradigm. However, the revolu-

tion of self-supervised learning techniques, particularly in the

pre-training phase, empowers models to more accurately learn

data distributions and utilize unlabeled data effectively. The

core concept behind self-supervised pre-training is randomly

masking a portion of the input data and training the model to

reconstruct masked information using context clues from the

surrounding data. This approach allows the pre-trained model

to be fine-tuned for specific downstream tasks or to function

as generative AI. Coupling the transformer13 architecture, known

for its high expressiveness and scalability, has led to significant

synergistic effects. Notable examples include masked language

modeling as seen in BERT14 and GPT15 and masked image

modeling in models like DINOv2,16 BeiT,17 and masked autoen-

coder (MAE)18 in computer vision.

The success of the masking approach has reverberated within

the biomedical field as well. For example, protein language

models (pLMs) are a set of AI models trained on extensive sets

of unlabeled protein sequences.19–21 pLMs have steadily gained

traction across diverse applications for protein design, including

antibody engineering22 and drug discovery.23,24 In addition, AI

models trained on unlabeled scRNA-seq data have been pub-

lished and used for cell annotation purposes.25–31 Thus, masking

models have proven to substantially outperform previous con-

ventional methods in effectiveness and show great potential in

biomedical applications. Similarly, we apply these techniques



Article
ll

OPEN ACCESS
for immunophenotyping, as cytometry data can be structured in

a similar way.

In this proof-of-concept study, we develop an accurate and

interpretable automated immunophenotyper for single-cell cy-

tometry data, using a technique we call masked cytometry

modeling (MCM). This approach employs self-supervised pre-

training on single-cell cytometry data. During MCM, our model

learns the relationships and dependencies among markers on

immune cells by analyzing expression patterns in the massive

amount of datasets, without requiring additional information

about cellular identity. The resulting pre-trained model can

then be fine-tuned for various downstream tasks, surpassing

the utility of the original data. We demonstrate that our model

not only overcomes the challenges of manual gating and clus-

tering methods but also provides accurate results even on inde-

pendent datasets that were never seen during its training.

Crucially, this study utilizes the exact same panel across all data-

sets, highlighting the necessity of panel consistency for applying

the model to new datasets. By validating across multiple data-

sets, we showed that our model can accurately identify complex

cell types, interpret which crucial protein markers predict

targets, and enhance precision in subject-level phenotyping.

Moreover, our model demonstrates fast, scalable, reproducible

modeling of cytometry data through pre-training and fine-tuning

approach. For instance, pre-training and fine-tuning only took 2–

3 days each with large datasets, and cell type annotation can

process approximately 15,000 cells per second. This approach

in immunophenotyping promises to broaden the impact of exist-

ing cytometry data and enhance immunological knowledge by

more accurately phenotypes at both cellular and subject levels.

RESULTS

cyMAE algorithm
To address the challenges of time-consuming and labor-inten-

sive immunophenotyping in cytometry data, we propose cyMAE,

a cytometry masked autoencoder model. This innovative model

constructs and employs latent embeddings of single-cell cytom-

etry data to obtain state-of-the-art performance on various cell-

level and subject-level tasks. cyMAE is built upon an MAE18 ar-

chitecture, featuring stacked transformer blocks in both the

encoder and decoder. Inspired by successful methodologies in

computer vision and natural language processing, cyMAE un-

dergoes a two-phase training process: self-supervised pre-

training followed by supervised fine-tuning, as illustrated in Fig-

ure 1A. The main advantage of this approach is its ability to

use large-scale, easily obtainable unlabeled data during the

initial self-supervised pre-training phase, thus reducing the reli-

ance on scarce and labor-intensive labeled data in the subse-

quent fine-tuning phase. During pre-training, a randomly

selected subset of the protein expression data is masked and

fed to an encoder, which produces latent embeddings of the

masked data. In turn, these embeddings are processed by a

decoder that attempts to reconstruct the unmasked, original

data (Figures 1B and S1). Through this process, the encoder-

decoder system learns to optimize the embeddings to minimize

reconstruction error, effectively enabling the model to obtain

informative data embeddings without requiring explicit ground
truth labels. During the second fine-tuning stage, the model em-

ploys the full, unmasked protein expression data to generate

latent cell representations using the encoder that was pre-

trained in the first stage. These representations are applicable

to a range of downstream tasks, whether they involve labeled

data or not. Cell representations generated by the pre-trained

encoder can be used for unsupervised tasks or plugged into

another classifier to solve tasks through supervised fine-tuning.

Specifically, we evaluated the pre-trained cyMAE’s performance

on two cell-level tasks: cell type annotation and imputation.

Moreover, for subject-level tasks, we tested SARS-CoV-2 infec-

tion prediction, secondary immune response prediction against

COVID-19, and prediction of the infection stage in the COVID-

19 progression.

We analyzed cytometry by time of flight (CyTOF) data from

three distinct COVID-19 studies conducted at the University of

Pennsylvania, referred to as the Acute2020 dataset, Vaccine da-

taset, and Acute2021 dataset. For all datasets, whole blood was

stained with the same 30-marker panel. Each of the datasets un-

derwent a routine manual gating practice executed by domain

experts to extract single, intact cells in preparation for down-

stream analysis. The Acute2020 dataset consists of single-

time-point samples from 13 patients hospitalized with acute

SARS-CoV-2 infection in 2020 and 13 healthy controls,

comprising a total of 6.5 M cells. The Vaccine dataset includes

37 healthy adults followed longitudinally before and after

(7 days after second dose) SARS-CoV-2mRNA vaccine, for a to-

tal of 150 FCS files. This dataset is composed of 36.7 M cells.

Lastly, the Acute2021 dataset contains longitudinal samples

from 42 SARS-CoV-2-infected individuals who were enrolled in

the I-SPY COVID-19 trial32 in 2021. Samples were collected at

the time of hospital admission and 7 days later. This dataset in-

cludes 11.9 M cells from 56 FCS files. Prior analysis of flow cy-

tometry data from the Acute2020 dataset revealed heteroge-

neous peripheral blood profiles among patients hospitalized

with SARS-CoV-2, capturing both common and uncommon cells

and cell phenotypes compared to healthy individuals.33 Thus,

the Acute2020 dataset was chosen for pre-training, while all

three datasets were used in the downstream evaluations.

Despite being stained with the same panel and acquired on the

same instrument, the three datasets were processed in different

years with different reagent lots and slightly different protocols.

Because of this, there are moderate batch effects that distin-

guish the datasets, especially for the neutrophil population (Fig-

ure S2). This provides an opportunity to test the robustness of

cyMAE to realistic amounts of technical variability between the

datasets used for training and inference.

cyMAE learns antibody co-occurrence patterns
The pre-trained cyMAE effectively learns the patterns of co-

occurrence among antibodies targeting specific proteins, purely

fromdata, without relying on any prior knowledge. This capability

is demonstrated by the way cyMAE groups proteins based on

their co-localization on particular cell types, as seen in Figure 2A.

For example, proteins that appear mostly on T cells (CD3, CD4,

CD8, CD28, CD183, etc.) cluster together, while proteins that

appear on natural killer (NK) cells and some T cells (CD56,

CD57) are nearby. Similarly, proteins abundantly expressed on
Cell Reports Medicine 5, 101808, November 19, 2024 3



Single-cell cytometry datasets

Cell 1
Cell 2
Cell 3

…

Cell C

…

Set 1: Acute2020 - 6.5M cells Single-cell
data

P
pr

ot
ei

ns

Masking Unmasked
Protein Embeddings

Unmasked
Expression

values

CONCAT( )

En
co

de
r

Unmasked
Latent Representations

Latent Representations
+ Mask Embeddings

D
ec

od
er

P
pr

ot
ei

ns

[Pre-training] Model learns useful representations of the input data without label information

Reconstruction Loss

CONCAT( )

Single-cell
data

P
pr

ot
ei

ns

Protein Embeddings Expression
values

En
co

de
r

Downstream
Tasks

[Fine-tuning] Task-oriented learning with label information

Set 1: Vaccine - 36.7M cells  
Set 2: Acute2021 - 11.9M cells
Set 3: Acute2020 - 6.5M cells

Cell-level tasks
- Cell type annotation
- Cell type annotation with few-shot learning
- Imputation of individual marker intensities

Subject-level tasks
- SARS-CoV-2 infection prediction
- COVID-19 Secondary response prediction
- COVID-19 treatment prediction

Masked

Unmasked

Mask embeddings

A

B

Figure 1. Overview of cyMAE pre-training and fine-tuning process

(A) In the pre-training step, protein expression data are randomly masked for each cell. Only the unmasked protein identities undergo dimension expansion to

create learnable unmasked protein embeddings. These embeddings are then concatenated with the unmasked protein expressions and fed into the encoder.

This encoder generates unmasked latent representations, which are merged with learnable mask embeddings and fed to the decoder for reconstruction of the

masked values. In the fine-tuning step, the pre-trained encoder produces latent representations for both cells and subjects, facilitating cell-level and subject-level

downstream tasks, respectively. The fine-tuning datasets need to be designed using the exact same panel as the pre-training dataset.

(B) From left to right, masked, imputed (reconstructed), and original data. Each row represents amarker protein, and each column represents a randomly sampled

cell. Initially, 25% of the original data are randomly masked, shown in white in the masked data visualization. cyMAE effectively reconstructs these masked

regions, demonstrating the model’s accuracy.
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one cell type, such as neutrophils (CD16, CD66b), basophils

(CD123, CD294), and B cells (CD20, immunoglobulin D,

CD185, HLA-DR), are grouped in cell type-specific regions of

the protein embedding space. One exception is the B cell marker

CD19, which is far away from the other B cell proteins. This is

likely because of background CD19 expression in the most

abundant cell type, neutrophils, which pulls the CD19 expression

away from the B cell region and toward the neutrophil region.

Because it is unsupervised, the pre-training phase of cyMAE

does not know that CD19 expression on neutrophils is a tech-

nical artifact, and this is reflected in the protein embedding.

Overall, these results illustrate that cyMAE can effectively cap-

ture the contextual relationships and dependencies between im-

mune cell marker expression levels. Thus, this model can be

learnable for data patterns, enabling it to successfully perform

subsequent downstream tasks.

cyMAE is an accurate cell immunophenotyper
Cell type annotation, traditionally achieved through manual

gating and clustering methods, is now efficiently automated by

our cyMAE model. By fine-tuning with cell type labels, cyMAE

accurately annotates cell types in single-cell datasets. Ground

truth labels for 46 cell types, obtained from manual gating,

were used (Figure S3). We used 60% of the Vaccine dataset

for fine-tuning the model, 20% as validation, and the remaining

20% as an internal test set. We further evaluated cyMAE using

the Acute2021 dataset and the Acute2020 dataset as external

validation sets (external set 1 and 2, respectively). We compared

cyMAE with a gradient boosting decision tree (GBDT),36 a fully

connected deep neural network, and a convolutional neural

network (CNN) (see STAR Methods) as well as cytometry-spe-

cific analysis methods: CyAnno, static gating, and unsupervised

clustering with FlowSOM.

As a baseline, we took the gating strategy developed on the

training dataset and applied it statically to the testing data-

sets, without adjustments for inter-sample variability (Fig-

ure S4). This approach is equivalent to manually constructing

a decision tree and then applying it on the testing data. The

other supervised models used here can be seen as refine-

ments of this idea: they attempt to learn a more robust encod-

ing of the gating information by using multivariate rather than

bivariate expression patterns. Alongside the supervised clas-

sification methods, we included FlowSOM, a popular unsu-

pervised clustering method for cytometry. To match our su-

pervised paradigm, we add an inference mode to FlowSOM

by mapping each unseen test datapoint to the nearest SOM

node (see STAR Methods).
Figure 2. Evaluation of cyMAE protein embeddings and cell type anno

(A) Principal-component analysis plot of the cyMAE protein embeddings, demon

protein embeddings that represent the spatial closeness of antibody probes.

(B) Model comparisons in the 46 cell type annotation with balanced accuracy (Bac

is Acute2021, and the external set 2 is Acute2020. GBDT is a gradient boosting de

for each gate in the hierarchy (see STARMethods). Deep neural network (DNN) den

like DGCyTOF34 and DeepCyTOF35 for cytometry data analysis. Convolutional ne

Deep CNN8 without pooling layers for the cell-level task.

(C) Accuracy of cell type annotation for both 5 abundant and 15 rare cell types.

(D) The few-shot learning for cell type annotation. cyMAE (from scratch) refers to

dashed line represents the performance of the full fine-tuned cyMAE from (B).
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Given the imbalanced distribution of cell type, with neutrophils

comprising over 60% of cells, we used balanced accuracy

(Bacc) to assess model performance fairly. The experimental re-

sults showed consistently high Bacc on both internal test sets

and two external sets, with the internal test set achieving

93.1% Bacc and the external sets 81.9% and 82.6% Bacc,

respectively (Figure 2B). When we examined performance by

cell type, our model was found to be more accurate than others

for most cell types (Figures 2C and S5). Notably, the model per-

formed particularly well on rare cell types. Accurate prediction of

rare cell types is difficult because it is easy for a model to be

trained with a bias toward more frequent cell types. However,

when comparing performance on cells with a frequency of less

than 0.1% in Figure 2C, both the internal test set and external

sets show more accurate predictions for rare cell types than

the comparison models in most cases. In addition, cyMAE’s

performance benefits from pre-training, outperforming the

cyMAE model from scratch (non-pre-trained), demonstrating

the value of leveraging large-scale unlabeled data for pre-

training (Table S1).

During the training and validation processes described earlier,

cyMAE and the other methods did not use all events present in

the FCS files, but only the subset of CD45-positive single cells,

which were assigned a terminal label by manual gating. Some

ungated or partially gated events were left out: debris, doublets,

or events in the space left out between the gate boundaries (for

example, a small number of T cells which do not belong to either

of the CD4, CD8, double-negative, or double-positive gates).

However, we are interested in a real-world setting where cell la-

bels frommanual gating are not available, so leaving out ungated

events is not an option. Therefore, we asked the same pre-

trained and fine-tuned cyMAE model to annotate all events in a

file, both gated and ungated.

The model assigned each event to the best matching label

among the 46 that it learned during training (Figure S6A). Partially

gated cells weremostly assigned to amore specific cell type from

the same lineage: for example, partially gated T cells that were not

captured in downstreamgateswere assignedmore detailed naive

or memory T cell phenotypes. The vast majority of manually gated

debris events were assigned the CD66bnegCD45lo label, which

was originally included in the gating hierarchy to capture debris

or platelet events which escaped the cleanup gates. Among

events that were manually classified as doublets, cyMAE labeled

many as CD45hiCD66bpos (a catch-all class for heterotypic

granulocyte-lymphocyte doublets), but a significant number of

events were labeled as individual cell types (homotypic doublets

of that cell type). For example, neutrophil-neutrophil doublets
tation across various datasets

strating how the model, through unsupervised pre-training, effectively learns

c). The internal test set is Vaccine dataset after train-test split, the external set 1

cision tree. Static gating is a method to aggregate into a single consensus gate

otes a fully connected neural network, used as a cell type annotator inmethods

ural network (CNN) denotes a model that uses the same convolution layers as

the same model architecture as cyMAE but without pre-training. Each green
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were classified as neutrophils, the closest availablematch.Wehy-

pothesize that including more doublet labels in the training data

would help cyMAE to better distinguish these homotypic doublets

from singlets. Finally, many events manually labeled as doublets

were classified by cyMAE as eosinophils. Based on multivariate

protein expression, these events are very similar to thosemanually

labeled as eosinophils (Figures S6B and S6C). We hypothesize

that these events are true eosinophils, which bound high levels

of DNA intercalator, and, because of this, they were erroneously

excluded from the single cell gate.

While it is difficult to give an objective assessment of model

performance when ungated cells are included, three versions

of accuracy measurements were computed for cyMAE in this

setting (Table S2). First, ungated cells were included, and a strict

scoring was used that evaluates any prediction different from the

training label as wrong, despite the fact that the model has no

way of predicting classes not seen during training (Accuracy =

0.89, Bacc = 0.61). Second, ungated cells were included, and

a lax scoring was used that evaluates any prediction which is a

descendant of the training label in the gating hierarchy as correct

as well as accepts the prediction CD66bnegCD45lo for debris

events and the prediction CD45hiCD66bpos for doublet events

(Accuracy = 0.95, Bacc = 0.81). Third, the evaluation without un-

gated events, as in Figure 2, was recapitulated (Accuracy = 0.99,

Bacc = 0.90). In summary, the inclusion of ungated events de-

creases cyMAE’s performance, but a majority of this deteriora-

tion can be attributed to the presence of classes not known to

the model, which are impossible to predict without re-training

with updated training data.

These results show that our cyMAE model is robust to tech-

nical variation between datasets, showcasing superior perfor-

mance across different collection and processing protocols.

For example, despite being trained on the Vaccine dataset

from cryopreserved samples of healthy subjects in 2021, cyMAE

outperformed all other methods on the Acute2020 dataset,

which comprised fresh samples from subjects with acute

COVID in 2020. These results underline cyMAE’s potential as

a reliable tool for cell immunophenotyping across diverse

datasets.

cyMAE is a few-shot learner
Unlike full fine-tuning, few-shot learning trains a model with a

limited amount of training data. N-shot uses only N samples for

each class in the classification problem. A pre-trained large lan-

guage model, developed through self-supervised learning, is

recognized for its effectiveness as a few-shot learner.15 Similarly,

we evaluated our model, cyMAE, in a few-shot learning context

for cell type annotation, conducting experiments with 5-shot,

10-shot, 15-shot, and 20-shot settings. Training, validation,

testing, and external testing sets are the same as in the previous

cell type annotation tasks.

As expected, the performance of cyMAE, when pre-trained,

approached that of training with the full training set as the num-
Figure 3. Comparison of imputation performance between cyMAE and

(A) R-squared comparison between Infinity Flow and cyMAE for the imputation t

(B) Plots of actual versus predicted expression levels for each marker in the ext

serving as a reference to assess the performance.
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ber of N-shots increased (Figure 2D). On the other hand, since

the cyMAE from scratch (non-pre-trained) has many parameters

and no pre-trained information, this method does not learn with

small sample size. It is worth noting that GBDT also performed

reasonably well, but cyMAE outperformed GBDT based on the

pre-trained knowledge. This analysis shows that cyMAE, once

pre-trained, can effectively adapt to new tasks even with sparse

labeled data, guiding learning in the appropriate direction.

cyMAE enhances regression imputation for cytometry
data
Current technology for flow and mass cytometry only allows a

few dozen markers, and sometimes cost considerations may

reduce the number even further. This limitation is unlike

scRNA-seq or other similar single-cell techniques, which can

capture thousands of parameters. Despite these limitations, cy-

tometry remains a powerful tool in single-cell biology due to its

widespread use, ease of application, clinical implementation,

and its capacity to analyze significantly more cells (typically mil-

lions versus thousands in single-cell genomics). This latter point

means that cytometric approaches are much more robust for

interrogating rare cell types often sparsely sampled or missed

altogether by single-cell sequencing approaches. Fully exploit-

ing these advantages of cytometric approaches through

advanced computational methods, for example, allowing mea-

surements on small panel sizes to yield analytical results similar

to those on larger panel sizes, would be a major advance for the

field. To investigate this feasibility, Becht et al.37 proposed Infin-

ity Flow, applying a gradient boosting tree model36 to impute the

expression of over 300 markers from merely 15. We assessed

whether cyMAE’s cell latent representations could further

enhance regression imputation. In our experiments, we masked

7 markers associated with memory subsets in T cells (CD27,

CD28, CD45RA, CD45RO, CD127, CD197), using the remaining

data to predict the masked marker expressions with both Infinity

Flow and cyMAE, the latter fine-tuned for imputation. We used

the Acute2020 data for training, and the Vaccine dataset and

Acute2021 dataset as external sets (external set 1 and 2, respec-

tively). R-squared values were used for evaluation.

The cyMAE model achieved imputation performances with

R-squared values ranging from 0.297 to 0.664 for the external

set 1 and 0.164 to 0.583 for the external set 2 (Figure 3A), despite

being limited to 23 markers not directly indicative of T cell mem-

ory states and their associated masked markers. Notably,

cyMAE outperformed Infinity Flow for all seven markers in the

external set 1 and four of the seven markers in the external set

2. Beyond identifying patterns of universally expressed proteins,

such as CD45RA in NK cells and CD45RO in neutrophils, cyMAE

also showed high correlations between true and predicted

values, specifically within T cells or for CD27 expression in B

cells (Figures 3B, S7, S8, and S9). These results suggest that

cyMAE can infer information about the memory states of T and

B cells, even in the absence of the standard memory markers.
Infinity Flow

ask. A total 7 markers were masked and then predicted by the two models.

ernal set (Vaccine dataset). The dashed line represents the ideal relationship,
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Figure 4. Interpretation in cell type annotation and imputation tasks by the attention scores

(A) For the Acute2021 dataset (external set 1), the heatmap shows protein markers with high attention score as bright red for each cell type and highlights the

relatively higher scores on each marker in yellow box.

(B) From 23 markers to impute the other 7 markers, the attention score measures which input features have high attention from the other features during pre-

diction. For the Vaccine dataset (external set 1), the heatmap shows the protein markers with high attention score as bright white or red for each cell type with

highlighting the relatively higher scores on each marker in a yellow box. For the left figure in (A) and (B), we used Bertvis38 for visualization of attention weights.
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cyMAE is an interpretable immunophenotyper
A key challenge in deploying machine learning models for clinical

or biological analyses is their ‘‘black box’’ nature, which means

that the rationale for cell type prediction decisions is difficult to

interpret. Unlike these models, cyMAE incorporates a multi-head

self-attention mechanism within its transformer architecture,

enabling interpretable predictions for downstream tasks. The

attention scores generated by this model indicate the importance

of specificmarker informationand their interrelations in thecontext

of prediction tasks, with higher attention score indicating greater

reliance on a maker’s information relative to other markers. In

our analysis, we first measured the attention scores attributed to

each feature acrossdifferent cell types during cell typeannotation.

Then, we highlighted relatively higher scores (those exceeding 1.5

standard deviations above the mean) for each marker in a yellow

box (Figure 4A). Notably, CD45 consistently emerged as the
marker with the highest attention score across all cell types,

serving as a key discriminator between major immune cell line-

ages, such as granulocytes and mononuclear cells. Aside from

CD45, most markers were highly attended in cell types in which

they are highly expressed: for example, CD19 in B cells, CD123

in basophils and pDCs, and CD294 in basophils and eosinophils.

Similarly, we assessed the attention score of 23 markers for

each cell type when processing the inputs that includedmasking

of 7 masked markers during the imputation task (Figure 4B). For

cell types with constitutive expression or non-expression of

masked markers, the model primarily focused on markers indic-

ative of cell type identity (e.g., CD294, CD66b, and CD45 for eo-

sinophils; CD16 and CD45 for neutrophils). In the case of T and B

cells, the masked markers have variable as opposed to constitu-

tive expression, and the level of expression is commonly used to

define memory subtypes. Since the detailed T and B cell
Cell Reports Medicine 5, 101808, November 19, 2024 9



Figure 5. Classification and prediction of COVID-19 outcomes using the cyMAE subject representations

From left to right, COVID-19 patient and healthy subject classification using the Acute2020 and Acute2021 dataset, secondary immune response against COVID-

19 prediction using the Vaccine dataset, and COVID-19 pre- and post-treatment classification using the Acute2021 dataset. The number in parentheses is the

sample size. All the experiments are conducted by 5-fold cross-validation repeating 10 times. The shade for each curve represents the variance of these ex-

periments. Green dashed lines stand for performance of a random classifier.
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phenotype is so strongly related to the marker variability we are

trying to predict, we examined the model’s performance and

attention scores at the level of major cell type.

We found that the model attended to the T cell marker protein

CD3 and other proteins like CD57. For example, CD3 turned out

to be predictive of high values of themasked protein CD197, while

CD57 was predictive of low values (Figure S10). The correlation

between CD3 and CD197 in T cells was not expected, but cyMAE

found and exploited it to improve imputation performance.

The attention scores not only demonstrated a consistent

pattern across external datasets (Figure S11) but also showed

minimal variance between samples (Figures S12 and S13),

underscoring the model’s interpretability and reliability in identi-

fying critical biomarkers for cell type predictions.

cyMAE improves subject status predictions
In a typical flow cytometry or CyTOF analysis, hundreds of thou-

sands of single cells are generally obtained from an individual

sample, aiming to understand cellular-level immunophenotypes,

like cell type identification. However, extending these analyses

to achieve phenotypic precision at the individual level is also crit-

ical. While manual gating is a sophisticated method for extracting

subject-level features using expert knowledge, it may overlook

complex co-expression patterns indicative of cellular states like

activation, senescence, or exhaustion in T cells due to the high-

dimensional nature of accurate definitions of these T cell states.

Ideally, our aim is to leverage the comprehensive global distribu-

tion of cell information to gain deeper biological insights.

A key requirement for this goal is ensuring the method’s pre-

dictions remain consistent regardless of the cells’ order in the

dataset, a property known as permutation invariance. This prop-

erty ensures that the method is robust and not reliant on the spe-

cific ordering of cells. Additionally, the method should adaptively

focus on marker cell types relevant to the study, such as

leukemic blast cells in an acute myeloid leukemia study39 or

CTLA4+ or PD1+ cells in cancer immunotherapy study.40 To

address these needs, we aggregated cyMAE representations
10 Cell Reports Medicine 5, 101808, November 19, 2024
of all cells from each subject into a subject-level representation,

exploring several pooling methods to find the most effective one

for each task (see STAR Methods).

We compared the cyMAE with global pooling to manual

gating, FlowSOM, and Deep CNN8 across three prediction tasks

(Figure 5). Using 5-fold cross-validation with 10 repetitions for

each task, we first assessed the model ability to distinguish be-

tween COVID-19 patients and healthy subjects. Manual gating

and FlowSOM demonstrated high accuracy, with mean area un-

der the receiver operating characteristic curve (AUROC) 0.975

(standard deviation [SD] 0.042) and mean AUROC 0.936 (SD

0.096) on the test set, respectively, whereas Deep CNN showed

a lower mean AUROC 0.543 (SD 0.256). Notably, cyMAE with

global max pooling achieved the highest performance, with a

mean AUROC 0.989 (SD 0.033) (Table S3). The second task

was to predict whether a secondary or recall immune response

was triggered by SARS-CoV-2 infection or by SARS-CoV-2

vaccination. The performance of manual gating, FlowSOM,

and Deep CNN were characterized by mean AUROC values of

0.641 (SD 0.154), 0.579 (SD 0.151), and 0.520 (SD 0.163),

respectively. In this task, cyMAEwith global minimumpooling at-

tained amean AUROC of 0.668 (SD 0.157) (Table S4). Finally, we

evaluated the ability to distinguish the pre- and post-treatment

status of COVID-19 patients. Manual gating, FlowSOM, and

Deep CNN showed mean AUROC values of 0.796 (SD 0.124),

0.869 (SD 0.112), and 0.531 (SD 0.201), respectively. In compar-

ison, cyMAE with global max pooling achieved a mean AUROC

of 0.887 (SD 0.114) (Table S5). The results of the three experi-

ments suggest that cyMAE captures critical information over-

looked by manual gating, FlowSOM, or Deep CNN, thereby

enhancing the prediction of subject status across various tasks.

cyMAE immunophenotypes provide immunological
insights in subject status prediction
In addition to achieving performance improvements in

subject status prediction, we aim to understand which cell im-

munophenotypes contribute to differentiating the subject
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groups. Our focus is on the COVID-19 pre- and post-treatment

classification, where cyMAE showed notable performance gains

over manual gating. We investigated which information, poten-

tially missed by manual gating, led to these improvements.

Initially, we examined the Pearson correlation between the

cyMAE subject representations and manually gated features

(cell population proportion) and found no noticeable correlations

(Figure S14). Furthermore, when both cyMAE subject represen-

tations andmanual gating information were used together for the

prediction task, there was no significant performance improve-

ment, suggesting that the cyMAE subject representations cap-

ture more than just cell proportional information, contributing

to the enhanced performance.

To delve deeper into the subject representation at the cell

level, we tracked the cell identities involved in the global pool-

ing process (Figure 6A, see STAR Methods). Initially, we identi-

fied key components in the subject representations using

Shapley additive explanations (SHAP).41 Subsequently, we

traced back the cells contributing to these components and

marked each relevant cell with a star. Cells contributing to

post-treatment predictions were marked in blue, while those

contributing to pre-treatment predictions were marked in red.

We examined the distribution of these starred cells and

randomly selected background cells (1,000 cells per FCS sam-

ples) in the cyMAE cell embedding space (Figures 6C–6E),

exploring the ratio of starred to background cells across

different regions (Figure 6F). The top 10 regions with the high-

est ratios were designated as regions of interest (ROIs) for

further exploration (Figure 6G).

The cells in the ROIs mainly contributed to forming the subject

representations in our model and were primarily used for pre-

and post-treatment predictions. Notably, the ROIs consisted of

cell types such as eosinophils, neutrophils (in some areas),

pDCs, plasmablasts, CD66negCD45lo, and IgGnegMemB. For

a more detailed exploration, we found that in the ROI 1 and 4

(predominantly eosinophils), the counts of post-treatment asso-

ciated cells (blue starred cells) and pre-treatment associated

cells (red starred cells) are significantly different, with a higher

number of blue starred cells. This finding indicates that a greater

presence of eosinophils is more likely associated with post-

treatment in cyMAE’s prediction.

Next, we analyzed the distribution differences in protein

expression between blue starred cells and red starred cells

within each ROI (Figure S15). We observed a fewmarker expres-

sion differences between pre-treatment and post-treatment pre-

dictions using the Kolmogorov-Smirnov test: (1) CD4 expression

is increased in eosinophil/CD66negCD45lo cells (in ROI 4) after
Figure 6. Analysis of cell contributions to subject representations and

(A) The process of tracking back from subject representations to cell-level contri

(B) Identification of key components in the subject representation using SHAP, d

(C) Uniform manifold approximation and projection (UMAP)42 plots showing the d

cyMAE cell embedding space. Post-treatment associated cells (blue stars) are lab

‘‘pred = 0.’’

(D) The distribution of the all starred cells.

(E) The distribution of the background cells.

(F) A heatmap showing the ratios between the starred cells and background cell

(G) For each ROI, predominantly representing one ormore specific cell types, the r

false discovery rate-corrected p values. (***) indicates p value <0.001; (ns) indica
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COVID-19 treatment and (2) CD3 expression is increased in

some neutrophils (in ROI 10) after COVID-19 treatment. These

observations indicate that our model can effectively highlight

the significance of specific cell states, including cell types and

protein expression, in predicting patient status in the context

of COVID-19 treatment.

DISCUSSION

Due to the popularity, ease, and relative affordability of cytome-

try experiments, there is an abundance of high-dimensional cy-

tometry data compared to other single-cell modalities. Although

manual gating remains the preferred classification approach, it

becomes impractical for the expansive datasets of multi-cohort

and/or multi-institutional studies due to its time-consuming and

labor-intensive nature. Additionally, some clustering methods,

which require loading all the data simultaneously, are not suit-

able for large-scale datasets due to memory constraints. On

the other hand, the cyMAE method uses a mini-batch approach

for processing large-scale datasets, where it breaks down the

data into small, manageable segment. This approach reduces

memory demands and improves training efficiency on large-

scale data (see STAR Methods). For instance, cyMAE pre-

training requires 3,184 MB of memory and 1,286 MB of GPU

memory (with a batch size of 4,096), taking 64.7 h, while cyMAE

fine-tuning requires 10,053MB of memory and 7,916MB of GPU

memory (with a batch size of 16,384), taking 67.2 h. Despite tak-

ing up to longer than other models, cyMAE uses less memory

(Figure S16). Even with larger training datasets, the mini-batch

approach in cyMAE keeps memory usage similar, whereas the

other models require more memory as data size increases.

Also, cyMAE can quickly and accurately make inferences on

new datasets designed with the exact same panel as the pre-

training dataset, processing up to 15,276 cells per second for

cell type annotation (see STAR Methods, Figure S16). In

summary, we demonstrate that cyMAE is a fast, scalable, and

efficient solution superior to existing methods for analyzing

large-scale data.

To make the model directly applicable, we adopted a para-

digm of training models and then using them to make inferences

on a new dataset. In contrast, manual gating usually imports his-

torical gates, which are then manually adjusted when necessary

for each sample, a time-consuming and often error-prone

approach. The alternative of simply using clustering approaches

to discover sources of variability in each dataset independently

can be difficult to scale and does not use a priori information

on cell types. Supervised and semi-supervised learning
their impact on COVID-19 pre- and post-treatment classification

butions using global maximum or minimum pooling in cyMAE.

ifferentiating post-treatment and pre-treatment predictions.

istribution of the starred cells and randomly selected background cells in the

eled as ‘‘pred = 1,’’ and pre-treatment associated cells (red cells) are labeled as

s, with the top 10 ROIs highlighted.

atio of blue stars to red stars is analyzed using using the Fisher’s exact test, with

tes p value >0.05.
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approaches, including cyMAE, excel within train-inference para-

digm. The main advantages of the train-inference paradigm are

scalability and reproducibility: any investigator can apply the

exact same model to any dataset that uses the same panel as

the pre-training dataset, obtaining results that are easily inter-

pretable within the biologically established framework of immu-

nology. These results show that cyMAE outperforms alternative

models within this paradigm.

Directly comparing learning without pre-training (from scratch)

and with pre-training, performance improved not only in cell type

annotation but also in the few-shot setting (Table S1; Figure 2D).

This model was able to learn stably, while the from-scratch

model was unable to learn effectively with little training data.

While not a dramatic performance improvement, in the other ex-

periments using the pre-trained cell embeddings, it was encour-

aging to see that the pre-trained embedding was good at

learning antibody co-localization patterns, imputing unavailable

protein expressions, and contributes meaningful performance

gains for the subject-level predictions.

Here, we introduced cyMAE, a masked autoencoder model

which builds latent embeddings of single-cell cytometry data

and uses them to achieve good performance across a range

of cell-level and subject-level tasks. Especially, the fine-tuned

cyMAE is as accurate as manual gating, with the labor-free

advantages of automated analysis. This study is a proof of

concept for applying a combination of unsupervised and su-

pervised analysis in the training-inference paradigm to multi-

ple COVID-19 cytometry datasets that use the same panel.

We envision creating a highly powerful model by including a

more diverse population including multiple diseases in our

training data in the future. This approach promises scalability

across thousands of samples from multiple studies, providing

robust and interpretable results while minimizing manual

analysis.

Limitations of the study
In this study, we pre-trained our model using only one of the

three available cohorts to evaluate the performance on several

downstream tasks using all three cohorts. Future research will

expand this approach by pre-training on a broader array of

data from multiple studies, including more diverse subject phe-

notypes. This expansion is expected to enhance themodel’s po-

wer and robustness, enabling it to more effectively distinguish

between biological variations and gain a deeper understanding

of protein functions and protein expression patterns. This, in

turn, will lead to more accurate predictions in various down-

stream tasks. However, it is important to note that the fine-tuning

of independent datasets must be designed using the exact same

panel as the pre-training dataset to ensure consistency and

accuracy.

This study has several limitations. First, while these models

are trained only on CyTOF data, their application to flow cytom-

etry data might not be recommended due to inherent technical

differences. Specifically, the methodologies used in flow and

mass cytometry yield disparate patterns of protein expression.

Yet, a model like cyMAE, if pre-trained on flow cytometry data

from scratch, could indeed become a viable approach for flow

cytometry datasets. Second, we assume that cell type informa-
tion from manual gating is the ground truth. However, this may

not be the case in practice. Even the most skilled experts are

prone to subjectivity and bias, which might lead to a bias to-

ward ‘‘expected’’ results. This claim can be reinforced by our

experimental results of the subject status prediction, where

the pre-trained cyMAE showed higher predictive power than

the manual gated features in some tasks (Figure 5). This obser-

vation raises the possibility that there may be information that

manual gating misses. Related to this, the evaluation of cyMAE

and the other computational methods was performed using

only the subset of cells which have a well-defined, terminal la-

bel in the gating hierarchy, while ungated or partially gated cells

were left out. This setting differs from a more realistic one in

which subsets of cells cannot be left out but was chosen

because it facilitates unambiguous evaluation of model predic-

tions. Finally, the size and type of cytometry panels used in

practice vary widely depending on the research purpose. This

iteration of cyMAE was developed using one of the only pre-

made, commercially available high-dimensional cytometry

panels. While immunologists often change their cytometry

panels, this is a known panel that does not change and can

be used by any researcher. While our model was trained to

work on data with fixed markers, it shows the potential for

robust performance. For more meaningful research, it should

work robustly for different panels in future studies, for exam-

ples, to accommodate data where only a subset of the markers

has been measured. A related limitation is that cyMAE has only

been validated on data acquired with one panel, due to the dif-

ficulty of obtaining multiple datasets that use the same panel

and that are also manually annotated. This is also likely to be

a limitation for users who wish to use cyMAE with their own

choice of panel: the cost of manually annotating enough sam-

ples, spanning enough inter-subject variability, and then using

them to train a new model make the most sense for users

who intend to acquire data repeatedly with a fixed panel.

Despite these limitations, this study demonstrates the high po-

tential of pre-training in single-cell cytometry, both because an

approach like ours has not been applied to cytometry data

analysis before and because it shows advantages over previ-

ous methods.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All subjects consented and enrolled with approval of the University of Pennsylvania Institutional Review Board (Vaccine IRB no.

844642; Acute2020 IRB no. 808542; Acute2021 IRB no. 843758). All participants or their surrogates provided informed consent in

accordance with protocols approved by the regional ethical research boards and the Declaration of Helsinki.

For the Vaccine dataset, 43 individuals were enrolled for longitudinal monitoring of response to SARS-CoV-2 mRNA vac-

cine beginning in December 2020 through March 2021. All subjects received either Pfizer (BNT162b2) or Moderna (mRNA-

1273) mRNA vaccines. Samples were collected at six time points: baseline, �2 weeks after primary immunization, day of

secondary immunization, �1 week after secondary immunization, �3 months after primary immunization, and �6 months

after primary immunization. Participants were self-reported healthy without ongoing chronic health conditions. In the Vac-

cine dataset, the definition of secondary immune response was defined as follows. We labeled a secondary immune

response as ‘‘Yes’’ if it occurred after a healthy person received two vaccines, or after a person with COVID-19 received

one vaccine, or after a person with COVID-19 received two vaccines. If a healthy person received a single vaccine, we

labeled it ‘‘No’’.

For the Acute2020 dataset, patients were consented and enrolled within 3 days of admission to the Hospital of the University

of Pennsylvania with a positive SARS-CoV-2 PCR test, regardless of the oxygen support needed. Clinical data were abstracted

from the electronic medical record into standardized case report forms. All subjects in this dataset were consented and enrolled

between March and December 2020 at the University of Pennsylvania. Subjects in the Acute2021 dataset were enrolled in the

I-SPY COVID-19 Trial.32 Hospitalized participants at 5 trial sites (Penn, University of Alabama Birmingham, University of Cali-

fornia San Francisco, University of Colorado, and Wake Forest University Atrium Health) with confirmed SARS-CoV-2 PCR

or antigen testing and requiring greater than 6 L per minute oxygen flow (including high flow nasal oxygen, high flow face

mask oxygen, non-invasive ventilation, or invasive mechanical ventilation consistent with World Health Organization ordinal

scale R5) for fewer than 72 h were enrolled in this trial. Patients or their legally authorized representatives consented to be ran-

domized to receive a backbone treatment (remdesivir and dexamethasone) alone versus backbone with one of 12 investiga-

tional treatments. Details of the trial inclusion and exclusion criteria, and the non-backbone treatment arms have

been published at https://clinicaltrials.gov/study/NCT04488081. Whole blood was collected at time of admission and

7 days later. Samples from subjects enrolled at the University of Pennsylvania were processed on the day of collection.

Samples from subjects enrolled at the University of Alabama at Birmingham, University of Colorado, University of

California at San Francisco, and Wake Forest University were shipped to the University of Pennsylvania and processed the

day of arrival.
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METHOD DETAILS

Mass cytometry
For all samples, 270mL of whole blood were stained using the MaxPar Direct Immune Profiling Assay (Standard BioTools, Inc, South

San Francisco, CA).47 For the Acute2020 dataset, samples were stained in accordance with manufacturer protocols. Briefly, whole

bloodwas added to a 5mL tube containing a pellet of lyophilized antibodies. Bloodwas incubated at room temperature for 30min and

then lysed with Cal-Lyse lysing solution Standard BioTools, Inc, South San Francisco, CA). Cells were washed, followed by fixation

with 1.6% PFA. Cells sat at 4�C over night prior to staining with Cell-ID Intercalator-Ir. These samples are referred to as ‘‘fresh’’

because they did not undergo cryopreservation and thawing. Vaccine and Acute2021 datasets underwent a similar workflow as

described above. However, after incubating for 30 min in the tube of lyophilized antibodies, stained whole blood was fixed with

PROT1 buffer (Smart Tube Inc, Las Vegas, NV) and cryopreserved. Lyse, wash, and intercalator staining were performed as above

after thaw. Stained samples were collected on a CyTOF 2 instrument with EQ4 beads (four element calibration beads, Standard

BioTools, Inc).

After data acquisition, .fcs files were gated to remove beads, debris, doublets, and dead cells using the OMIQ platform (Boston,

MA); representative gates are shown in Figure S18. After gating, DNA intercalator, viability, Gaussian and bead channels were drop-

ped, and the remaining protein expression channels were transformed using inverse hyperbolic sine with a cofactor of 5.

Model details
Transformer block

The transformer block consists of alternating layers of multihead self-attention (MSA) and multilayer perceptron (MLP) blocks (Equa-

tions 1 and 2). Layer norm (LN)48 is applied before every block, and Drop path (DP)49 is applied after every block. The MLP contains

two linear layers with GELU activation function.

El = El� 1 +DPðMSAðLNðEl� 1ÞÞÞ ðl = 1;.; LÞ (Equation 1)

El = El +DPðMLPðLNðElÞÞÞ ðl = 1;.;LÞ (Equation 2)

where El� 1 denotes output embeddings of the ðl � 1Þ-th layer and input embeddings of the l-th layer at the same time.

Multi-head self-attention

In themulti-head self-attention (MSA) layer, we compute query, key, and valuematrix (Q;K;V ) from the input embeddings (E) for each

head (Equation 3) and compute h heads by weighted sum of all values by attention weight for each head, where attention weight

is calculated by the pairwise similarity between two elements of the input and their respective query and key representations (Equa-

tion 4). Finally, h heads are concatenated, and the output is linearly projected (Equation 5).

½Q;K;V � = EWqkv

�
Q;K;V ˛Rp3dh

�
(Equation 3)

where E˛Rp3d is input embeddings Wqkv ˛Rd33dh is learnable weight matrix, and dh is set to d=h.

AttentionðQ;K;VÞ = softmax

�
QKTffiffiffiffiffi
dh

p
�
V (Equation 4)

MSAðQ;K;VÞ = Concatðhead1;.;headhÞWO (Equation 5)

where headi = AttentionðQi;Ki;ViÞði = 1;.;hÞ, and WO ˛Rd3d is linear weight matrix.

Cytometry masked autoencoder

The whole structure consists of an encoder and a decoder, which are used in the pre-training step. The encoder is only then used

with a single linear layer in the downstream supervised fine-tuning. The encoder (fe) consists of 6 layers of transformer blocks,

each with 6 heads and 30 hidden dimensions, totaling 67,890 parameters. In contrast, the decoder (fd) is smaller than the encoder.

It consists of 2 layers of transformer blocks with 3 heads and 15 hidden dimensions for a total of 5,806 parameters. The dimension

sizes of latent cell or subject representations for the downstream tasks are 900 and 30 each.

Kaplan et al.50 provided several insights into the training of neural languagemodels, one of which is particularly interesting: if infinite

training data is available, themodel’s capacity increases with its size. However, with limited training resources, performance changes

with model size are not as significant. Our cytometry data is notably smaller, approximately 3036:3 million tokens, compared to ex-

isting large language models (normally over billion tokens). Thus, beyond a certain size, increasing our model’s size offers minimal

performance advantage. Empirically, we explored the model size needed to achieve sufficient performance in the cell type annota-

tion.We varied the latent dimension size of amarker’s expression and the layer depth, comparing these under the cell type annotation

task (Figure S19). Consistent with Kaplan et al.’s findings, we discovered that beyond 69,316 parameters (for the encoder and
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classifier), performance stabilizes. Additionally, overall model parameters had stronger correlation with performance than detailed

parameters like layer depth and latent dimension size.

Training details
Masked Cytometry Modeling (MCM)

cyMAE learns to maximize

PðVi;masked

��Vi;unmasked;EunmaskedÞ (Equation 6)

for cell i, where Vi;masked ˛Rðr,pÞ31 denotes masked protein expressions of cell i, and Emasked ˛Rðr,pÞ3ðd� 1Þ denotes masked protein

embeddings after masking. r is a masking ratio, p is the number of proteins in the data, and d is a hidden dimension size. Likewise,

Vi;unmasked ˛Rð1� rÞ,p31 denotes unmasked protein expressions of cell i, and Eunmasked ˛Rð1� rÞ,p3ðd� 1Þ denotes unmasked protein

embeddings.

The encoder (fe) generates a latent representation of the cell. The unmasked latent representation of cell i is defined asHi;unmasked ˛
Rð1� rÞ,p3d as the following,

Hi;unmasked = feððEunmasked k Vi;unmaskedÞ+PunmaskedÞ (Equation 7)

where Punmasked ˛Rð1� rÞ,p3d is sine-cosine positional embeddings for masked proteins. The idea of the concatenation (k) of protein
embeddings with expression values was inspired from MET.51

The decoder (fd) reconstructs the masked values as followings,

bV i;masked = fdððHi;unmasked k MÞ+PÞ (Equation 8)

LetM denote a learnable mask token embedding represented as a row vectorM˛R13d. We construct a matrixM by stacking this

vector r,p times, such that the resulting matrix M has dimensions ðr,p 3 dÞ. P˛Rp3d is sine-cosine positional embeddings. To

calculate the reconstruction loss, we use Mean squared error (MSE) loss for all cells,

Loss =
X
i

MSEð bV i;masked;Vi;maskedÞ (Equation 9)
Why positional embedding is necessary
It might seem that positional embedding is not necessary because the input is a tabular data. However, the position serves

as an index to indicate which protein’s expression value should be reconstructed by the decoder during MCM. For

example, 2nd, 3rd, and 7th proteins of 10 proteins are masked, positional embedding provides information to reconstruct

the expression of the 2nd, 3rd, and 7th proteins. Therefore, when using cyMAE, users make sure to match the order of the

proteins.

Cell representation

After pre-training, the cell representations of cell i is obtained through the pre-trained encoder without masking protein expressions

(masking ratio r = 0). We propose two versions of cell representations: Cpool
i ˛Rd and Cfull

i ˛Rp,d as follows:

Hi = feððE k VÞ+PÞ (Equation 10)

Cpool
i =

X
k

Hi½k; :� (Equation 11)

Cfull
i = flattenðHiÞ (Equation 12)

whereHi ˛Rp3d is an output of the encoder,Cfull
i is the flatten version ofHi, andCpool

i is the mean pooling ofHi. Depending on down-

stream analysis, these cell representations are used as input of a linear layer for cell-level downstream tasks.

Subject representation

The subject representation S˛Rp,d is obtained by applying multiple global pooling methods across the cell representations (full

version) Cfull
1 ;Cfull

2 ;.;Cfull
c , where c is the number of cells in a single subject data:

d Global mean pooling
S =
1

c

Xc

i = 1

Cfull
i (Equation 13)
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d Global sum pooling
S =
Xc

i = 1

Cfull
i (Equation 14)

d Global max pooling
S½j� = max
i = 1;.;c

Cfull
i ½j� for each component j (Equation 15)

d Global min pooling
S½j� = min
i = 1;.;c

Cfull
i ½j� for each component j (Equation 16)

Then, this subject representation is used as input of a linear layer for subject-level supervised downstream tasks.

by = LinearðSÞ (Equation 17)
Supervised learning in downstream tasks
Cross entropy loss is employed for classification tasks and Mean squared error (MSE) loss is employed for regression tasks.

In the cell type annotation task,

byi = Linear
�
Cpool

i

	
(Equation 18)

LossCE = �
X
i

yi log byi (Equation 19)

where yi and byi indicate the ground truth cell type and the predicted probability for cell type of cell i, respectively.

In the imputation task,

byj = Linear
�
Cpool

j;unmasked

	
(Equation 20)

LossMSE =
X
j

�byj � yj
�2

(Equation 21)

where yj and byj denote the ground truth expression value and the predicted value of masked protein j, respectively.

In the subject-level prediction tasks,

byk = LinearðSkÞ (22)

LossCE = �
X
k

yk log byk (23)

where yk and byk are the ground truth label and predicted probability for label of subject k, respectively.

Impact of masking ratio during pre-training

To test if masking ratio affects cyMAE training, we trained three different versions of the model with masking ratios of 0.25, 0.5, and

0.75. The result was there was no big significant difference in performance except for ratio = 0.5 on the cell type annotation task (Fig-

ure S19). Therefore, all the cyMAE experiments were performed with a 0.25 masking ratio.

Training setting

The configuration of pre-training includes a batch size of 4,096, drop path regularization of 0.1, AdamW optimizer with momentum of

0.9 and weight decay of 0.05, learning rate of 1.5e�5 with a cosine scheduler and masking ratio of 0.25. The fine-tuning (for cell type

annotation) is also the same except for a batch size of 16,384, learning rate of 1e�4, and label smoothing.
Cell Reports Medicine 5, 101808, November 19, 2024
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Computational cost in training and inference

A cost comparison with other models is available in Figure S16. The cyMAE pre-training required around 3 days with a single NVIDIA

A100 Tensor Core GPU to process 6.5 million cells through 200 epochs. Fine-tuning cyMAE for cell type annotation took 2 to 3 days

on the samemachine to process 29.4million cells through 200 epochs. Although cyMAE pre-training and fine-tuningmay take longer,

they require considerably less memory compared to other models such as GBDT. Memory usage depends on the batch size. Spe-

cifically, cyMAE pre-training, with a batch size of 4,096, used 3,184MB of CPUmemory and 1,286MB of GPUmemory, compared to

GBDT, which uses over 25,000MB ofmemory. The fine-tuning process, with a batch size of 16,384, used 10,053MB of CPUmemory

and 7,916 MB of GPU memory. The batch size can be adjusted according to the GPU performance available.

For inference, the runtime was 569 s for 7.3 million cells under the Vaccine test dataset, 1,066 s for 11.9 million cells under the

Acute2021 dataset, and 721 s for 6.5million cells under the Acute2020 dataset on the sameGPUmachine. This indicates that cyMAE,

when fine-tuned, processes up to 15,276 cells per second for cell type annotation, demonstrating its efficiency in practical applica-

tions. While cyMAE might be slightly slower than some other models during inference (Figure S17), it is not expected to cause sig-

nificant inconvenience in practical use. The efficiency and scalability of cyMAE during inferencemake it a valuable tool for large-scale

cytometry data analysis.

If a different panel were used for pre-training from scratch, similar costs in terms of memory and time would be expected for data-

sets of similar size. Larger datasets would require more time, scaling linearly, while memory usage would remain similar due to the

mini-batch approach. Systems with less powerful GPUs might experience longer processing times.

Benchmarking models
Manual gating

Each sample from all datasets was manually gated using the OMIQ platform to obtain the 46 terminal populations used as ground

truth labels. Representative gates from our strategy are shown in Figure S3.

Static gating

For each gate in our hierarchy, we aggregated the candidate gate positions from all training samples in the Vaccine dataset into one

consensus gate. By definition, a point is in the consensus gate if it falls into at least 30%of all the candidate gates (Figure S4).We then

created a consensus hierarchy out of all consensus gates and applied it statically to all test samples.

FlowSOM clustering

The same 60% of the Vaccine data samples were used to train an unsupervised FlowSOM clustering model. Version 2.6.0 of the

FlowSOM R package was used with default parameters, except for the total number of metaclusters, which we set to 46 to match

the number of ground truth labels. As an unsupervised clustering algorithm, FlowSOM does not have an inference mode. We per-

formed inference on testing datasets (20% of the Vaccine dataset as an internal test set, and the two external test sets) by assigning

each datapoint to the nearest SOM node from the trained model, and preserving the assignment of nodes to metaclusters from the

training phase. Evaluation of accuracy and balanced accuracy required the extra information of a bipartite matching between the 46

FlowSOM clusters and the 46 ground truth labels. Following Weber, L. M. et al.,52 we obtained the matching using the Hungarian

algorithm, implemented in the function solve_LSAP of the R package clue.

CyAnno

CyAnno is a semi-automated machine learning approach for annotating cell types in mass cytometry datasets, specifically addressing

the challenge of ungated cells—those not classified duringmanual gating. By integrating these ungated cells into its modeling process,

CyAnno significantly enhances the precision of cell type predictions compared to existing methods like DeepCyTOF and LDA, which

often misclassify ungated cells. We used the CyAnno implementation at https://github.com/abbioinfo/CyAnno for our analysis.

Gradient boosting decision tree (GBDT)

We used XGBoost36 python package for GBDT. We ran XGBoost classifier with 100 estimators. For hyperparameter tuning, we

searched across following ranges:

max depth: [3, 4, 5], learning rate: [0.01, 0.03, 0.1], and subsampling ratio: [0.8, 0.9, 1]. Also, we set early stopping based on the

performance change for the validation set.

Fully connected deep neural network (DNN)

DGCyTOF (Cheng, L. et al.34) is a method that sequentially utilizes deep learning classification, graphic clustering, and dimension

reduction to discover new cell populations. In this process, DNN is employed for cell type identification. DeepCyTOF (Li, H

et al.35) is a cell type annotator that first performs denoising and domain adaptation to transform the data into a new feature space.

It then uses a single labeled sample to train a cell annotation model. It also utilizes a DNN as the cell classifier. Given that DNNs have

been actively used as cell type annotators, we used a 3-layer DNN as a comparative model for cell type annotation.

Convolutional neural network (CNN)

Hu.Zet al.8 proposedDeepCNNusingconvolutional neural network for cytomegalovirus (CMV) classification.As the authors guided,we

first subsampled 10,000 cells per fcs file and ran the CNNmodel with the hyperparameters provided by the authors to the subject-level

tasks.Alsowecompared it to thecell typeannotation taskwithsomemodifications inmodel architecture.Since itusesaCNNstructure to

draw cell representations and pool them, we modified to the same architecture without the pooling layer as a comparison model.
Cell Reports Medicine 5, 101808, November 19, 2024 e5

https://github.com/abbioinfo/CyAnno


Article
ll

OPEN ACCESS
Protein embeddings
After pre-training throughMCM, the trained E˛Rp3ðd� 1Þ in cyMAE represents protein embeddings for p proteins. It is expected that

they have protein information about the heterogeneous, complex, and dynamic immune cells without any prior information, only

through learning on the data itself. This was confirmed by the PCA 2-dimensional plot in Figure 2A.

Few-shot learning setting in the cell type annotation
ForN-shots, we trained using only the first s samples per class in the training and validation sets and then evaluated on the entire test

set. We compared performance for 5, 10, 15, and 20 shots.

Imputation
We masked CD45RO, CD45RA, CD27, CD28, TCRgd, CD197, and CD127 expressions and used the remaining markers to predict

the expression of these seven marker expressions. Infinity Flow used GBDT as the imputer. Similarly, the unmasked cell represen-

tations were first generated through the pre-trained cyMAE and used as input to GBDT to train and then evaluated on the external test

sets (not end-to-end).

Attention score
From Equation 4, we first obtain the output of softmax function for the interpretation for cell i (Equation 24) and calculate the attention

score Wi by averaging over the query axis (Equation 25).

Ai = softmax

�
QiKi

Tffiffiffiffiffi
dh

p
�

(Equation 24)

Wi =
1

p

Xp
k = 1

Ai½k; :� (Equation 25)

In our experiments, we sampled 2% of all cells for each dataset. To calculate the attention score, we only used the information from

the first layer, because the first layer is the most influential in determining which inputs to give attention to, and there was no signif-

icant difference in attention between inputs after the second layer.

Uniform Manifold Approximation and Projection for dimension reduction (UMAP)
In Figures 6C–6G, the cyMAE cell representation was visualized in two dimensions by reducing the dimensionality using UMAP. The

UMAP space is represented as umap˛R2

umap = UMAP
�
Cfull

i

	
(Equation 26)
Identifying the most contributing cells to subject representations
We obtained cell representations for each cell in a subject FCS file using the cyMAE encoder. Subsequently, we derived subject

representations by applying global max/min pooling. By tracing back the pooling process, we can easily determine which

cells significantly contribute to the subject representation (Figure 6A). Specifically, for global max pooling, we identified the

cell with the maximum value for each component and retain that cell. Similarly, for global min pooling, we found the cell with

the minimum value for each component and retain that cell. This process identifies the relevant cells for each of the 900

components in the subject representation. We focused on the top 30 task-specific important components (identified via

SHAP) in the subject representation and identified the cells that contributed to these components during the pooling process.

For example, If the identified cells do not overlap, we obtain 30 cells from a single subject. We then use this approach to the

COVID-19 pre-treatment or post-treatment classification task to identify post-treatment associated cells and pre-treatment asso-

ciated cells.

SHapley additive exPlanations (SHAP)
SHAP41 is a well-known and popular explainable method for machine learning models based on a game theoretic approach. SHAP

values measure the relative contribution of features to specific model outputs on a per-instance basis. We applied SHAP to the test

set of each fold in a subject status prediction task to determine which components of the subject representation were important for

the given task (Figure 6B).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Metrics
Balanced accuracy (Bacc)

For a multi-class imbalanced dataset, we used Balanced accuracy (Bacc) instead of Accuracy. Balanced accuracy is defined as a

macro-average of recall scores per class in a multi-class classification.

A Recall score is defined as:

Recall =
TP

TP+FN
; (Equation 27)

where TP is true positive, and FN is false negative.

R-squared

In a regression task, if byi is the predicted value of the i-th sample and yi is the corresponding true value for total n samples, the

R-squared is defined as:

R2 = 1 �
Pn

i = 1 ðyi � byiÞ2Pn
i = 1 ðyi � yÞ2 ; (Equation 28)

where y = 1
n

Pn
i = 1 yi.

AUROC

A receiver operating characteristic (ROC) curve is widely used for evaluating prediction models. It plots True Positive Rate (TPR)

against False Positive Rate (FPR).

TPR =
TP

TP+FN
; (Equation 29)

FPR =
TP

FP+TN
; (Equation 30)

Where TP, FP, TN, and FN are the number of true positives, false positives, true negatives, and false negatives respectively. AUROC

stands for the area under the ROC curve.

Fisher’s exact test

Fisher’s exact test was used to determine if the counts of blue starred cells (post-treatment associated cells) and red starred cells

(pre-treatment associated cells) are significantly different based on the total blue and red starred cells in Figure 6G. The p-values for

all tests were corrected using false discovery rate (FDR) correction.

Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test was used to determine if the distributions of eachmarker for blue starred cells and red starred cells are

drawn from the same underlying distribution in Figure S15. The p-values for all tests were corrected using false discovery rate (FDR)

correction.
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