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In brief

Brandes-Leibovitz et al. propose a

framework for patient stratification in

sepsis based on transcriptional programs

characterizing functional states of

‘‘resistance’’ (R) and ‘‘systemic

inflammation’’ (SI). Sepsis is

characterized by a low R-to-SI balance,

and patient stratification based on this

functional approach outperforms current

classifications for better patient

prognosis and management.
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SUMMARY
Patients with sepsis differ in their clinical presentations and immune dysregulation in response to infection,
but the fundamental processes that determine this heterogeneity remain elusive. Here, we aim to understand
which types of immune dysregulation characterize patients with sepsis. To that end, we investigate sepsis
pathogenesis in the context of two transcriptional states: one represents the immune response to eliminate
pathogens (resistance, R) and the other is associated with systemic inflammation (SI). We find that patients
with sepsis share a molecular fingerprint of a low R-to-SI balance—i.e., a low R relative to the level of SI. Dif-
ferences between patients with sepsis are explained by the wide diversity of R and SI states that fall under
this fingerprint, such as patients with high SI, patients with low R, or both. We show how this R/SI framework
can be used to guide patient stratification that is relevant to disease prognosis and management, outper-
forming existing classifications of sepsis.
INTRODUCTION

Sepsis is a pathological condition resulting from dysregulated

immune responses in patients with infections, leading to severe

symptomatology, organ dysfunction, and often death.1 Sepsis is

one of the most important causes of morbidity and mortality in

both developed and developing countries, with estimated 49
Cell Reports Medicine 5, 101829, Novem
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million cases and 11 million deaths globally every year.2 Antibi-

otics and intensive care units have significantly decreased

sepsis mortality during the 20th century, but the outcome of

sepsis remained largely stable in the last two decades.2 It has

been hypothesized that immunotherapy will be the next revolu-

tion in the treatment of sepsis, yet this has never materialized

despite a plethora of clinical trials with anti-inflammatory
ber 19, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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immunotherapies that have all failed to improve the outcome of

the patients. It is believed that the heterogeneity of sepsis at

the level of causal microorganism, source of infection, and espe-

cially the type of immune dysregulation has led to the failure of

sepsis immunotherapy trials.3 Indeed, some patients with sepsis

display hyperinflammatory characteristics (the so-calledmacro-

phage activation-like syndrome, MALS4), other patients show

interruption of critical immune functions (immunosuppres-

sion5–8), and in some critically ill patients with sepsis, these

two types of immune dysregulation can occur at the same time

or change in time depending on the phase of disease. Under-

standing the heterogeneity of immune dysregulation in sepsis

is necessary for the development of better therapeutic

approaches.

Recent studies have characterized sepsis subtypes based on

whole-blood transcriptomes, primarily relying on systematic an-

alyses within patients with sepsis.3,9–21 However, there are

several challenges for the identification of immune subtypes in

sepsis. First, there is little reproducibility (overlap) of subtypes

across different sepsis studies, limiting the ability to identify

shared targets for immunomodulation.22 Second, there is a

lack of consistency between current datasets (e.g., datasets

differ in how sepsis is defined, infection type, and age group)

and it is challenging to integrate them. In accordance, most

studies do not integrate information from multiple cohorts.

Finally, differences between sepsis and infections without sepsis

are not commonly exploited in the analysis of sepsis, and current

datasets are limited to small cohorts and a particular type of

infection.23

Given these challenges, much remains unknown about im-

mune dysregulation in patients with sepsis. First, which types

of immune dysregulation characterize patients with sepsis is

not fully described. Second, it is not clear how to identify the

different types of immune dysregulation. Finally, many of the

key pathophysiological pathways that can be immunothera-

peutically targeted in sepsis remain unknown.

To address these goals, we constructed a model of immune

dysregulation in sepsis by combining transcriptomes from

different cohorts of sepsis in combination with various cohorts

of infections without sepsis (termed ‘‘moderate infections’’).

This approach was designed to improve reproducibility and

enable the identification of sepsis-specific dysregulations. To

integrate these datasets, we exploited predefined transcriptional

programs of inflammation and host defense recently described

in an experimental model. These programs are based on exten-

sive assessments of both pathogen persistence and tissue

inflammation, a transcriptional signature of immune activation

that is associated with the detection and elimination of the

invading pathogen (resistance [R]).24 In addition, we have

recently used extensive assessment of immunological and clin-

ical measures to describe a transcriptional signature that is asso-

ciated with the physiological status of systemic inflammation

(systemic inflammation [SI]).25 Here, we show that these two pro-

grams are valuable for a systematic analysis of moderate infec-

tions and sepsis and then investigate a compendium of sepsis

andmoderate infection cohorts in the context of these programs.

Several key findings emerge from this analysis. First, we found

that the transcriptional states of a low R program and a high SI
2 Cell Reports Medicine 5, 101829, November 19, 2024
program, and particularly a low R-to-SI ratio, are a general

fingerprint of sepsis: it is reproducible across multiple sepsis co-

horts, and it can be used to distinguish sepsis from infections

without sepsis. Second, we show that the relative R-to-SI states

are associated with sepsis severity and mortality. Thus, the re-

sults establish two key types of molecular dysregulation of

sepsis, a low R and a high SI, whose balance is linked to sepsis,

sepsis severity, and mortality. We demonstrate that these two

types of immune dysregulation should be approached differently

from a therapeutic point of view, we propose ways to identify

them, and we identify pathways that are associated with them.

Finally, we validated the usefulness of the R/SI states for the

stratification of patients into endotypes, outperforming existing

classifications of sepsis.

RESULTS

Characterization of the R and SI programs in moderate
infection and sepsis
To identify predefined transcriptional immune programs that

could define immune dysregulation in sepsis, we constructed

an unbiased set of 76 candidate immune programs and sys-

tematically benchmarked each of these programs using two

criteria: a high covariation during infections in general, and

during sepsis in particular. The analysis identified two best-

performing programs: first, a ‘‘resistance’’ program, with high

covariation during infections as well as specificity to infections,

and second, the ‘‘systemic inflammation’’ program, with the

best covariation during sepsis (Figure S1A and S1B, STAR

Methods). Given that programs R and SI were originally iden-

tified in another context (R – influenza A virus [IAV] infection

in mice,24 SI – chronic systemic inflammation in humans25),

in the following studies, we confirmed the general relevance

of these two programs in human blood samples, during mod-

erate infections and sepsis.

Several lines of evidence confirmed the relevance of R and SI

in moderate infections. First, analysis of inter-individual and in-

ter-gene variation indicates that both R and SI are valid for

the study of human blood in healthy subjects, and during both

bacterial and viral infections (Figures S1C–S1E). Second, both

SI- and R-associated genes are induced during viral and bacte-

rial infections (Figure S1A; Table S1). We note that the R

and SI were confirmed as distinct programs: each program

has significant contribution to the variation during infection

(Figures S1C–S1E),24,25 the two programs are linked to a

distinct inflammatory plasma state (Figure S1F),24,25 and only

SI (but not R) is responding in SI with negative blood culture

(Figures S1A and S1G).

Next, we confirmed the relevance of programs R and SI in

sepsis. To that end, we measured transcriptomes of peripheral

blood mononuclear cells (PBMCs) derived from the blood of pa-

tients with sepsis (N = 125) and healthy control subjects (N = 284)

(FUSE cohort,26 STAR Methods) and quantified the R and SI

levels of each subject based on its measured transcriptome.

Several lines of evidence support the validity of the inferred R

and SI levels in PBMCs of patients with sepsis. First, using mea-

surements of plasma proteins in the FUSE cohort, we confirmed

that the induction of both R and SI is positively correlated with a
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Figure 1. Global transcriptional states of systemic inflammation and resistance in patients with sepsis

(A) Schematic of methodology: integrative analysis of sepsis and moderate infections, including the PBMCs/monocytes data from the FUSE cohort. Personal

levels of resistance (R) and systemic inflammation (SI) were calculated for each subject.

(B) R and SI are associated with two distinct inflammatory states in sepsis. The scatterplot compares, for each protein (a dot), its correlation with SI levels (x axis)

and its correlation with R levels (y axis). Correlations (r) were calculated across patients with sepsis from the FUSE cohort; R and SI levels were calculated using

expression profiles in PBMCs. Included are selected pro-inflammatory plasma protein markers. IL-6 and IFNg are exemplified in C. Findings are consistent with

previous studies (Figure S1F).

(C) Associations of the plasma IFNg and IL-6 proteins with R and SI levels in PBMCs of patients with sepsis. Left: scatterplots for R or SI levels (x axis) against

protein abundance (y axis) across individuals with sepsis (dots). Right: scatterplot for the SI and R levels (x and y axis, respectively) of each patient with sepsis (a

dot), where each patient is colored by its plasma level of a certain protein (indicated on top). R and SI levels were calculated using the expression profiles in

PBMCs from the FUSE cohort.

(D and E) Validation in monocytes. Plots D and E are shown as in plots B and C, respectively, but for R/SI levels that were calculated using expression profiles of

blood-derived monocytes (rather than PBMCs). Data of patients with sepsis from the FUSE cohort. Related to Figure S1.
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variety of immune activation markers, consistent with the notion

that each of these two programs is part of the host immune

response. Second, in line with previous reports,24,25 R and SI

differed in their associations to plasma biomarkers: the plasma

concentrations of IFNg, CXCL10, and CXCL11 proteins in sepsis

were mainly correlated with R levels of PBMCs (Pearson’s r =

0.46, 0.47, 0.21, p < 10�5, 10�5, 0.07, respectively), whereas

plasma concentrations of IL-6 and IL-18bp were mainly corre-

lated with SI levels of PBMCs (Pearson’s r = 0.71, 0.34,

p < 10�15, 10�3) (cf. Figures 1B and S1F). Finally, R and SI levels

explain a large fraction of the global transcriptional response in

sepsis (Figures S1C–S1E), validating the applicability of our

approach.

In addition, we tested the relevance of R and SI in monocytes

from patients with sepsis, based on the assumption that much
of the R/SI signal in PBMCs stems for the molecular states of

monocytes, as crucial cell type in sepsis. To test this, we

measured the transcriptomes of isolated monocytes derived

from the blood of 36 sepsis and 15 healthy subjects from the

FUSE cohort (STAR Methods); each transcription profile was

subsequently used to quantify the R and SI levels of monocytes

in an individual subject. Indeed, the associations of plasma pro-

teins with R and SI were similar in monocytes and PBMCs

(Figures 1B and 1C versus 1D and 1E), supporting the hypoth-

esis that the R/SI levels of PBMCs are consistent with R/SI

levels of monocytes. Additionally, the monocytes’ R and SI

levels explain a significant fraction of the individual variation

in thousands of genes (Figures S1C–S1E), indicating that R

and SI are two global programs that together govern transcrip-

tional states of monocytes during sepsis. We therefore focused
Cell Reports Medicine 5, 101829, November 19, 2024 3
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on the R and SI programs to investigate sepsis throughout this

study.

A dysbalance between the states of R and SI is a
fingerprint of sepsis
To investigate sepsis and moderate infections in an unbiased

manner, we combined the transcriptome FUSE data with addi-

tional datasets of varying patient and sample characteristics,

including three sepsis and septic shock datasets of gene expres-

sion in blood,9–11 and several independent datasets of moderate

(non-sepsis) infection: IAV infection,27 M. tuberculosis28 and

S. aureus infection,29 ex vivo stimulations of human PBMCs

with A. fumigatus, C. albicans, M. tuberculosis, P. aeruginosa,

and S. pneumoniae infections,30 and an ex vivo lipopolysaccha-

ride (LPS) stimulation of murine macrophages31 (datasets

#1–#10 in Table S2 and in STAR Methods).

In a systematic dissection of the R and SI states across all

individuals from all datasets, we found a sepsis-specific signa-

ture of R and SI. In individuals with infections of low or moder-

ate severity, both R and SI levels are elevated, but R tends to

be activated at higher levels compared to the SI levels. How-

ever, this response is hampered in patients with sepsis, such

that R is low relatively to the SI (Figure 2A). To further demon-

strate the relevance of our finding, we analyzed each dataset

independently. In datasets of moderate inflammatory condi-

tions, we found that the induction of R is similar or higher

than the induction of SI levels, whereas in sepsis, the induction

of R is low relative to the induction of SI (Figures 2B, 2C, S2A,

and S2B). As a quantitative assessment for the relative levels

of R and SI, we subtracted the SI level from the R level (the

‘‘R/SI-balance score,’’ Figure 2D, left). Indeed, we observed

a significant separation between sepsis and moderate infec-

tions by their R/SI-balance scores (t test p < 10�86, Figure 2D,

right). We conclude that the low level of R relatively to the level

of SI is common to the various endotypes of sepsis: patients

with moderate infection more likely have R levels that are

higher than the SI levels (a high, or a ‘‘good’’, R/SI balance),

whereas patients with sepsis more likely have R levels that

are lower than their SI levels (a low, or an ‘‘impaired,’’ R/SI

balance).

We next askedwhether the impaired R/SI balance is sustained

during the progression of sepsis or whether it appears transiently

during the course of disease. To address this, we analyzed time-

series datasets of infections32–34 (Table S2, STAR Methods). In

human sepsis, we found that the signature of low R relative to

SI is sustained during five days after the clinical recognition of se-

vere disease (Figure 2E), supporting our general findings

regarding the low R/SI balance in sepsis. This signature is not

apparent during the course of moderate infections (Figures 2E

and S2C), as expected. A murine model of sepsis (in vivo LPS

stimulation35) further allowed us to study the trajectory of

response before the clinical recognition of severe sepsis. In

PBMCs, we found that the R program peaks at early time points

(6–12 h) post stimulation and is already repressed at 5 days post

stimulation; the SI response, in contrast, peaks in intermediate

time points (2–3 days post stimulation) and is still high at

5 days post stimulation (Figure S2D). Together, these differences

in temporal dynamics lead to a very low R/SI balance at 5 days
4 Cell Reports Medicine 5, 101829, November 19, 2024
post stimulation. Interestingly, similar results were obtained in

additional tissues, such as bonemarrow and spleen (Figure S2E).

We conclude that sepsis is characterized by a transition from a

trajectory within the region of high R/SI balance toward the re-

gion of low R/SI balance.

Sepsis is marked by a dysbalance between R and SI at
the molecular level
Given the impaired R/SI balance in bulk samples, we tested the R

and SI at the resolution of single cells. Particularly, we analyzed

single-cell RNA sequencing data of urinary tract infection (UTI)23

(STARMethods). We first focused onmonocyte subpopulations.

After calculation of R and SI level in each single monocyte sepa-

rately (exemplified in Figure S3A), we found that single-cell R and

SI levels are highly consistent in each individual patient—for

instance, monocytes of subpopulation MS1 in patient #2 with

sepsis tend to low R levels compared to MS1 monocytes of

healthy controls (p < 10�9, t test; Figure 2F–2I). We used the p

value of this t test as a score for the molecular level of R (or SI)

in each patient compared to controls and refer to this score as

the ‘‘R (or SI) response’’ (signed log10 p value, positive/negative

scores for increasing/decreasing levels, exemplified for individ-

uals #1–#4 in Figure 2F–I, II). Overall, for 80% of the patients,

the monocytes demonstrate significant (p < 0.05) molecular re-

sponses of either R or SI (Figure S3B). These findings suggest

a cell-intrinsic R and SI state in monocytes. To further compare

sepsis and moderate infection, we subdivided the patients with

UTI into two groups: 10 patients with UTI that had a clear and

persistent organ dysfunction (sepsis) and 10 patients that had

leukocytosis but no organ dysfunction (moderate infection). We

found that the response of single monocytes from sepsis and

moderate infection differed, showing a bias of patients with

sepsis toward a lower R response while retaining a high SI

response (Figures 2F–II, and S3C). Thus, sepsis monocytes are

characterized by an impaired R/SI balance at themolecular level.

Next, the analysis of monocytes (Figure 2F) was also applied

to three types of lymphocytes (T, B, and natural killer [NK]

cells) using the same dataset. We found that T, B, and NK cells

demonstrate significant (p < 0.05) molecular responses of either

R or SI in 63%, 43%, and 38% of the patients, respectively

(Figures S3D–S3F), supporting the notion of a cell-intrinsic R

and SI levels in various types of lymphocytes. Furthermore,

sepsis is characterized by reduced-R/elevated-SI (compared

to moderate infection) in both T cells and B cells, as observed

in monocytes (Figure S3C). Thus, our findings suggest an

impaired R/SI balance at the molecular level in several innate

and adaptive immune cell types.

The dysbalance between R and SI is linked to the
heterogeneity of sepsis phenotypes
Given that sepsis is marked by the cell state of an impaired R/SI

balance, we next asked whether and how the R/SI states are

related to the heterogeneity of sepsis. We focused on the hetero-

geneity in various pathophysiological measures, including (1)

plasma protein concentrations, (2) gene expression in immune

cells, and (3) clinical phenotypes. For each category, we show

that the pathophysiological heterogeneity within sepsis is asso-

ciated with the state of an impaired R/SI balance.
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Figure 2. Sepsis is marked by a dysbalanced cell state of low R relative to the SI level

In (A)–(D), data from multiple independent cohorts of either blood, PBMCs, or monocyte profiling (datasets #1–#10 in STAR Methods).

(A and B) The levels of SI (x axis) and R (y axis) across individuals (dots) from all cohorts (A) or specific cohorts (B).

(C) Differential R and SI levels (disease versus controls, standard t test statistics) across cohorts (dots). Abbreviations: TB, M. tuberculosis.

(D) The ‘‘R/SI-balance score’’ is a biomarker of sepsis. Left: the R/SI-balance score is defined as Rminus SI—that is, the score is decreasing along the top-left-to-

bottom-right diagonal, where positive and negative scores indicate R > SI and R < SI, respectively. Right: the distributions of individuals by their R/SI-balance

scores, revealing lower balance scores in sepsis (an ‘‘impaired’’ R/SI balance) compared to moderate infections (a ‘‘good’’ R/SI balance).

(E) R and SI levels across time points during infection. Included are time-series dataset (datasets #12 and #13 in STAR Methods). Error bars: 95% confidence

intervals. p.i., post infection; p.s., post symptoms. Related to Figure S2.

(F) R and SI responses to uronary tract infection (UTI) at single-cell resolution (dataset #17 in STAR Methods). (F–I) For each single monocyte (a dot), the plot

presents its R and SI levels; each plot presents specific monocyte subpopulation (MS1 or MS2) for all controls (gray) or one patient (red). Presented are p values

(t test) for the bias in single-cell R/SI levels in one patient versus all controls (for a given monocyte subpopulation). These p values (log10-scaled and signed by

direction) are referred to as the R (or SI) response. (F-II) Each dot provides the R and SI responses for a single patient and a certain monocyte subpopulation.

R/SI responses of individuals #1–#4 (indicated in plot F-II) are exemplified in plot F–I. Patients with sepsis (yellow) andmoderate infection (green) UTI are included.

p values (indicated on top) are detailed in Figure S3.
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(1) Plasma proteins. Using plasma proteomics in sepsis (the

FUSE cohort26), we could quantify the fraction of inter-in-

dividual variation in protein concentrations that is ex-

plained by the R and SI levels (Table S3). For 62 of the

97 measured proteins, the combination of PBMCs’ R

and SI explained significant fractions of the variation

(empirical p < 0.05; Figure 3A, left). Monocytes’ R and

SI levels also explained substantial fractions of the varia-

tion (27 of 97 proteins with empirical p < 0.05; Figure 3A,

right). Focusing on established protein markers of im-

mune malfunctions in sepsis, we distinguished between

markers of immune functions that are increased in sepsis

(such as ferritin, IL-6, IL-18bp, and IL-8 as inflammation

markers) and markers of immune functions that are

repressed in sepsis (such as CD5, CD6 and CD244,

SCF [lymphopoiesis], IFNg and IFNg-inducible cytokines

[immune activation], CSF-1 [proliferation and phagocy-

tosis], and TRANCE [an inhibitor of apoptosis]). As shown

in Figure 3B, biomarkers that are increased had stronger

correlations with increasing SI levels compared to the cor-

relations with R levels; in contrast, markers of repressed

functions showed stronger correlations with increasing

R levels compared to the correlations with SI (with similar

findings in monocytes and PBMCs). Similar findings were

obtained when accounting for confounders (Figure S4A).

Thus, plasma proteome is associated with the impaired

R/SI balance in PBMCs and monocytes.

Of note, we cannot determine causality—for instance, whether

plasma proteins affect monocytes, are affected by monocytes,

or other cell types affect both the plasma proteins and mono-

cytes. However, the observed associations suggest the ability

of plasma proteins to mediate between cellular R/SI states of

different cell types. Indeed, we found that the composition

of the septic plasma contributes to the impaired R/SI balance

of various cell types (Figure S4B). Thus, complex interactions

involving multiple cell types and plasma proteins are likely to

contribute to the impaired R/SI balance in sepsis.
6

(1) Gene expression. As noted earlier, the R and SI levels

explain substantial fraction of the global gene expression

variation during infection (Figures S1C–S1E), supporting

the notion that the quantification of R and SI reflects the

global transcription profile rather than one or a few spe-

cific pathways. Encouraged by this observation, we

examined whether known transcriptional hallmarks of

sepsis are associated with the impaired R/SI balance.

To test this, we used established mRNA markers of

pathological molecular states in sepsis, including the up-

regulation of genes involved in glycolysis and matrix

metalloproteinases (MMPs) and downregulation of major

histocompatibility complex (MHC) class II, eIF2 signaling,

and oxidative phosphorylation (OXPHOS) genes.6 The

impaired R/SI balance is indeed consistent with the es-

tablished transcriptional changes in sepsis: the sepsis-

upregulated functions have stronger correlations with

increasing SI levels compared to the correlations with R

levels (glycolysis, MMPs; e.g., GPI and MMP24), whereas
Cell Reports Medicine 5, 101829, November 19, 2024
the sepsis-downregulated functions demonstrate the

opposite trend (eIF2 signaling, OXPHOS, and MHC class

II, e.g., EIF2AK3, NDUFB2, and HLA-DRA) (Figures 3C–

3E, S4C, and S4D). Thus, both induced and repressed

functions in sepsis are linked to the impaired R/SI bal-

ance. Notably, the same findings were found in both

sepsis and moderate infections (Figures 3D and 3E), sug-

gesting that many sepsis-related dysfunctions are a

consequence of the global R/SI imbalance rather than a

consequence of specific defects of sepsis.

(2) Clinical phenotypes. To assess whether the R and SI

states are related to the wide phenotypic diversity in

sepsis, we analyzed an independent dataset—the

PROVIDE clinical trial21—consisting of 223 patients with

sepsis with high mortality (59% 28-day mortality,

Table S2; Figures S5A and S5B). Several phenotypes

were assessed, such as the SOFA score, mHLA-DR pro-

tein, white blood cells (WBCs), neutrophil-to-lymphocyte

ratio (NLR), lymphopoiesis, renal failure, and the R/SI

levels (STAR Methods). For all clinical tests, either R, SI,

or their combination explained significant fractions of

the phenotypic diversity (empirical p < 0.05, Figure 4A).

The pathologies of sepsis were associated with either

high SI, low R, or both (Figures 4B, 4C, S5C, and S5D).

We obtained similar results using a predefined measure

of severity in the FUSE cohort (Figure S5E), and the

R/SI-balance score outperformed alternative markers in

its association with disease severity (Figures S5D-II and

S5E-IV). As additional support, we observed that the

R/SI-balance score also presents a strong prognostic ca-

pacity for survival at 28 days (p < 0.0002, Cox proportional

hazards [CPH] model predicting 28-day mortality using

the R/SI balance as a continuous variable with additional

parameters of age and gender; Table S4). Overall, the

impaired R/SI balance is associated with sepsis, sepsis

severity, and mortality.

Potential implications of the R/SI framework
The aforementioned analysis established two types of immune

dysregulation of sepsis, low R and high SI, making several unan-

ticipated insights.

First, our findings imply that the two identified types of immune

dysfunctions should be approached differently from a therapeu-

tic point of view. In particular, each patient should be treated

either with a pro-R drug, an anti-SI drug, or both—depending

on the specific combination of R andSI levels (Figure 5). In accor-

dance, the model predicts that R and SI could be modified

together (increasing R and decreasing SI) or independently.

Second, as R and SI are transcriptional states, it is possible to

test the effect of therapeutic interventions on the R/SI balance in

an ex vivo setting. To demonstrate this, we analyzed the effect of

several drugs on monocytes (data from Hu et al.36). We found an

effect (induction) of IFNg only on the R program, but not on the SI

program (Figure S5F), supporting the notion that each program

can be modulated independently. Additional examination of

the states arising from anti-inflammatory modulators revealed

that inmany cases both R and SI levels are inhibited (Figure S5F).

As the anti-SI effect is generally beneficial but the anti-R effect is
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Figure 3. The heterogeneity of genes and plasma proteins in sepsis is associated with the impaired R/SI state

Phenotypic variation in sepsis, either in plasma protein concentrations (A andB) or in PBMCs/monocytesmRNA levels (C–E), is associatedwith the lowR and high

SI cell state. Measurements of monocytes and PBMCs are from the FUSE dataset. (A) Boxplots for the percentage of inter-individual variance in proteins that is

explained by a linear combination of R and SI, using either real (white) or permuted (gray) data. R/SI levels were calculated either using transcriptomes from

PBMCs (left) or monocytes (right). (B) Proteinmarkers of immunopathology in sepsis are associatedwith the impaired R/SI balance. The scatterplot compares, for

each protein marker of immunopathology (a dot), its correlation with SI levels (x axis) and R levels (y axis) across patients with sepsis. R and SI levels were

calculated using expression profiles in either PBMCs (left) or monocytes (right). Included are markers for immune dysfunctions that have a known up- or down-

regulation in sepsis (color coded). (C–E) Analysis of previously reported pathways that are up- or down-regulated in sepsis. (C) The scatterplots compare, for the

expression of each gene (a dot), its correlation with SI levels (x axis) and R levels (y axis). Correlations were calculated using data in monocytes across patients

with sepsis. (D) Shown are correlations (color-coded) between each gene (a row) and the SI or R levels (columns), calculated based on transcriptomes in each

cohort (columns; datasets #1–#5 in STAR Methods). Abbreviations: SS-I/II, septic shock I and II. (E) Examples of selected genes from D, as shown in Figures 1C

and 1E. Genes are indicated on top. Related to Figure S4.
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likely detrimental in sepsis, this observation highlights the impor-

tance of a rationale selection of drugs based on a joint analysis of

both R and SI—searching for a drug that has a specific suppres-

sive effect only on program SI and/or an inducing effect only on

program R.

Finally, the framework allowed us to identify molecular path-

ways that are associated with the low-R/high-SI state. The re-

sults reveal multiple pathways that are associated with the

imbalanced state, such as BMP2 signaling, quiescence, extra-

cellular matrix organization, and elastic fiber formation (Fig-

ure S6; Table S5).

Stratification of patients with sepsis using the R/SI
model
We next examined whether R/SI-based endotypes are clinically

relevant. To that end, we proposed the following stratification:

patients with sepsis with a limited reduction in R/SI balance

(‘‘moderate R/SI imbalance’’) and patients with low R/SI balance

that are subdivided into patients whose SI is exceptionally high

(‘‘high-SI’’) or not (‘‘severe R/SI imbalance’’). We validated these

endotypes using the outcome of patients from the PROVIDE

cohort (20% moderate R/SI imbalance, 62% severe R/SI imbal-

ance, 16% high-SI; Figure 6A). Table S6 compares the clinical

characteristics of these endotypes. As expected, most patho-

physiological measures of sepsis differ between the endotypes

of moderate and low-grade R/SI imbalance—consistent with
8 Cell Reports Medicine 5, 101829, November 19, 2024
the observed link between thesemeasures and the R/SI-balance

score (Figure 4). Importantly, each endotype is distinct: the three

endotypes differ in their severity of sepsis (SOFA and APACE II

scores), circulating lactate concentrations, and WBC count.

Apart from the pathophysiology of sepsis, the three endotypes

do not significantly differ in other characteristics such as age,

gender, comorbidities, type of infection, and administrated

antimicrobials.

We further noted that the three endotypes differ in their 28-day

survival (Figure 6B): the non-survivors are associated with the

SI-high endotype, whereas the survivors are associated with

a moderate R/SI balance endotype. Patients with severely

decreased R/SI balance are in an intermediate risk class

(p < 0.02 for difference in time to death with the log rank/Breslow

test; Figure 6B). When patients were categorized into the previ-

ously defined groups of MALS, immunosuppression, and the re-

maining unclassified patients,21,37,38 we found that the R/SI clas-

sification presented strong prognostic capacity within each of

these groups (Figures 6C and 6D; Table S4)—for instance, the

SI-high and moderate-balance endotypes have significant prog-

nostic value within both the patients with MALS (7.7% and

57.2% survival, respectively; p < 10�3, log-rank test) and the

formerly unclassified patients (20% and 69.6% survival, respec-

tively; p < 0.03, log rank test; Figures 6D and S5G). In

contrast, the previously described classification has limited

added prognostic value beyond our proposed classification: a
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significant contribution only within the severe-R/SI-balance en-

dotype (Figures 6E and S5G). Taken together, results from the

PROVIDE cohort argue that the R/SI-based endotypes improved

prognostic prediction beyond the current stratification.

We next evaluated whether plasma biomarkers of R and SI can

be used for patient stratification. Using the FUSE cohort, the

plasma proteins IFNg and CXCL11 are suggested as top bio-

markers of R levels, and IL-6 and IL-8 concentrations are sug-

gested as top biomarkers of SI levels (Figure 3B). These markers

were confirmed in thePROVIDEcohort (FigureS5A).We therefore

classified the patients into endotypes based on the average con-

centrations of IFNg and CXCL11 as R marker, and the average of

IL-6and IL-8asSImarker. Thedata showedsimilar prognostic ca-

pacityofboth theR/SI levels themselvesor thecirculatingmarkers

of these levels (cf. Figures 6F and 6B; Table S4), demonstrating

that it is feasible to identify the R/SI-based endotypes by assess-

ing a limited set of plasma biomarkers. Overall, the R/SI-based

stratification is clinically relevant (Figure 6B), outperforms previ-

ously described classification (Figures 6C–6E and S5G), and is

easy to apply in practice (Figure 6F).
DISCUSSION

We found that the transcriptional states of two cellular programs,

R and SI, capture the complexity of sepsis (Figure 5). (1) The bal-

ance between the states of R and SI (namely the ‘‘R/SI balance’’)

reliably separated patients with sepsis and moderate infections:

patients with sepsis are characterized by low R relative to the SI

level, whereas moderate infections are characterized by the
opposite state (Figure 2). (2) R and SI explain the observed differ-

ences between patients with sepsis at multiple biological layers.

In particular, sepsis pathology, severity, and mortality are asso-

ciated with a low R, a high SI, and a low R/SI balance (Figures 3,

4, and 6). Finally, (3) the uncoupling between the induction of SI

activity and the repression of R activity at the cell-intrinsic level

may explain how both hyperinflammation and immunosuppres-

sion coexist in the same patient (Figure 2F).

In patients with sepsis, the immune system shows signs of

both weak (immune suppression) and exaggerated (excessive

inflammation) immune response, each involving a complex

cellular reprogramming.3 Here, we found that sepsis is charac-

terized by the extreme phenotypes of two distinct cell-intrinsic

programs—suppression of R and excessive SI—implying that

immune suppression and excessive inflammation could be re-

programmed separately. These are actionable guidelines of

blocking inflammation (several drug candidates already being

available, such as anti-cytokine antibodies), or amplifying resis-

tance (several candidates such as rIFNg, rIL-7, GM-CSF, etc.),

depending on the source of dysfunction in a particular patient

(Figure 5). An important aspect needs to be underscored at

this point. While the R/SI model can guide the selection of a

tailored therapy for each R/SI state, this does not exclude the

possibility of using different types of immunotherapeutic ap-

proaches depending on the pathophysiological process that

has led to a specific R/SI state. For example, it can be envisaged

that a state characterized by a strong suppression of resistance

without hyperinflammation can be induced through different

mechanisms: e.g., a defective IL-12/IFNg pathway, or overex-

pression of inhibitory molecules. Such particular immunotypes

may respond better to either treatment with recombinant IFNg

or checkpoint inhibitors, to give just one example. Follow-up

studies are warranted to define the immunotypes characterizing

each of the R and SI dysfunctions, their respective diagnostic

markers, and target immunotherapy treatments.

We further demonstrated the advantage of the R/SI framework

in patient stratification. In particular, we classified patients with

sepsis into immune endotypes based on their R/SI levels and

then compared this classification with a former stratification of

two extreme endotypes (immunosuppression and MALS).21 Us-

ing an independent validation cohort (PROVIDE), we showed

that the R/SI-based classification presents strong prognostic ca-

pacity within each of these former endotypes, highlighting the

added prognostic value of the R/SI-based criteria. Furthermore,

using the former stratification, many patients with sepsis did

not reach the criteria for either immunosuppression or MALS

and were therefore described as ‘‘unclassified’’ despite a poor

outcome of the disease.21 This led to a failure to characterize

immunologically a large proportion of patients with sepsis and

led to the incapacity to propose appropriate immune-based

treatment. Using the R/SI-based classification, we are now able

to provide significant prognosis of these previously unclassified

patients. We demonstrated that there are plasma protein bio-

markers that can identify the R/SI-based endotypes, suggesting

translatability of the R/SI-stratification framework into the clinics.

One important aspect to underline is the fact that initially the

R and SI programs have been derived from a very distinct

context (R – influenza; SI – low-grade chronic inflammation).
Cell Reports Medicine 5, 101829, November 19, 2024 9
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Figure 6. Stratification of patients with sepsis based on their R/SI cell states

Analysis of patients with sepsis from the PROVIDE clinical trial.21

(A) Three R/SI-based endotypes are indicated. The prognostic capacity of these endotypes is demonstrated in (B)–(F).

(B) The prognostic capacity of the R/SI-based endotypes. Kaplan-Meier survival curves for the endotypes (color coded).

(C–E) The R/SI-based classification adds prognostic information beyond the current classification. (C) Prognostic capacity of the R/SI-based endotypes within

previously defined immune states.21,37,38 Presented are Kaplan-Meier survival curves for the R/SI-based endotypes. Plots are shown as in B but each plot shows

the survival curve within one previously defined endotype (indicated on top). (D) The percentage of 28-day mortality of each R/SI-based endotype (color coded)

within previously defined subset of patients (x axis). (E) The percentage of 28-daymortality of each previously defined subset (color coded) within each of the R/SI-

based endotypes (x axis).

(F) 28-day prognostic capacity of the R/SI-based endotypes when using biomarkers of R and SI. Results are calculated and presented as in B (for the same

individuals and endotypes), except from R and SI that were assessed using biomarkers: averaging CXCL11 and IFNg plasma protein levels for R, and averaging

IL-6 and IL-8 plasma protein levels for SI. In B–F, comparison p values were calculated using the log rank test and insignificant results (p > 0.1) were excluded for

simplicity. Related to Figure S5.
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However, the high co-variation of these programs in sepsis and

infection cohorts (Figures S1C–S1E), as well as the link between

these programs to clinical measures in different models of sepsis

and moderate infections (Figures 2, 3, and 4), strongly argues for

their generalizability for understanding sepsis. We note that R

and SI are cellular programs—that is, the R and SI states vary

at the cell-intrinsic level (Figures 2B, 2F, 3, S3, and S4B)—open-

ing the way to ex vivo testing of therapeutic interventions. This is
10 Cell Reports Medicine 5, 101829, November 19, 2024
different from recent studies of immune programs that rely on

whole-blood transcriptomes39–43 without determining relevance

at the cell-intrinsic level. Overall, by leveraging the programs

from one context in another context, we improved our

understanding of sepsis. This suggests potential reusage of reg-

ulatory programs in response to a changing environment, which

can be exploited to enhance model generalization in future

studies.
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Our work opens additional directions for future research. First,

the identified sepsis-related pathways, such as BMP2 signaling

and elastic fiber formation (Figure S6), would allow the develop-

ment of therapeutic approaches in sepsis. Second, the tran-

scriptional signatures of R and SI can be used to evaluate immu-

notherapies of sepsis in an ex vivo setting (Figure S5F).

Third, future longitudinal studies can provide opportunities to

study temporal trajectories of R and SI during sepsis (as in

Figures S2D and S2E). For instance, such analysis can show

how the trajectory of sepsis deviates from trajectories of

moderate infections. Fourth, the R and SI programs can improve

the identification of diagnostic markers. For example, the

ImmunoSep clinical trial (NCT04990232) relies on mHLA-DR/

Ferritin as marker of immunosuppression/hyperinflammation;

whereas these markers are indeed associated with R and SI

(Figures 3B and S5C), future clinical trials could gain from an un-

biased selection of R-immunosuppression and SI-hyperinflam-

mation markers.

Finally, it will be of significant interest to determine how the R

and SI states contribute to additional immune-related condi-

tions. For example, R and SI could contribute to trained immunity

induction after vaccination or during inflammatory diseases; the

R/SI immunotypes during sepsis could be potential risk factors

of post-sepsis complications; and the R/SI balance could be

used for early prediction of sepsis. Such investigations would

require fine-resolution data, not only during infection but also

before diagnosis and after recovery, across large cohorts. Over-

all, the framework of R and SI states can be extended to addi-

tional applications in the study of immune-related disease.

Limitations of the study
Due to the use of observational data in human cohorts, all findings

and interpretations in this study should be considered explor-

atory—that is, it is possible to describe relations and structures

in the data, but these patterns cannot be used to make mecha-

nistic interpretations. We adopted this exploratory framework

because of the practical limitations of interventions in human co-

horts and because of the limitations in mouse sepsis models.44

Given the exploratory nature of this study, interpretations should

be applied with caution. First, although we identified key types of

immune dysregulation, this study cannot identify the drivermech-

anisms of each dysregulation. Second, although all reported as-

sociations have been validated in several complementary tests

and independent cohorts, not all covariates were measured—

implying that there could be associations due to the effect of

extraneous factors on the variables being studied. For instance,

this limitation implies that the markers of R and/or SI (identified

through associations) could be either driver or passenger mech-

anisms of R/SI dysregulation; these markers should be therefore

used for diagnostics but not yet as therapeutic targets.

Several limitations are related to the currently available data-

sets. First, the available cohorts mainly include individuals of

European ancestry. While we confirmed our findings in an exper-

imental setting (e.g., Figure S4B), it will be important to continue

and test the R/SI framework using additional cohorts of popula-

tions with different genetic backgrounds. Second, the number

of published cohorts that are relevant to our study is limited.

For instance, the comparison of sepsis to moderate infections
is supported by a relatively small number of cohorts: seven sepsis

cohort (datasets #1–#5, #12, and #17) and seven in vivo cohorts

of moderate infections (datasets #6–#8, #13–#15, and #17).

These infections include the leading agents of sepsis (e.g.,

S. aureus, E. coli) but also agents that are not typically present

in sepsis (e.g., M. tuberculosis). Thus, it will be important to

continue and test the comparison with additional cohorts, prefer-

ably moderate infections with leading agents of sepsis. Third, the

comparison of sepsis to moderate infections (Figure 2) primarily

relied on differences between cohorts (except from one dataset

of patients with UTI23). Another caveat is that themoderate-infec-

tion cohorts typically include a small percentage of patients with

sepsis. In future studies, including both sepsis and non-sepsis

infection within each cohort—and a clear patient-level annotation

(e.g., sepsis, its severity, and bacterial dissemination into the tis-

sues)—will allow a more comprehensive comparison between

sepsis and moderate infections. Fourth, at the current stage, da-

tasets of cell-type-specific profiling across multiple cell types are

available only in small cohorts. Such data in larger studies would

improve the understanding of the crosstalk between cell types in

patients with sepsis. Fifth, the analysis is constrained by themea-

surements available for each patient. In particular, key features of

severe stress and sepsis, which can further enhance our under-

standing of R and SI, were not measured—e.g., ex vivo immune

capacity,markers ofmitochondrial energy, glycolysis, and the cy-

clic pentose phosphate pathway as indications of metabolic

shifts.45,46 Finally, there is a lack of data for the evaluation of dis-

ease tolerance,47 because of the experimental difficulties to

clearly define the cause of organ dysfunction, tissue damage,

and pathogen load. Additional types of data in future cohorts,

including an accurate quantification of bacterial load48 and tissue

damage assessment from plasma cfDNA methylation,49 will be

valuable to understand disease tolerance in sepsis.
Conclusions
In the present study, we investigated sepsis pathogenesis in the

context of interaction between two transcriptional programs: one

aiming to eliminate pathogen invasion (R) and the other associ-

ated with SI. Using integrative analysis acrossmultiple sepsis co-

horts, we conclude that patients with sepsis are characterized by

a molecular fingerprint of a low R program relative to the level of

SI. We suggest that the heterogeneity between patients with

sepsis, likely explained by the wide diversity of R and SI states,

can be used to guide patient stratification to be used in a preci-

sion medicine approach toward effective immunotherapy. While

the proof regarding the effectiveness of personalized immuno-

therapy in sepsis still needs to be provided, the ImmunoSep con-

sortium is expected to release soon the results of a randomized

trial in which patient stratification based on immune function (hy-

perinflammation or immunoparalysis) guides the type of immuno-

therapy administered (NCT04990232). This is likely to represent

an important step toward effective immunotherapy in sepsis.
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Data from humans with sepsis (blood) This study (the FUSE cohort) GEO: GSE205672

Data from children with sepsis and SIRS (blood) Wong et al.10 GEO: GSE13904

Data from children with septic shock (blood) Wong et al.11 GEO: GSE26440

Data from children with septic shock (blood) Wynn, J. L. et al.9 GEO: GSE26378

Data from children with S. aureus infection (blood) Ardura, M. I. et al.29 GEO: GSE16129

Data from humans with Tuberculosis infection

(blood)

Burel, J. G. et al.28 GEO: GSE152532

Data from humans with IAV infection (blood) Tang, B. M. et al.27 GEO: GSE101702

LPS dataset (in vitro) Orozco, L. D. et al.31 GEO: GSE38705

scRNA-seq data from humans with SLE and SSc

(blood)

Ota, M. et al.50 National Bioscience Database Center

(NBDC): E-GEAD-397

Time series data from mice with S. aureus

and E.coli (blood)

Ahn, S. H. et al.34 GEO: GSE33341

Time series data from humans with IAV

and Rhinovirus infection (blood)

Zhai, Y. et al.32 GEO: GSE68310

Time series data from mice with Ebola infection

(liver)

Price, A. et al.51 GEO: GSE130629

Time series data from humans with sepsis (blood) Parnell, G. P. et al.33 GEO: GSE54514

Time series data from mice with LPS stimulation

(11 tissues)

Takahama, M. et al.35 GEO: GSE224146

Septic plasma Khaenam, P. et al.52 GEO: GSE49758

SIRS in neutrophils Velásquez et al.53 GEO: GSE123729

Ex vivo drug effect Hu et al.36 GEO: GSE144992

scRNA-seq data from humans with sepsis (blood) Reyes, M. et al.23 Broad Institute Single Cell Portal

(SCP): SCP548

Data of five bacterial and fungal ex vivo infections:

A. fumigatus, C. albicans, P. aeruginosa,

S. pneumoniae and M. tuberculosis.

Le, K. T. T. et al.30 GEO: GSE131590

Software and algorithms

Code for calculation of R and SI levels This study https://github.com/rachelbl2/Personalized-

inflammatory-scores-Pipeline

MSigDB Broad institute http://software.broadinstitute.org/gsea/

msigdb/collections.jsp

SEEK Troyanskaya Functional

Genomics Laboratory

https://seek.princeton.edu/seek/

Python Python Software Foundation https://www.python.org/

NumPy(v1.24.3) NumPy http://www.numpy.org/

SciPy(v1.11.4) SciPy https://www.scipy.org/

statsmodels(v0.14.1) statsmodels https://www.statsmodels.org/

scikit-learn(v1.3.2) scikit-learn https://www.scikit-learn.org/

Scanpy(v1.9.6) scverse project https://scanpy.readthedocs.io/

Lifelines(v0.27.8) Cameron Davidson-Pilon https://lifelines.readthedocs.io/
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

To investigate sepsis andmoderate infections, we conducted analysis of data from several independent cohorts (Table S2; see below

for more details). Most cohorts consist of both females and males. Table S2 provides a detailed description of each cohort, including

the definition of disease, age and gender characteristics, and exclusion criteria.

The FUSE cohort
The FUSE cohort comprises 125 sepsis patients and 284 healthy subjects. Patient characteristics are described in ref.26 In brief,

included participants enrolled between May 2017 and November 2019 in the Hospital for Infectious Diseases and Pneumology

‘‘Victor Babes’’ Craiova, Romania, and the academic hospital serving Dolj county in south-west Romania; all with declared Romanian

ancestry. Inclusion criteria: above 18 years of age, with a diagnosis of sepsis according to the ACCP/SCCM Consensus Conference

criteria. Subjects with diagnosis of inherited or acquired immunodeficiency (HIV, chemotherapy or prolonged steroid treatment) were

excluded. Healthy controls (>18 years old), with negative medical history and under no prescribed or self-administered medication,

were recruited at theHumanGenomics Laboratory, University ofMedicine and Pharmacy of Craiova. Approval was obtained from the

local institutional review boards and all participants signed the informed consent form. Sample collection was performed before initi-

ation of antibiotic therapy. Classification as severe and non-severe sepsis in the FUSE cohort was determined using the quick SOFA

(qSOFA) score (GCS <15, respiratory rate >22, systolic BP < 100). Complete SOFA scores using the Sepsis 3 criteria were not

available.

All samples were collected within 24h from diagnosis between 07:00-10:00 a.m., and EDTA plasma was separated within 4h since

collection at the Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova. Circulatory inflammatory proteins

were measured in plasma using the targeted Olink INFLAMMATION panel (v.3021, 92 proteins) with a proximity extension assay

(PEA) used by OLINK proteomics.26 Protein concentrations were reported as log2 transformation in a normalized protein expression

(NPX) scale. Circulating concentrations of ferritin, interleukin IL6, IL1 receptor antagonist (IL1RA), IL18, and IL18 binding protein

(IL18BP) were measured with Ella Simple Plex Cartridge Kits (ProteinSimple, San Jose, USA) according to the manufacturer’s

protocol.

Gene expression data from PBMCs includes 125 sepsis and 284 controls, and gene expression data for monocytes includes 36

sepsis and 15 controls. RNA extraction and RNA-sequencing of PBMCs andmonocytes were performed as follows. The PBMC frac-

tion obtained by density centrifugation of blood diluted 1:1 in phosphate-buffered saline (PBS)-buffer over Ficoll-Paque (GE Health-

care). Cells were washed three times in cold PBS and resuspended in RPMI 1640 (Dutch modified) supplemented with 50 mg/L

gentamicin, 2 mML-glutamin (GlutaMAX), and 1mMsodium pyruvate (Thermo Fisher Scientific). PanMonocyte Isolation Kit (Miltenyi

Biotec 130-096-537) was used to isolate monocytes from PBMCs by depletion of non-monocytes (negative selection). RNA was iso-

lated using the RNeasymini kit (QIAGEN), and only RIN>7 samples were used for subsequent RNA-Seq. TheRNA-Sequencing library

was prepared by using the MGIEasy RNA Library Prep kit (MGI Tech), and strand-specific RNA sequencing was performed using the

DNBseq platform (paired-end, read length 100 bp), averagely generating 24.05M (std ±0.54M) reads per sample.

RNA-seq preprocessing

We removed the reads mapped to rRNA to get raw data. We used the SOAPnuke v1.5.2 software (parameters: -l 15 -q 0.5 -n 0.1) to

filter reads, specifically removing reads with adaptors, reads in which unknown bases are more than 10%, and reads with low quality

(%bases of quality lower than 15 is greater than 50%). As evidence for the quality of sequencing, we observed that total clean reads

were on average 23.99M (±0.54M) reads per sample; the averaged clean reads ratio was 99.7%; the average of Q20 was 98.3%

(±0.29%) and the average Q30 was 91.9% (±0.99%). After reads filtering, we mapped clean reads to reference genome using the

Bowtie2 v2.2.5 software. We observed high quality of mapping: the average mapping ratio with reference genome was 93.63%,

the average mapping ratio with gene was 78.71%, and a total of 19,387 genes were detected. The uniformity of the mapping results

for each sample suggested that the samples are comparable. Gene expression levels (FPKM) were calculated with RSEM v 1.2.12.

Datasets included in this study
We used several gene-expression datasets for the analysis of sepsis and moderate infections. For the FUSE, the preprocessing is

detailed above. For all remaining datasets, we downloaded the preprocessed data. For all datasets, additional preprocessing steps

were the handling ofmissing data, log transformation and standardization, as detailed in STARMethods. Table S2 provides a detailed

characterization of each of the datasets.

Comparison of sepsis to moderate infection in Figures 2A–2D

We used the following datasets for the comparison of sepsis to moderate infections in Figures 2A–2D: 1) datasets of sepsis patients,

in which the percentage of diagnosed sepsis is 100% (datasets #1-#5). 2) datasets of infection without sepsis (referred to as ‘mod-

erate infection’), in which we require that the expected percentage of sepsis would be low (<5%; datasets #6-#10).

Datasets of sepsis.

(1) Sepsis, PBMCs (the FUSE cohort26): data from 284 controls and 125 sepsis individuals, as described above. Data was depos-

ited in GEO accession GSE205672 (secure token: ojkpcoochlgxhez).
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(2) Sepsis, monocytes (the FUSE cohort26): data from 36 sepsis and 15 controls, as described above. Data was deposited in GEO

accession GSE205672 (secure token: ojkpcoochlgxhez).

(3) Sepsis in blood dataset: Whole blood expression data from 18 healthy and 52 sepsis samples (GEO accession GSE13904).10

(4) Septic shock in blood dataset I (referred to as SS-I): Whole blood expression data from 98 children with septic shock and 32

healthy controls (GSE26440).11

(5) Septic shock in blood dataset II (referred to as SS-II): Whole blood expression data from 82 children with septic shock and 21

healthy controls (GSE26378).9

Datasets of moderate infection.

(1) Influenza A virus (IAV) dataset: Whole blood expression data from 63 adults with moderate IAV infection and 52 healthy con-

trols (GSE101702).27

(2) M. Tuberculosis (TB) dataset: Blood transcriptome in a cohort of 26 active TB samples and 11 healthy samples that were

collected at diagnosis (before the start of treatment) and post-treatment (GSE152532).28

(3) S. aureus (moderate) infection dataset: PBMCs transcriptomes of 10 healthy controls and 8 S aureus patients with invasive

in vivo infection but no bacteremia (GSE16129).29 Individuals with bacteremia were excluded from this cohort.

(4) LPS dataset: Expression in primary macrophages of mouse inbred strains. 89 samples from different strains were exposed to

bacterial lipopolysaccharide (LPS) and 86 samples were mock-treated and use as controls (GSE38705).31

(5) A dataset of five bacterial and fungal ex vivo infections: Transcriptomic responses of human PBMCs from eight individuals with

5 pathogenic stimulations at 4h post infection (32 samples). Stimulations are:A. fumigatus, C. albicans, P. aeruginosa, S. pneu-

moniae and M. tuberculosis. Stimulation with RPMI was used as a control (8 samples) (GSE131590).30

Selection of datasets. Datasets were selected in an unbiased manner from the GEO repository, as follows: (i) For sepsis, we

included all human datasets with at least 30 sepsis individuals and 15 controls. (ii) For moderate infections, we included all human

datasets with at least 25 infected individuals and 10 controls. In case of more than one dataset for the same pathogen (e.g., for influ-

enza virus infection there were many optional datasets), we chose the largest dataset in which clinical information was available. We

specifically searched for the bacterial, viral, fungal pathogens that are common in sepsis. We specifically searched for cohorts (or

sub-cohorts) in which the expected percentage of sepsis is low. (iii) In both sepsis and moderate infection datasets, we selected

only datasets of mRNA profiling, and filtered out datasets with comorbidities (e.g., super-infections, genetic mutations, and specific

characterization of an additional disease) or known interventions (e.g., vaccines) (detailed in Table S2). We further included datasets

#8 and #10 due to their high relevance. The expected percentage of sepsis within each dataset is reported in Table S2.

Comparison of sepsis to moderate infection (and other conditions) in Figures 2E, 2F, and S2

(1) Autoimmune disease dataset (SLE and SSc): Isolated cells from 26 CD45+ cell types derived from blood samples across 63

healthy subjects, 60 SLE patients and 45 SSc patients (E-GEAD-397).50

(2) Sepsis: Time series data of human sepsis. Expression profiling of whole blood for up to 5 days for 35 sepsis patients and 18

healthy controls (GSE54514).33

(3) In vivo infection without sepsis: Time series data ofmurine S. aureus and E. coli in vivo bacterial infections: Expression profiling

of blood for up to 12 h (S. aureus) or 24 h (E. coli). For S. aureus, 78 infected samples and 29 control sampleswere included. For

E. coli, 40 infected samples and 10 controls samples were included (GSE33341).34

(4) In vivo infection without sepsis: Time series data of IAV and Rhinovirus in vivo human infections: Blood expression data from 70

healthy adults that developed respiratory infection (45 IAV infection and 25 rhinovirus infection) before the infection (controls)

and at 4 timepoints over 6 days after the initiation of the infection’s symptoms (GSE68310).32

(5) In vivo infection without sepsis: Time series data of murine in vivo Ebola infection: Transcriptional profiles from liver from 10

Collaborative Cross mice infected with mouse-adapted Ebola virus (MA-EBOV) in 3 time points; a total of 30 infected samples

(GSE130629).51

(6) Sepsis: Time series data of a murine model of sepsis (in vivo LPS stimulation): Transcriptional profiles from 11 tissues of mice

stimulated with LPS in 7 time points, 4 mice for each time point; a total of 308 samples (GSE224146).35

(7) Dataset of sepsis and infection without sepsis, scRNA-seq23: The data includes scRNA-Seq of 19 healthy controls, 10 urinary

tract infection (UTI) patients showing clear symptoms of sepsis (i.e., persistent organ dysfunction), and 10UTI patients that are

classified asmoderate infection (leukocytosis but no organ dysfunction). The two groups are referred to as URO and Leuk-UTI

in the original data publication; the UROconsists primarily ofE. coli (60%) and Enterobacter cloacae complex (20%) infections,

and the Leuk-UTI consists primarily of E. coli (50%) and K. pneumoniae (20%) infections. All disease patients were enrolled

within 12 h of presentation to the emergency department and within 12 h of antibiotic treatment, and most recruited subjects

are older adults.23 We analyzed subpopulations of monocytes, T, B and NK cells. Monocytes: 36,206 monocytes that were

previously categorized into four subpopulations (MS1-MS4). B cells: 6603 cells in two subpopulations BS1, BS2. T cells:

25472 cells in two subpopulations TS1,TS2. NK cells: 6101 cells in two subpopulations NS1,NS2. Dendritic cells were not

analyzed due to their low numbers of cells in sepsis. Each subpopulation was analyzed separately, as demonstrated in

Figures 2F–I, II, S3A, and S3B for the case of monocytes.
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In this scRNA-seq dataset, the responses of R and SI were defined for each cell subpopulation of each individual subject. In partic-

ular, for each individual i and each cell subpopulation j, themolecular ‘R response’ (or ‘SI response’) was calculated by comparison of

R levels (or SI levels) of all cells in subpopulation j from patient i against the R levels (or SI levels) of all cells in subpopulation j from all

control subjects. The R (or SI) response is defined as log10 t test p value, signed according to the direction of response (positive/nega-

tive for increase/decrease in the averaged R (or SI) levels).

To select the time series datasets #12-#16, we used the same criteria ii and iii above, but searched for both mouse and human

datasets. The expected percentage of sepsis within each of the additional datasets is reported in Table S2.

Additional datasets

(1) Sepsis (PROVIDE). PROVIDE consists of 223 sepsis patients. PROVIDE is a randomized controlled immunotherapy trial

carried out in patients diagnosed with sepsis according to the Sepsis-3 criteria,1 caused by either community-acquired pneu-

monia, healthcare-associated pneumonia, ventilator-associated pneumonia, acute cholangitis, or primary bloodstream infec-

tion. Patients were recruited in 14 study sites in Greece, in accordance with the applicable rules concerning the review of

research ethics committees and informed consent (EudraCT 2017-002171-26; approval by the National Ethics Committee

of Greece 78/17; approval IS 75-17 by the National Organization for Medicines of Greece; Clinicaltrials.gov registration

NCT03332225). In order to classify patients into immunological endotypes, serum ferritin concentration and mHLA-DR

expression were measured. Patients with serum ferritin concentrations of 4420 ng/mL or above were classified as ‘hyperin-

flammation’ (MALS),4 regardless of their mHLA-DR expression. Patients with mHLA-DR expression of 5000 antibodies bound

per cell (Ab/cell) or less and ferritin concentrations lower than 4420 ng/mL were classified as having ‘immunosuppres-

sion’.21,37,38,54 If neither the criteria for MALS nor immunosuppression were fulfilled, patients were categorized as ‘unclassi-

fied’.

(2) Septic plasma: Stimulation of granulocytes, dendritic cells and PBMCs from healthy subjects with plasma from either sepsis

patients or healthy subjects. Included are 76 profiles of plasma stimulations, among them 27 profiles of stimulation with

plasma of healthy subjects and 49 profiles of stimulations with plasma from sepsis patients (GSE49758).52

(3) S. aureus (all): PBMCs transcriptomes of 10 healthy controls and 46 S aureus patients with invasive infection (GSE16129).29

Patients in this cohort likely include both moderate and severe infection, local and disseminated infection, sepsis and non-

sepsis infection (no annotation of specific individuals).

(4) SIRS, neutrophils: Neutrophils isolated from blood of 11 healthy adults and 16 SIRS patients. All SIRS patients were confirmed

to have negative blood culture. SIRS was compared to 15 sepsis patients in this dataset (GSE123729).53

(5) SIRS, blood: Whole blood expression data from 18 healthy individuals, 27 SIRS patients, and 52 sepsis patients. All SIRS pa-

tients were confirmed to have negative blood culture (GSE13904).10

METHOD DETAILS

Selection of the R and SI programs
To study transcriptional immune programs in a systematic manner, we collected a set of 76 programs, including: 1) All programs from

the Immune Knowledge Base collection55 that include the term ‘response’ in their name (20 programs). 2) All genesets from the

ImmuneSigDB collection (the C7 subcollection of MSigDB, https://www.gsea-msigdb.org/gsea/msigdb/) that were originally gener-

ated based on data in PBMCs, excluding sepsis datasets (50 programs). 3) Additional programs that were originally developed or

validated based on associations with clinical data, including R and T,24 IM1 andSI,25 and SAS-I/MAS-142 (6 programs). Each program

was evaluated using three criteria, as follows.

Critarion 1

The response to pathogens.Weevaluated in vivo infections compared to sterile inflammation using datasets #6, #7, #20, #21 and #22

(Table S2). For each dataset and each program, we compared disease against healthy in two steps: 1) for each individual, we calcu-

lated the level of the program (geneset programs: by averaging the gene set; gene-weights programs [R,T, IM1, SI]: as detailed

below); 2) a Wilcoxon signed rank test statistics is used to compare the program level between disease and healthy subjects (pos-

itive/negative for upregulation/downregulation in disease compared to healthy; scores are presented in Figure S1A).

Critarion 2

The ‘covariation in sepsis’ score. We aimed to evaluate the relevance of a program to sepsis, specifically by testing how well the

genes of a given program are co-varying (co-expressed) in sepsis. The analysis was performed using the SEEK algorithm,56 which

integrates transcriptomes from multiple datasets and analyzes them in a systematic manner. The SEEK’s input is a query geneset,

and the output is a ranking of all datasets according to the covariation of the query set in each transcriptome dataset.We used each of

the 76 program separately as a query geneset (for a continuous gene weighting, the 100 top-weight genes were used as the geneset)

and ranked all blood non-cancer datasets (437 datasets). Thus, for each of the 78 programs, the output is a covariation-based ranking

of each of the 437 datasets. Among the 437 datasets under study, seven datasets are sepsis datasets. For the task of detecting

sepsis datasets based on their covariation ranking, we defined the ‘actual positives’ as the seven sepsis datasets, and the ‘actual

negatives’ as the remaining 69 datasets. For a given program, the ‘predicted positives’ are the datasets with a ranking% c, the ‘pre-

dicted negatives’ are the datasets with a ranking >c, the ‘true positives’ are the actual positives that are also predicted positives,

precision for a certain c is the number of true positives divided by the number of predicted positives, and recall for a certain c is
e4 Cell Reports Medicine 5, 101829, November 19, 2024

http://Clinicaltrials.gov
https://www.gsea-msigdb.org/gsea/msigdb/


Article
ll

OPEN ACCESS
the number of true positives divided by the number of actual positives. F1 is a combination of precision and recall: for a certain cutoff c

and a given program, a higher F1 score implies a better accuracy of predicting the sepsis datasets based on the covariation of the

program. For each program, we calculate the F1 scores when using the ranking of each sepsis dataset as the c cutoff. The ‘covari-

ation in sepsis’ score of a program is the average of the F1 scores across the seven cutoffs (reported in Figure S1B).

Critarion 3

The ‘covariation in infections’ score. This score is the same as the ‘covariation in sepsis’ score with one difference: the ‘actual pos-

itives’ group consists of all 45 infection datasets (rather than only 7 sepsis datasets). Thus, the F1 scores was calculated when using

the ranking of each infection dataset as the c cutoff, and the ‘covariation in infections’ score is the averaged F1 scores across all 45

cutoffs. A higher covariation in infections score implies a better accuracy of predicting the infections datasets based on the covari-

ation of a program (reported in Figure S1B).

Calculation of R level, SI level, and the R/SI balance
For a given dataset, we first preprocessed the data and then calculated SI levels, R levels, and the R/SI-balance score.

Data preprocessing

Preprocessing is applied in four steps. 1) Gene filtration and imputation. For datasets with a low number of missing values (<1%),

genes with at least one missing value were removed. For datasets with medium number of missing values (>1%, <15%), genes

with high amount of missing data (>75%) were filtered out and then KNN imputation (K = 5) was applied. For datasets with high num-

ber of missing values (>15%), we removed genes with high number of missing values (>75%) with no subsequent imputation. All zero

counts were treated as missing values. 2) Log2-transformation. 3) Sample-level standardization: each sample is centered and

divided by standard deviation across genes. 4) Gene-level standardization: each gene is centered and divided by standard deviation

based on the distribution in the healthy samples – that is, only the healthy samples are used for the calculation of the standardization

that is subsequently applied on all samples. For individual i, the output of this preprocessing is a gene expression vector Zi.

Calculation of SI levels

As previously described,25 the calculation of SI (originally referred to as IM2 in ref.25) must take into consideration the confounding

effect of an IM1 factor. In a model for a given individual (or sample) i, its expression profile Zi is expressed as a weighted sum of the

effects of each gene with respect to IM1 and SI: Zi = bi+s
i
IM1V IM1 + siSIVSI (Eq. 1). For a given individual i, Zi is the input vector of pre-

processed gene-expression levels of individual i; the vectors V IM1 and VSI are the pre-defined ‘‘gene weights’’ for IM1 and SI, respec-

tively, which were originally defined in ref.25; siSI and siIM1 are the output: siSI is the inferred ‘‘SI level’’ of individual i, and siIM1 is the

inferred ‘‘IM1 level’’ of individual i. bi is a constant. The original analysis of IM1 and SI in ref.25 relied on healthy obese individuals,

which allow to define systemic inflammation in the absence of pathogen (150 healthy, obese individuals from the 300-OB cohort25).

In accordance, the geneweights of IM1 and SI (V IM1 and VSI) reflect a general inter-individual variation in immunometabolism. Results

showing that the inferred SI level is indeed associated with systemic inflammation are detailed in ref.25. We interchangeably use the

terms ‘SI level’ and ‘SI state’.

Calculation of R levels

As previously described,24 the calculation of Rmust take into consideration the confounding effect of an additional factor, referred to

as T. In amodel for a given individual (or sample) i, its expression profile Zi is expressed as a weighted sumof the effects of each gene

with respect to T and R: Zi = bi+s
i
TVT + siRVR (Eq. 2). For a given individual i, Zi is the input vector of pre-processed gene-expression

levels of individual i; the vectorsVT and VR are the pre-defined ‘‘geneweights’’ for T andR, respectively, whichwere originally defined

in ref.24; siT and siR are the output: siT is the inferred ‘‘T level’’ of individual i, and siR is the inferred ‘‘R level’’ of individual i. bi is a con-

stant. Results showing that the inferred R level is indeed associated with resistance are detailed in Cohn et al., 2022.24 We inter-

changeably use the terms ‘R level’ and ‘R state’.

For the calculation of R and SI levels, Z and V are n-length vectors where n is the number of genes. The upper bound of n is the

number of genes for which the predefined gene weights are available, but for each specific sample the number of genes could be

lower, depending on the number of genes that were actually measured. Conversion between mouse and human genes was

performed with the org.Mm.e.g.,.db Bioconductor package using the list of one-to-one homologs from the complete MGI list of hu-

man-mouse homologs.

Calculation of the R/SI-balance score

As R and SI levels could be in different scales, we first applied standardization of R and SI levels. Standardization was performed

based on the healthy controls – i.e., subtracting the mean level (centering) and dividing by the standard deviation of the control sub-

jects (applied separately for R and SI). The ‘R/SI balance score’ was calculated by subtracting the (standardized) SI level from the

(standardized) R level (Figure 2D).

Validity of the R and SI programs
We aimed to evaluate to what extent the R and SI programs are relevant to human blood samples. By using the predefined gene

weights (VR, VSI) in the analysis of independent cohorts, we could assess the relevance of a program in various conditions. The

analysis was applied on data from the human circulation of healthy subjects as well as in vivo viral and bacterial infections ranging

from moderate to high severity (datasets #1,#2,#6, #20, Table S2). Two evaluation approaches were applied:
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Approach 1

Analysis of inter-individual variation. We evaluated how well program levels predict inter-individual variation in gene expression. The

analysis was applied separately in each cohort. For each gene g, we applied the following analysis: in step 1, we calculated the SI and

R levels of each individual in the cohort, holding out the data of gene g, usingZi = bi+s
i
XVX + siYVY + εi (Eq. 3).Zi is themeasured gene

expression profile of individual i excluding gene g, VX and VY are the predefined gene weights excluding gene g, and (siX ; s
i
Y Þ are the

output program levels of individual i. X and Y are either R and T, or alternatively, SI and IM1. In step 2, we evaluated the quality of

prediction of the expression of gene g from the R and SI levels (a joint model): Zg = bgc+b
g
RSR + b

g
SISSI + εg (Eq. 4), where Zg is the

gene expression profile of gene g across all individuals, SR and SSI are the inferred levels of programs R and SI (respectively)

from step 1 across individuals, and εg is the noise for gene g. In addition, we use an R-only model: Zg = bgc+b
g
RSR + εg (Eq. 5), and

an SI-only model: Zg = bgc + b
g
SISSI + εg (Eq. 6). Overall, we evaluated three models (joint, SI-only, R-only). We repeated the analysis

10 times; in each repeat, 10% of the genes (without replacements) are held out for the calculation of R and SI levels in step 1 (Eq. 3),

and the regressions in step 2 (Eqs. 4–6) are calculated only for the held-out genes. For comparison, the entire analysis was applied on

permuted data, which was performed by reshuffling the expression and program levels for the calculations in Eqs. 4–6.

Based on this framework, two scores were calculated: (i) For each gene, eachmodel and in each dataset, the p-value of the regres-

sion (Eqs. 4,5, or 6). As exemplified in Figure S1C-I, the comparison of p-values from real and permuted data allows to identify the

genes with empirical p < 0.05. For a given dataset and a givenmodel, the ‘percentage of significant genes’ is the percentage of genes

with empirical p < 0.05 (reported in Figure S1C). (ii) For each gene, eachmodel and in each dataset, theR2 of the regression (Eqs. 4,5,

or 6). This R2 is referred to as the ‘percentage of explained individual variation’. For the task of detecting real genes based on the

percentage of explained individual variation (R2), the fractions of genes with R2 >c in real and permuted data are the true positive

rate (TPR, lower bound) and false positive rate (FPR), respectively. For example, using the joint model in PBMCs of sepsis patients,

we observe that 0.91 of the genes obtainedR2 > 0:05 using real data (TPR = 0.91) and only 0.04 of the genes obtainedR2 > 0:05 using

permuted data (FPR = 0.04) (Figure S1D-I). Precision, recall and F1 values are calculated based on these TPR and FPR values

(reported in Figure S1D).

Approach 2

Analysis of inter-gene variation. We evaluated how well the gene weights of a program predict the variation between genes within

each individual. The analysis was performed separately for the gene weights in the R/T programs and the SI/IM1 programs. Using

each individual separately, we evaluated the regression between the predefined gene weights (independent variables) and the

observed gene expression levels (dependent variable). For a given individual, we used the R2 of this regression as the evaluation

metric, which reflects the percentage of explained inter-gene variation (within individual). Permuted data analysis was performed

by permutation of the predefined gene weights before the calculation of the regression. For each dataset separately, we calculated

the percentage of individuals with empirical p < 0.05 (Figure S1E).

Functional evaluation of programs R and SI
Functions of R and SI

We aimed to evaluate the relevance of R and SI to bacterial infections. To that end, we defined sets of SI and R markers. The SI

markers are the top 250 genes that co-vary with the SI level in bacterial infections, and the R markers as the top 250 genes that

co-vary with the R level in bacterial infections (co-variation is the ‘percentage of explained individual variation’ score, averaged

across datasets #1,#2,#20). Table S1 reports hyper-geometric enrichments of these markers.

Co-expression of R and SI

The analysis was performed using the SEEK algorithm,56 which integrates transcriptomes from 5210 datasets and analyzes them in a

systematic manner. The SEEK’s input is a query geneset (here, 100 top-weight R genes and 100 top-weight SI genes). The analysis

was applied separately on the query geneset of R and SI. The SEEK’s output is 1) the co-expression of the query set in each dataset

(the ‘dataset’s co-expression score’), and 2) the co-expression of each gene with the query geneset across the entire collection of

datasets (the ‘gene’s co-expression score’). Enrichment of 100 top co-expressed datasets was performed using the MeSH terms

and enrichment of 100 top co-expressed genes was performed using the GO annotation (reported in Table S1).

Analysis of the PROVIDE cohort
Calculation of R and SI levels in PROVIDE

The R and SI levels were originally calculated using gene expression data based on a 2D map of gene weights.24,25 Using the FUSE

cohort, we calculated the weights of 92 protein (rather than genes) in a 2D protein mapwhere R and SI as themain axes – particularly,

we used the correlations with R and SI levels across the FUSE individuals as the weights of proteins in the R-SI protein map. As in-

dependent confirmation for the quality of this FUSE protein map, we calculated the correlation between each clinical parameter and

each protein in the PROVIDE cohort. In Figures 4B and 4C, the FUSEproteinmap is presented as a scatterplot where each protein is a

dot in a 2D space. The color coding of this map is according to the correlations of each protein with a certain clinical parameter in the

PROVIDE cohort. This visualization highlights a clear organization of themap in various directions, confirming the validity of the FUSE

protein map in the independent PROVIDE cohort. Encouraged by this observation, the FUSE protein map was used as the basis for
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the calculation of R and SI levels of each PROVIDE patient. In the same way that we used transcriptome data relying on the map of

gene weights for the calculation of R and SI levels, in the PROVIDE cohort we used the map of protein weights for the calculation of R

and SI levels.

Survival analysis for the R/SI-based endotypes

Kaplan–Meier plots were constructed to evaluate differences in survival rate among the R/SI-based endotypes. Survival was

measured from the date of hospital admission to date of discharge (restricted to 28 days). Log rank test was performed to evaluate

the significance of survival differences between endotypes. The COX proportional hazardsmodel estimated the hazard of death (with

age and gender as additional covariates), either for all sepsis patients or for specific subtypes of sepsis identified using the ferritin

(MALS) and mHLA-DR (immunosuppression) biomarkers.

Biomarkers of R, SI and the R/SI balance

As a marker for R, we used the average of CXCL11 and IFNg plasma proteins. As a marker for SI, we used the average of IL6 and IL8

plasma proteins. Calculation of the R/SI balance was done as described above but using the protein markers of R and SI rather than

the transcriptome-based calculation. The biomarkers were selected as follows: Using the FUSE cohort, the plasma proteins IFNg and

CXCL11 were suggested as top markers of R levels, and the plasma protein IL6 and IL8 were suggested as top markers of SI levels

(Figure 3B). These markers were also confirmed in the PROVIDE cohort (Figure S5A).

Functional properties of the R/SI balance
We aimed to identify key functional properties of sepsis that set it apart from moderate infections (Figure S6; Table S5). The analysis

was applied in several steps. First, we calculated the correlation of every gene to the R/SI-balance score across all individuals

(applied separately in each sepsis dataset). Next, for each gene, themean correlation was calculated across all cohorts. This average

is the general ranking of genes as markers of the R/SI balance score (Table S5). The ‘top ranked genes’ are those with average cor-

relation >0.6 for good balance and <-0.45 for impaired balance. Third, among the top ranked genes, we selected the 300 ‘top

markers’ according to their correlations in monocytes (i.e., 300 top markers of a good R/SI balance and 300 markers of an impaired

R/SI balance; Table S5). Finally, for a given functional class and a given set of R/SI balance markers, the enrichment p-values were

calculated using a hyper geometric test. We tested all functional classes in the Reactome and MSigDB’s CGP collections. All re-

ported results are FDR-adjusted p-values (q values, Figure S6B). To follow up the prediction of quiescence, we used a quiescence

gene set fromCuitiño et al. 201957; these genes were found asmarkers in quiescent (G0) embryonic cells, as opposed to cycling (G1,

G1-S, and S-G2-M) embryonic cells (embryonic days 10.5 (E10.5), E11.5, and E13.5).
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