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EDITORIAL COMMENT
Linking Physiology and Biology
in Plaque Erosion
A Gordian Knot
Christos V. Bourantas, MD, PHD,a,b Ryo Torii, MSC, PHD,c Patrick W. Serruys, MD, PHDd,e
D evelopments in invasive and noninvasive
imaging have enabled in vivo characteriza-
tion of plaque phenotypes and allowed

more accurate stratification of cardiovascular risk.
Cumulative data have shown that lesions with spe-
cific morphologic characteristics (ie, with active
inflammation and a large plaque burden with an
increased necrotic core that is covered by a thin
fibrous cap) that are exposed to an unfavorable hemo-
dynamic milieu are likely to rupture and cause
events. However, one-third of these cardiovascular
events are caused by lesions with a nonvulnerable
phenotype that have an intact fibrous cap, and these
events have been attributed to plaque erosion (PE).

Several studies over recent years have investigated
the pathobiological mechanisms involved in endo-
thelial denudation and examined the implications of
flow patterns on endothelial cell death.1 In vivo
computational fluid dynamic studies in patients with
cardiovascular events have demonstrated increased
endothelial shear stress (ESS) and ESS gradient (ESSG)
in eroded plaques compared with disease-free seg-
ments or stable lesions, and a recent report that
compared flow patterns in patients with plaque
rupture (PR) and PE has shown higher ESSG in PR and
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increased oscillatory ESS in PE.2-4 Although experi-
mental studies have attempted to investigate the as-
sociation between flow patterns and local vascular
inflammation and immune response in PE, no study
had examined in humans the interplay between cor-
onary physiology and biology in this setting.5

The study by Ahmed et al6 in this issue of JACC:
Basic to Translational Science is the first to explore
in vivo the effects of the local hemodynamic forces on
the proinflammatory pathways involved in PE. The
authors analyzed data of the OPTICO-ACS (Optical
Coherence Tomography in Acute Coronary Syndrome)
study, which examined the local immune response in
patients with PR and PE, and involved assessment of
the culprit vessel with the use of optical coherence
tomography (OCT) and blood sample collection at the
culprit lesion site and the peripheral circulation.7 The
authors segmented the OCT data from the patients
with PE, fused the annotated lumen borders with the
coronary angiography to reconstruct vessel anatomy,
and performed blood flow simulation. The ESS and
ESSG computed at the culprit lesion site were asso-
ciated with the proinflammatory mediators and im-
mune phenotypes assessed at the culprit lesion and
peripheral circulation. The authors found an inverse
correlation between minimum ESS at the lesion site
and T lymphocytes, which could contribute to endo-
thelial cell death. The maximum ESS at the lesion site
was correlated with macrophage inflammatory pro-
tein (MIP)-1b levels and with the ratio of interleukin
(IL)-6 levels at the culprit lesion site and peripheral
circulation; both cytokines promote T-cell and
monocyte adhesion and activation. Finally, increased
ESSGs at the lesion site were positively correlated
with natural killer cells, which promote plaque
vulnerability, MIP-1b, and hyaluronic acid, which ac-
tivates Toll-like receptor 2, a mediator of PE, and
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were inversely related to IL-4, which has anti-
inflammatory properties.

The findings of this analysis are interesting and
thought provoking. The authors should be congratu-
lated for this work because they demonstrated for the
first time a link between the local hemodynamic
forces and immune pathways involved in the patho-
genesis of PE. This unique analysis is expected to
attract attention and stimulate further research in the
field and the design of prospective studies that will
combine 3-dimensional modeling and computational
fluid dynamic analysis with blood sampling to mea-
sure biomolecule release from plaques and explore
the links of flow patterns and proinflammatory
pathways involved in vulnerable plaque formation
and destabilization.

However, apart from its originality, it has signifi-
cant limitations that should be acknowledged. First,
coronary reconstruction did not include side
branches, which critically determine ESS distribu-
tion.8,9 This is especially important in eroded pla-
ques, which are often located near the origin of side
branches—in the OPTICO-ACS study, there was a side
branch within 3 mm in 61.3% of the eroded plaques7—
where flow perturbations are often noted that can
trigger a local inflammatory response and T-lympho-
cyte adhesion, leading to PE.

Second, blood flow simulation was performed us-
ing a steady flow profile. This assumption did not
allow computation of the multidirectional ESS indices
and especially of the oscillatory shear index, which
appears to be involved in the pathogenesis of PE.4

Third, a control group of patients with stable
angina was not included. This limitation is a conse-
quence of the design of the OPTICO-ACS study and is
acknowledged by the authors. It would have been
helpful however, to compare the associations be-
tween proinflammatory mediators and flow patterns
in patients with PE and PR that were also recruited in
the OPTICO-ACS. This analysis should be considered
in the future because the inclusion of both groups
would enrich our understanding about the proin-
flammatory implications of the same biomechanical
stimuli in these 2 different clinical scenarios.4

The differences in the time interval between cor-
onary events and blood sample collection also is a
limitation of the analysis that is recognized by the
authors and is likely to have affected the reported
results. For most of the proinflammatory mediators
included in this study there was no difference be-
tween their levels at the lesion site and the systemic
circulation and therefore it is unclear whether these
were produced indeed by the culprit plaque. The
concentrations of only 7 biomarkers were higher at
the lesion site (IL-8, IL-10, interferon-g, interferon-g–
induced protein-10, MIP-1a, granzyme A, and matrix
metalloproteinase-9 activity), and none of them were
correlated with the distribution of the local hemody-
namic forces. Conversely, the levels of MIP-1b and
hyaluronic acid, which have been associated with the
ESS patterns, were lower at the culprit lesion
compared with the peripheral circulation; therefore,
it is unclear whether these molecules were produced
by the culprit lesion.

Finally, local blood samples were collected across
the entire lesion and not in locations with different
ESS distribution—ie, upslope, throat, and downslope
of the lesion. This may have prevented detection of
differences in immune activity across the lesion and
co-localization of the ESS with the triggered pro-
proinflammatory pathways. Recently a dedicated
catheter device that allows unstirred blood sample
collection from different plaque locations has been
designed, and its use is expected to resolve these
uncertainties and allow accurate assessment of the
link between flow patterns and local inflammatory
activity.10

Despite the above limitations this study is impor-
tant in the field as it sets a new paradigm for exam-
ining in vivo the interplay of plaque biology and
physiology. It may not have untangled the Gordian
knot, but it provides an alternative pathway for
loosening it.
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