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Purpose: The aim of this study was to develop a novel approach for predicting

the expression status of Epidermal Growth Factor Receptor (EGFR) and its

subtypes in patients with Non-Small Cell Lung Cancer (NSCLC) using a Three-

Dimensional Convolutional Neural Network (3D-CNN) ConvNeXt, radiomics

features and clinical features.

Materials and methods: A total of 732 NSCLC patients with available CT imaging

and EGFR expression data were included in this retrospective study. The region of

interest (ROI) was manually segmented, and clinicopathological features were

collected. Radiomic and deep learning features were extracted. The instances

were randomly divided into training, validation, and test sets. Feature selection

was performed, and XGBoost was used to create solo models and combined

models to predict the presence of EGFR and subtypes mutations. The

effectiveness of the models was assessed using ROC and PRC curves.

Results: We established the following models: ModelCNN, Modelradiomic,

Modelclinical, ModelCNN+radiomic, ModelCNN+clinical, Modelradiomic+clinical, and

ModelCNN+radiomic+clinical, which were based on deep learning features,

radiomic features, clinical data and combinations of these, respectively. In

predicting EGFR mutations, ModelCNN+radiomic+clinical demonstrated superior

performance compared to other prediction models, achieving an AUC of

0.801. For distinguishing between EGFR subtypes ex19del and L858R,

ModelCNN+radiomic reached the highest AUC value of 0.775.

Conclusions: Both deep learning models and radiomic signature-based models

offer reasonably accurate non-invasive predictions of EGFR status and its subtypes.

Fusion models hold the potential to enhance noninvasive methods for predicting

EGFR mutations and subtypes, presenting a more reliable prediction approach.
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Introduction

Lung cancer stands as the most lethal form of cancer globally,

presenting the highest mortality rate among all malignancies.

Approximately 80% of lung cancers belong to the histological category

of non-small-cell lung cancer (NSCLC) (1). Currently, clinical treatment

for lung cancer focuses on controlling local lesions and metastases.

Targeted therapy offers advantages such as precise targeting, minimal

side effects, ease of use, and high therapeutic efficacy (2).

One of the key proteins involved in lung cancer is the epidermal

growth factor receptor (EGFR). Lung cancer can be classified into two

categories: EGFR mutation-positive tumors and non-mutated tumors

(EGFR wild type) (3). The EGFR ex19 Del and L858R mutations

account for 90% of EGFR mutation-positive cases and affect

approximately 50% of individuals with lung adenocarcinoma in the

Asian population. Patients with wild-type EGFR cannot benefit from

EGFR-tyrosine kinase inhibitor (TKI) treatment (4). Studies have

shown that patients with EGFR ex19del mutation have better

prognosis and treatment response compared to those with L858R

mutation. For instance, in the context of osimertinib combination

therapy or osimertinib targeted therapy alone, patients with EGFR

ex19del mutation have shown longer progression-free survival

(PFS) compared to those with L858R mutation (5). Therefore,

accurately defining the EGFR mutation subgroups can be crucial in

ensuring precise diagnosis and individualized treatment for NSCLC

patients. The accuracy of EGFR gene assessment using biopsy samples

may be compromised due to significant intratumor heterogeneity.

Additionally, some patients may have inoperable lung adenocarcinoma

or may not be able to undergo biopsy due to factors such as endurance,

willingness, or cost. Therefore, a non-invasive approach to determine

EGFR mutation status and subtypes is needed. Computer tomography

(CT) is commonly used for lung cancer diagnosis. Machine learning

(ML) and artificial intelligence can thoroughly evaluate tumors,

improve the sensitivity and specificity of diagnostic imaging, and

provide a non-invasive method for lung cancer-related diagnosis (6,

7). However, the aforementioned deep learning (DL) study only

focused on identifying the presence of EGFR mutations (wild-type

versus ex19Del+L858R), without specifically differentiating between

the subtypes of EGFR mutations (ex19Del vs L858R), or only using

machine learning (8–10).

In this study, we aimed to directly distinguish between EGFR

(+) and EGFR (-) and then differentiate between two common

subtypes of EGFRmutations, ex19Del and L858R, using DL andML

analysis of primary lung adenocarcinoma. The findings of this study

may contribute to a more comprehensive and non-invasive

discrimination of EGFR mutations and subtypes. This, in turn,

could serve as a foundation for developing individually tailored and

effective diagnosis and treatment plans for lung cancer patients.
Materials and methods

Patients inclusion

From May 2012 to August 2021, a retrospective study was

conducted on all CT scans of non-small cell lung cancer (NSCLC)
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(PACS) at Nanfang Hospital. A total of 1080 patients with

pathologically proven lung cancer who underwent surgery or

received biopsy were included in this study. The clinical features

of the patients were retrieved from the hospital information system.

Inclusion criteria for this study were: (1) patients with confirmed

EGFR gene mutation status and pathological testing of tumor

specimens; (2) patients with pretreatment CT images; (3) patients

with complete clinical data (including sex, age, smoking, T stage,

and lesion size). Exclusion criteria were: (1) patients who received

treatment before CT scan; (2) patients with a time interval longer

than one month between CT examination and treatment; (3)

patients with multiple tumor nodules in the lung; and (4) patients

with tumor lesions near the hilar that could not be separated from

neighboring hilar architecture. Based on these criteria, a total of 732

patients were included in the study. The TNM system based on the

American Joint Committee on Cancer (AJCC) manual was used for

staging (11).

In this study, a total of 1080 cases were initially included.

However, 348 cases were excluded for various reasons. These

exclusions included cases without pre-treatment CT images

(n=132), cases with multifocal primary tumors (n=70), cases

where the time interval between biopsy or surgery was more than

12 weeks (n=50), cases with tumors in the mediastinum (n=10),

cases with severe infection (n=10), and cases with mutations in

exons 18 and 20 (n=16). The latter exclusion was due to the

insufficient number of tumors with these specific mutations for

reasonable statistical analysis.

The focus of this study was on mutations in exons 19del and

L858R of the EGFR gene. After the exclusions, the final study cohort

consisted of 732 patients. Among these patients, there were a total

of 351 cases with EGFR mutations, with 195 cases of EGFR ex19del

and 156 cases of EGFR L858R. This distribution represents

approximately 55% of cases with EGFR ex19del and 45% of cases

with EGFR L858R. For more detailed information on the

distribution of cases and mutations, please refer to Tables 1, 2.

Among the patients included in the study, 351 out of 732 (48%)

tested positive for an EGFR mutation, while 381 out of 732 (52%)

tested negative for an EGFR mutation. We observed a significant

association between EGFR mutations and non-smoking female

patients with non-small cell lung cancer, as shown in

Supplementary Table S1.

Out of the total cases with EGFR mutations, 195 (55%) were

identified as EGFR Ex19del and 156 (45%) were identified as EGFR

L858R. This distribution indicates that EGFR Ex19del is slightly
TABLE 1 Distribution of data for predicting EGFR mutations.

Total EGFR+ EGFR-

Total 732 351 381

Training group 512 246 266

Validation group 73 35 38

Testing group 147 70 77
EGFR (+), EGFR mutation-positive; EGFR (-), EGFR mutation-negative.
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more prevalent than L858R. Additionally, we found that the L858R

mutation was associated with older patients, as indicated in

Supplementary Table S2.
CT scanning

The patients were examined using either a 256-slice iCT scanner

(Philips Healthcare, Best, Netherlands) or SiemensMedical Solutions’

Sensation 64 or Definition AS scanner (Forchheim, Germany). The

scanning parameters for the two scanners were as follows: tube

rotation time of 0.5 s, pitch of 0.87 or 1.2, detector collimation of

128 x 0.625 or 64, tube voltage of 120 kV, tube current of 100-300

mA, field view of 350 mm, matrix of 512x512, slice thickness of 1-5

mm, reconstruction interval of 1 mm.
Histopathology and EGFR
status determination

The histopathological type of non-small cell lung cancer was

determined by diagnostic pathologists using the 2011 International

andMultidisciplinary Classification and the criteria put forward by the

World Health Organization (WHO) 2015 guidelines for lung cancer

categorization and the International Association for the Study of Lung

Cancer/American Thoracic Society/European Respiratory Society. The

EGFR mutation status was determined using a real-time fluorescent

PCR-based amplification refractory mutation system and a human

EGFR gene mutation real-time reverse transcription-polymerase chain

reaction diagnostic kit (AmoyDx, Xiamen, China). The mutation

status of EGFR exons 18, 19, 20, and 21 was analyzed.
Clinical information

We extracted five features from the clinical information, including

sex, age, smoking, T stage, and lesion size. The clinical features of the

patients were retrieved from the hospital information system.
Radiomic analysis

We extracted 1051 radiomic features from the image ROI and

corresponding ROI mask. We then used Boruta (12) for feature

selection on the training dataset. Boruta operates on two principles:
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autonomously conducts feature selection on the dataset.

To examine the differences in radiomics features between the

EGFR mutation-positive EGFR (+) and EGFR mutation-negative

EGFR (-) groups, we conducted feature selection with Boruta. The

algorithm identified 11 radiomics. These selected features can

potentially serve as predictive markers for EGFR mutations.

Further analysis and validation are needed to confirm their

significance and utility in clinical practice. Additionally, for the

specific EGFR mutation subtypes (EGFR ex19del and L858R), we

performed radiomics feature extraction and identified 9 radiomics

(details in Supplementary Methods).
Model for deep learning

Our research focuses on developing a deep learning framework for

accurately predicting gene mutations in nodules. To achieve this, we

utilized ConvNeXt, a powerful deep learningmodel that achieved top-1

accuracy on the ImageNet dataset in early 2022 (13). ConvNeXt is

composed of standard convolutional modules and has demonstrated

exceptional accuracy and scalability. For our experiments, we

specifically used the ConvNeXt-B model, which consists of 89

million parameters (14, 15), the pipeline overview in shown in

Figure 1. Acknowledging the three-dimensional nature of CT images,

we utilized ACS conv (https://github.com/M3DV/ACSConv) to

convert a 2D pre-trained model based on ImageNet-22K into a

3D model (16). In our approach, we preprocessed the input images

by cropping them around the nodule center with a size of 32×64×64

(64×64 pixels in the axial plane, 32 frames). We then upsampled the

images by a factor of 2 to 64×128×128 before feeding them into the

model. Features are extracted through downsampling until the size

of the feature map becomes 2×4×4. Finally, we applied global

average pooling to generate a 1024-dimensional feature vector for

classification. For the gene mutation classification task, we

employed a simple Multi-Layer Perceptron (MLP) with one

hidden layer. This MLP takes the 1024-dimensional feature vector

as input and performs the final classification. During our

experiments, we randomly selected data for training, validation,

and testing, with a ratio of 7:1:2. The validation dataset was used to

select the best model, and we reported the test results on both the

validation and test sets. The deep learning model was implemented

with Python 3.8.12 and PyTorch 1.11.0.
Feature fusion

In our research, we investigated four distinct strategies for

feature integration. Each fusion method employed the use of

XGBoost to construct the model (17). The initial fusion, termed

as ModelCNN+clinical, integrated deep learning features (specifically

the predictive probability of ConvNeXt) with clinical data (sex, age,

smoking history, T stage, and lesion size). The second fusion,

identified as ModelCNN+radiomic, merged deep learning features

with radiomic characteristics. The third fusion, labeled as

Modelradiomic+clinical, combined radiomic attributes with clinical
TABLE 2 Distribution of data for distinguishing EGFR ex19del
from L858R.

Total
EGFR

ex19del
EGFR
L858R

Total 351 195 156

Training group 245 136 109

Validation group 35 19 16

Testing group 71 40 31
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information. Lastly, the fourth fusion model, referred to as

ModelCNN+radiomic+clinical, amalgamated deep learning features,

radiomics attributes, and clinical data. To evaluate the

performance of these feature fusion approaches, we utilized ROC

(Receiver Operating Characteristic) and PRC (Precision-Recall

Curve) curves. These curves provide valuable insights into the

model’s ability to discriminate between positive and negative

cases, as well as its precision and recall. Accuracy, Recall,

Precision, Specificity, and F1-score are calculated using the

Youden index, which is defined as sensitivity + specificity – 1 (18).
Statistical analysis

Statistical analysis was performed using IBM SPSS Statistics

version 25.0. Continuous variables were analyzed using the two

independent samples t-test or Mann-Whitney U test, depending on

the distribution of the data. Categorical variables were analyzed

using the chi-square test or Fisher’s exact test. The significance of
Frontiers in Oncology 04
the ML model’s performance in differentiating between EGFR+ and

EGFR- groups, as well as between ex19del and L858R mutations,

was assessed using the same statistical methodologies.
Results

Performance in predicting EGFR mutation

We evaluated the performance of different models in predicting

EGFRmutation status using the area under the curve (AUC) metric as

presented in Table 3. In Table 3, pairwise DeLong tests were

conducted between the first three columns (CNN, clinical, and

radiomic models) and the last four columns (fusion models),

yielding p<0.05. This indicates a significant difference in AUC

between the multimodality fusion models and the single modality

models. However, there were no significant differences between the

single modality models (p>0.05), nor between the multimodality

models themselves (p>0.05). In addition, Table 4 displays
FIGURE 1

Pipeline Overview. ModelCNN is a 3D ImageNet-22K pre-trained model based on ConvNeXt-B. The conversion from 2D to 3D is enabled by the ACS
convolution technique. Modelclinical is a machine-learning xgboost model trained on clinical information. Modelradiomic is an xgboost model trained
on radiomcs features. ModelCNN+clinical combines ConvNeXt model predictions with clinical information. Modelradiomic+clinical combines radiomics
features with clinical information. ModelCNN + radiomic+clinical incorporates ConvNeXt model predictions, radiomics features, and clinical information.
The structure of the ConvNeXt-B model is shown in the lower half of the figure.
TABLE 3 AUC performance of different models for predicting EGFR mutations across the training, validation, and test sets.

AUC
Model
CNN

Model
clinical

Model
radiomic

Model
CNN+clinical

Model
CNN+radiomic

Model
radiomic+clinical

Model
CNN+radiomic+clinical

Training 0.73 0.687 0.714 0.785 0.788 0.802 0.81

Validation 0.78 0.761 0.774 0.863 0.823 0.842 0.848

Testing 0.753 0.691 0.741 0.777 0.764 0.788 0.801
The best-performing value in each column is highlight in bold.
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supplementary performance metrics (including accuracy, recall,

precision, specificity, and F1-score), while Figure 2 showcases the

ROC and PRC curves. For the CNN probability prediction model, the

AUC values were 0.73, 0.78, and 0.753 in the training, validation, and

test groups, respectively. These results indicate that the CNN model

has moderate predictive ability for EGFR mutation. To further

improve the predictive performance, we developed a fusion model

that combines deep learning, radiomics features, and clinical

information. This model, called ModelCNN + radiomic + clinical,

achieved higher AUC values compared to the CNN model.

Specifically, the AUC values for the fusion model were 0.81, 0.848,

and 0.801 in the training, validation, and test groups, respectively.

These results demonstrate that integrating multiple data sources can

enhance the accuracy of EGFR mutation prediction. Overall, the

fusion model shows promising performance in predicting EGFR

mutation status and may have potential clinical utility in guiding

treatment decisions for non-small cell lung cancer patients.
Frontiers in Oncology 05
Performance in distinguishing EGFR
Ex19del and L858R mutations

We assessed various models’ efficacy in distinguishing between

EGFR Ex19del and L858R mutations, with AUC detailed in Table 5.

Additionally, Table 6 presents supplementary performance metrics,

and Figure 3 illustrates the ROC and PRC curves. For the deep

learning model, the AUC values were 0.781, 0.765, and 0.751 in the

training, validation, and test groups, respectively. These results

indicate that the deep learning model has moderate predictive

ability for distinguishing between these two mutation types. To

further improve the performance, we developed a fusion model

called ModelCNN+radiomic. This model combines deep learning with

radiomics features and has shown improved predictive

performance. Specifically, the fusion model achieved AUC values

of 0.811 in the validation group and 0.775 in the test group. These

results suggest that the fusion model is better at distinguishing
FIGURE 2

Performance comparison of various models for the EGFR mutation task on the test set, displaying the AUC for each model in the legend. (A) ROC
plot (B) PR plot.
TABLE 4 Additional performance metrics of different models for predicting EGFR mutations in the testing set.

AUC Accuracy Recall Precision Specificity F1-score

ModelCNN 0.753 0.694 0.743 0.658 0.649 0.698

Modelclinical 0.691 0.646 0.757 0.602 0.545 0.671

Modelradiomic 0.741 0.66 0.729 0.622 0.597 0.671

ModelCNN+clinical 0.777 0.667 0.786 0.618 0.558 0.692

ModelCNN+radiomic 0.764 0.68 0.7 0.653 0.662 0.676

Modelradiomic+clinical 0.788 0.68 0.771 0.635 0.597 0.697

ModelCNN+radiomic+clinical 0.801 0.68 0.757 0.639 0.61 0.693
The best-performing value in each column is highlight in bold.
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between EGFR Ex19del and L858R mutations compared to the deep

learning model alone. Overall, our findings demonstrate that the

fusion model, combining deep learning and radiomics features, has

superior performance in accurately distinguishing between EGFR

Ex19del and L858R mutations.
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Analysis of feature importance and
cluster maps

The analysis of feature importance in the fusion model

provides us with valuable insights, as depicted in Figure 4.
TABLE 6 Additional performance metrics of different models on distinguishing ex19del and L858R in the testing set.

AUC Accuracy Recall Precision Specificity F1-score

ModelCNN 0.751 0.676 0.65 0.743 0.71 0.693

Modelclinical 0.537 0.535 0.425 0.63 0.677 0.507

Modelradiomic 0.684 0.62 0.65 0.667 0.581 0.658

ModelCNN+clinical 0.752 0.62 0.4 0.842 0.903 0.542

ModelCNN+radiomic 0.775 0.648 0.525 0.778 0.806 0.627

Modelradiomic+clinical 0.742 0.649 0.55 0.759 0.774 0.638

ModelCNN+radiomic+clinical 0.772 0.577 0.3 0.857 0.935 0.444
The best-performing value in each column is highlight in bold.
FIGURE 3

Performance comparison of various models for distinguishing EGFR ex19del, L858R on the test set, displaying the AUC for each model in the legend.
(A) ROC plot (B) PR plot.
TABLE 5 AUC performance of different models for distinguishing ex19del, L858R across the training, validation, and test sets.

AUC
Model
CNN

Model
clinical

Model
radiomic

Model
CNN+clinical

Model
CNN+radiomic

Model
radiomic+clinical

Model
CNN+radiomic+clinical

Training 0.781 0.613 0.733 0.767 0.775 0.726 0.793

Validation 0.765 0.589 0.724 0.771 0.811 0.763 0.809

Testing 0.751 0.537 0.684 0.752 0.775 0.742 0.772
The best-performing value in each column is highlight in bold.
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When discriminating EGFR mutations, in the CNN + radiomic +

clinical fusion model, the most important features are the CNN

extracted features, smoking index, and gender, followed by

radiomic features. For discriminating EGFR Ex19del and L858R

mutations, CNN and nodule size, along with radiomic features, are

comparatively more significant.

To analyze the performance of the CNN-extracted features, we

examined the clustering relationship between the 1024 CNN
Frontiers in Oncology 07
features extracted by the model prior to classification and the

labels in Figure 5. It can be observed that in both classification

tasks, the unsupervised clusters of the 1024 deep-learned radiomics

features extracted from ConvNext align closely with the semantic

labels. In other words, the continuous regions on the black-grey

bars share numerous similar features, respectively. Similarly, in

Figure 6, across both tasks, we also observed a rather good

clustering relationship between the fusion of CNN features,
FIGURE 4

Feature importance of Modelclinical, Modelradiomic, ModelCNN+clinical, ModelCNN+radiomic, Modelradiomic+clinical, and ModelCNN+radiomic+clinical. (A) Predicting
EGFR mutations. (B) Distinguishing ex19del and L858R.
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FIGURE 5

The clustering relationship of ConvNeXt features extracted by the model. (A) In the task of predicting EGFR mutations, the x-axis represents 147
nodules from the test set, and the y-axis represents the 1024-dimensional features extracted by CNN. Each feature has been normalized. Nodules
within the same cluster (adjacent columns) exhibit similar radiomics characteristics in Euclidean space. The black gray bar indicates the semantic tag
EGFR +/- for each nodule. (B) In the task of distinguishing ex19del and L858R, the x-axis represents 71 nodules from the test set, and the y-axis
represents the 1024-dimensional features extracted by CNN. Again, each feature has been normalized. Nodules within the same cluster exhibit
similar radiomics characteristics, and the black gray bar indicates the semantic label EGFR ex19del/EGFRL858R for each nodule.
FIGURE 6

The clustering relationship of different models based on various features. (A) In the task of predicting EGFR mutations, the x-axis represents 147 nodules from
the test set, and the y-axis represents the features of different models such as Modelclinical, Modelradiomic, ModelCNN+clinical, ModelCNN+radiomic, Modelradiomic

+clinical, and ModelCNN+radiomic+clinical. Each feature has been normalized. Nodules in the same cluster (adjacent columns) have similar radiomic characteristics
in Euclidean space. The black gray bar indicates the semantic tag EGFR +/- for each nodule. (B) In the task of distinguishing ex19del and L858R, the x-axis
represents 71 nodules from the test set, and the y-axis represents the features of the different models. Again, each feature has been normalized. Nodules in
the same cluster have similar radiomic characteristics, and the black gray bar indicates the semantic label EGFR ex19del/EGFRL858R for each nodule.
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clinical features, radiomics features, and the labels. This suggests

that the features we extracted possess a certain discriminatory

ability and exhibit improved diagnostic performance after fusion.
Discussion

In this study, we aimed to develop a fusion model that combines

clinical, radiomic, and deep learning data to predict EGFR mutation

subtypes in non-small cell lung cancer (NSCLC) patients. Compared

to models based solely on radiomic or deep learning features, our

fusion model (ModelCNN+radiomic+clinical) demonstrated superior

effectiveness. Previous studies have primarily focused on using deep

learning approaches to predict the overall EGFR mutation status

without clearly distinguishing between different mutation subtypes

(6, 19). Zhao et al. developed a deep learning system based on 3D

CNNs to automatically predict EGFR mutant pulmonary

adenocarcinoma in CT images, with AUCs of 75.8% and 75.0% for

holdout test set and public test set, respectively (20). However, the

analysis did not cover EGFR mutation subtypes. In earlier

investigations, Liu et al. only employed radiomics characteristics

predicted the overall EGFR mutation status (wild-type vs19DEL

+L858R), and then discriminated between EGFR 19DEL and

L858R (19DEL vs L858R), with AUCs of 0.76, 0.70, and 0.66,

respectively (20). Song et al. employed DL to predict the mutation

statuses of the EGFR (wild-type vs.19DEL+L858R), 19DEL (19Del vs.

wild-type+L858R), and L858R (L858R vs. wild-type+19Del) with the

AUC value 0.79 and 0.62, respectively (8). However, it is important to

note that patients with EGFR Ex19del and L858R mutations exhibit

significant differences in treatment response and prognosis (21).

Radiomics quantifies medical images into multiple features and

correlates them with gene characteristics (22). In contrast,

Convolutional Neural Networks (CNN) evaluate image features at

different levels. Deep Learning (DL) has advantages over radiomics as

it learns complex features without manual delineation, can perform

end-to-end tasks, and optimizes the loss function for better

classification. DL outperforms radiomics in predicting EGFR

mutations in lung cancer and has advantages in gene prediction for

other cancers (23). In our study, we have developed a hybrid system

that combines deep learning models with radiomics features. This

strategy harnesses the pattern recognition capabilities of deep

learning and the interpretability of radiomics features obtained

through feature engineering. Our model has demonstrated superior

performance, with higher AUC compared to only use machine

learning or DL models. This approach showcases the synergy of

combining these two techniques, resulting in improved results.

However, it is important to acknowledge the limitations of our

study. Firstly, the generalizability of our findings may be limited as

all patients were from the same center. Future studies should

include data from multiple centers and diverse ethnicities to

validate the results. Secondly, our study focused on NSCLC

patients with non-small lung cancer, and the results may not be

applicable to other histological subtypes. Finally, the radiomics-

based approach requires precise labeling of tumor boundaries and

processing of raw data, which can be time-consuming.
Frontiers in Oncology 09
In future studies, it would be beneficial to collect data from

multiethnic patient populations and multiple centers to enhance the

generalizability of the findings. Additionally, an end-to-end

approach that includes automatic tumor recognition, localization,

and EGFR mutation prediction can be developed. Integrating

radiomics features into deep learning models, along with clinical

features and multi-level features, can further improve prediction

performance. The resulting models can aid in determining

appropriate EGFR-TKI therapy options for NSCLC patients in a

non-invasive, reproducible, and cost-effective manner.
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