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Background: Recent studies have increasingly shown the connection between

gut microbiome and gestational diabetes mellitus (GDM). However, no studies

have explored the relationship between the gut virome and GDM, and the

underlying mechanism remains unknown.

Methods: We performed a nested case-control study within a follow-up cohort,

enrolling 51 patients with GDM and 51 healthy controls. Shotgun metagenomics

sequencing was used to explore gut virome profiles during early pregnancy.

Results: Diversity analysis revealed no difference in the overall gut virome

composition between two groups, however, we found greater abundance of

Escherichia phage SH2026Stx1 (Q = 0.23), Enterobacteria phage mEp043 c-1

(Q = 0.21), crAssphage cr50_1 (Q = 0.21), Enterobacteria phage phi80 (Q = 0.21),

and Escherichia phage HK106 (Q = 0.23) in GDM patients. Cross-kingdom

correlation analysis showed the negative correlation between the gut bacterium

Eubacterium eligens and three bacteriophages (Escherichia phage SH2026Stx1,

Enterobacteria phagemEp043 c-1, and Escherichia phage HK106) in GDM group

(r < 0, P < 0.05). Based on gut microbial features and clinical indicators, we

constructed a new prediction model using random forest method for GDM with

good predictive performance (AUC of 0.893, 95% CI: 0.736 ∼ 0.990).

Conclusion: This study is the first to investigate the relationship between the gut

virome and GDM as well as the cross-kingdom correlation between gut viruses

and bacteria in GDM. Our findings could enhance strategies for preventing and

treating GDM from the perspective of gut microbiome, offering valuable insights

into its pathogenesis.
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Introduction

Gestational diabetes mellitus (GDM), characterized by glucose
intolerance first occurring during pregnancy (Buchanan et al.,
2007), is a significant complication affecting 7.0–27.6% of pregnant
women worldwide, and its prevalence is increasing (Zhu and
Zhang, 2016; Wang et al., 2022). Previous studies found that
GDM can lead to adverse pregnancy outcomes, such as obstructed
labor, hypertensive disorders of pregnancy, macrosomia and so
on (Metzger et al., 2008; Mitanchez, 2010; Billionnet et al., 2017).
Furthermore, it significantly raises the risk of cardiovascular
diseases, type 2 diabetes (T2D), and mental disorders in both
affected pregnant women and their offspring (Dabelea and Pettitt,
2001; Bellamy et al., 2009). Despite extensive researches, the
precise pathogenesis of GDM remains poorly understood. Thus,
investigating innovative perspectives on the mechanisms is critical
for enhancing its prevention and treatment.

The human gut microbiome, comprising bacteria, fungi,
viruses, archaea, and protozoa, plays a crucial role in maintaining
internal environmental balance and promoting health (Qin
et al., 2012). Emerging evidence shows that the human gut
microbiome is closely related to GDM. Ma et al. (2020) reported
that the gut microbial genera Tyzzerella 4 and Eisenbergiella
were positively correlated with fasting blood glucose levels
in GDM patients. Furthermore, Mendelian randomization
analyses have confirmed the causal relationships involving gut
microbiota, their metabolites, and GDM (Wu et al., 2023).
Recent studies have also investigated the association between
the gut virome and T2D, which shares mechanistic similarities
with GDM (Crusell et al., 2018). Rasmussen et al. (2020)
found impaired glucose tolerance in mice on a high-fat diet
that received fecal virus transplantation. In another study, Fan
et al. (2023) assessed the intestinal microorganism profiles of
90 individuals with T2D and 49 healthy controls, revealing
significant decreases in Flavobacterium phage and Cellulophaga
phaga in the T2D group. The combined use of gut viral and
bacterial markers showed promising diagnostic potential for T2D
(Fan et al., 2023).

Viruses, as crucial contributors to intestinal homeostasis,
likely play a role in regulating blood glucose metabolism
through the gut microbiome (Reyes et al., 2012). Using the
mouse model, researchers found that gut virome can activate
host immune responses via intestinal mucosa and intestinal
immune cells (Gogokhia et al., 2019), which are involved in
the pathogenesis of obesity-related insulin resistance and T2D
(Esser et al., 2014). Furthermore, phages can also influence the
metabolic activity of their hosts through prophage integration
and horizontal gene transfer (de Jonge et al., 2022). However,
existing studies have some limitations. Firstly, most studies
have focused on bacteria, and there has been no research
on the relationship between the gut virome and GDM to
date. Secondly, animal experiments struggle to replicate the
complex environment of the human intestinal tract where
diverse microorganisms coexist. Furthermore, most existing
findings derive from observational studies, and the temporal
relationship between exposure (gut microorganisms) and
outcome (GDM) remains unclear for making causal inferences
(Smith and Ebrahim, 2002).

In this study, we conducted a prospective nested case-control
study to analyze the gut virome of GDM patients in early pregnancy
and explore the cross-kingdom correlation between gut viruses
and gut bacteria in GDM. Based on the gut microbial features
and clinical indices, a new prediction model of early pregnancy
GDM was constructed. Our findings could enhance strategies for
preventing and treating GDM by considering the microorganisms,
and offer novel insights into its pathogenesis.

Materials and methods

Study population

Between March 2017 and December 2018, pregnant women
from the early pregnancy cohort at the Maternity and Child
Health Hospital of Hunan Province were included in our study
(no.ChiCTR1900020652). Participants were enrolled during early
pregnancy and followed up until 42 days postpartum. Inclusion
criteria comprised: (1) singleton pregnancy through natural
conception; (2) absence of pre-existing diabetes, hypertension,
or thyroid disease prior to pregnancy; (3) no acute infections
and no recent antibiotic usage within the preceding 2 weeks.
According to the International Association of Diabetes and
Pregnancy Study Groups Standard (Metzger et al., 2010), pregnant
women were diagnosed with GDM if one or more of the
following applied glucose levels were elevated at 24 ∼ 28 weeks
in pregnancy (fasting ≥ 5.1 mmol/L, 1 h ≥ 10.0 mmol/L,
2 h ≥ 8.5 mmol/L).

This cohort initially comprised 744 subjects followed
from early pregnancy to postpartum, with a dropout rate of
6.0%. After excluding individuals with incomplete clinical
data, inadequate stool samples, or unsuccessful metagenomic
sequencing, 51 pregnant women diagnosed with GDM were
selected for the case group. A control group of 51 pregnant
women with normal blood glucose levels was randomly
chosen from the original cohort. All participants provided
informed written consent. The study was approved by the
Maternity and Child Health Hospital of Hunan Province
(no. EC201624), and all procedures adhered to applicable
guidelines and regulations.

DNA extraction and metagenomics
sequencing

Microbiome DNA was extracted from 180 to 200 mg of feces
using the QIAamp Fast DNA Stool Mini Kit (Qiagen, Germany).
Extracted DNA were checked by the NanoDrop2000 and Qubit
4.0 for concentration and purity, and stored at −20◦C until use.
Sequencing libraries were prepared using the NEBNext UltraTM

DNA Library Preparation Kit (Illumina, USA) according to the
manufacturer’s instructions. Clustering of index-coded samples
was conducted on a cBot Cluster Generation System, followed by
shotgun metagenomics sequencing on the Illumina HiSeq platform
(paired-end; insert size, 350 bp; read length, 150 bp).

Raw reads were first processed with fastp version 0.23.2, which
trimmed reads if adapter-contaminated, N-containing, shorter
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than 90 bp, or bases with quality low than 15 were more than 50% of
reads to get the high quality data (Chen, 2023). Then, reads aligned
to the human reference genome (GRCh38/hg38) were removed
using Bowtie2 version 2.5.3 to get the clean data (Langmead and
Salzberg, 2012). To enhance sequencing depth of virus sequences
per sample, virus-related reads in each sample were screened using
Kraken2 version 2.1.3 and cross-assembled via MEGAHIT version
1.1.2 with a k-mer ranging from 27 to 127 to construct contigs from
all samples (Li et al., 2016; Wood et al., 2019). Contigs longer than
1000 bp were retained then assessed using CheckV version 1.0.3 to
test whether their viral gene count was more than the number of
microbial genes (Nayfach et al., 2021). Contig coverage, measured
in Reads Per Kilobase per Million mapped reads (RPKMs), was
calculated using Bowtie2 version 2.5.3 with default parameters. This
measurement was normalized based on both contig length and
the number of mapped reads in each specimen (Han et al., 2018).
The average RPKM for each virus was calculated and normalized
across all samples to derive the abundance profile. Additionally, the
details on taxonomic identification and abundance profiling of gut
bacteria can be found in Supplementary material.

Statistical analyses

Alpha diversity was measured by Shannon and Simpson
indices. Principal coordinates analysis (PCoA), Permutational
multivariate analysis of variance (ADONIS), and Analysis of
Similarities (ANOSIM) were utilized to cluster and visualize
the samples as well as quantify the differences in beta
diversity between groups.

Multivariate linear regression analysis (MaAsLin2) was
conducted to explore the differential microbial features (gut viruses
and bacteria) between groups (Morgan et al., 2012). Taxa with
P < 0.05 and corrected P-value (Q-value) < 0.25 were ultimately
considered (Glickman et al., 2014). Spearman’s rank correlation
assessed correlations between differential gut viruses, clinical
indicators, and bacteria, visualized using the corrplot package.
To determine the co-occurrence network of bacterial and viral
communities in healthy controls and GDM patients, the top
50 most abundant gut viruses and bacteria at the species level
were selected, and virus-bacteria linkages were further examined.
Spearman correlation analysis was carried out to determine
these associations with the P-value corrected for multiple testing
utilizing the Benjamini-Hochberg FDR method. The cutoffs of
the correlation coefficient and the FDR-corrected P-value were
set at 0.5 and 0.05, respectively. The igraph package was applied
to calculate degree distribution, node betweenness, and network
natural connectivity.

Two different methods including random forest and logistic
regression models were used to predict GDM in early pregnancy,
with samples randomly split into training (70%) and validation
sets (30%). Random forest model was set as prime method and
model performance was evaluated using metrics such as area under
curve (AUC), accuracy, recall, precision, F1 score, sensitivity, and
specificity and visualized using the ROCR package to generate
receiver operating characteristic curves (ROC). These analyses were
conducted utilizing R version 4.2.2, with the significance threshold
set at P < 0.05.

Results

Characteristics of the subjects

This study included 51 GDM patients and 51 controls with
normal blood glucose levels during pregnancy. Baseline data
showed that the average age of GDM patients was 30.58 ± 3.70 years
and 30.66 ± 3.83 years for controls, without significant difference.
The BMI was significantly higher in the GDM group compared
to the control group (P = 0.018). Significant differences
existed between groups in height, systolic blood pressure (SBP),
hemoglobin (HGB), glucose (GLU), triglycerides (TG), and high-
density lipoprotein cholesterol (HDL-C) (P < 0.05). Furthermore,
logistic regression was employed for multivariate analysis to
explore determinants related to GDM based on univariate analysis
results. Height, HGB, and GLU were associated with GDM
occurrence (P < 0.05). Additional subject characteristics and
results of logistic regression analysis are presented in Table 1 and
Supplementary Table 1.

TABLE 1 Characteristics of the subjects.

GDM
(n = 51)

Controls
(n = 51)

P-
value

Basic characteristics

Age (year) 30.58 ± 3.70 30.66 ± 3.83 0.923

Gestational age of
fecal sample (weeks)

13.55 ± 0.91 13.71 ± 1.00 0.738

Primipara, n(%) 26 (51.0%) 31 (58.8) 0.426

Smoking history,
n(%)

2 (3.9%) 2 (3.9%) 1.000

Drink history, n(%) 3 (5.9%) 3 (5.9%) 1.000

Anthropometrics factors

Waist (cm) 81.02 ± 8.06 79.22 ± 8.09 0.262

Weight (kg) 57.00(8.00) 54.00 (11.00) 0.099

Height (cm) 158.39 ± 3.50 159.97 ± 4.08 0.039*

BMI (kg/cm2) 22.60 (3.53) 20.70 (3.21) 0.018*

SBP (mmHg) 119.55 ± 9.42 115.18 ± 10.91 0.033*

DBP (mmHg) 78.00 (11.00) 76.00(9.00) 0.245

Biochemical parameters

HGB (g/L) 128.00 (10.00) 122.00 (12.00) 0.009*

GLU(mmol/L) 4.90 (0.63) 4.60 (0.47) 0.001*

ALB (g/L) 44.95 ± 2.72 44.98 ± 2.72 0.963

TG (mmol/L) 1.62 (0.95) 1.25 (0.62) 0.010 *

TC (mmol/L) 4.57 ± 0.77 4.48 ± 0.67 0.519

HDL-C (mmol/L) 1.74 ± 0.33 1.95 ± 0.34 0.002*

LDL-C (mmol/L) 2.50 (1.10) 2.40 (0.72) 0.244

AST (U/L) 17.20 (10.10) 19.60 (8.20) 0.455

ALT (U/L) 15.80 (18.10) 15.40 (16.30) 0.327

*P< 0.05; GDM, gestational diabetes mellitus; BMI, body mass index; SBP, systolic pressure;
DBP, diastolic pressure; HGB, hemoglobin; GLU, glucose; ALB, albumin; TG, triglyceride;
TC, total cholesterol; HDL-C, high density lipoprotein cholesterol; LDL-C, low density
lipoprotein cholesterol; AST, aspartate amino transferase; ALT, alanine transaminase.
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Metagenomics sequencing analysis

In this study, we obtained a total of 778.96 gigabytes of raw data,
averaging 82,525 reads per sample after sequencing. The number of
reads per sample ranged from 39,822,166 to 137,574,946. Quality
control was performed using fastq, resulting in 5,089,345,182 high-
quality reads collected for further analysis. After cross-assembling
reads from all samples, we obtained a total of 312,465 contigs,
averaging 3,063 bp per sample, ranging from 1,000 to 213,528 bp.
Based on the quality estimation using the CheckV algorithm
(Nayfach et al., 2021), 13.7% of these contigs were evaluated
as complete viral genomes, 20.4, 25.1, and 40.8% of them were
high-, medium-, and low-quality viruses, respectively (Figure 1A).
Rarefaction curves indicated that the sequencing depth adequately
reflected the microbial diversity of the samples (Figure 1B).

Composition and diversity analysis

The contigs of all samples were annotated to viruses at different
classification levels (8 orders, 43 families, 176 genera, 328 species).
The average number of viruses per sample at different classification
levels were 5.22 ± 1.20 orders, 29.67 ± 4.55 families, 98.23 ± 9.25
genera, and 148.34 ± 12.37 species, respectively.

At the species level, the five most abundant taxa included
Staphylococcus phage SPbeta-like (16.10%), Faecalibacterium phage
FP Toutatis (9.78%), Faecalibacterium phage FP Mushu (8.99%),
Faecalibacterium phage FP Taranis (6.11%), Escherichia phage
500465-1 (4.44%), collectively constituting about 45.42% of all
gut viruses. Figure 1C demonstrated the top 10 viruses among
all participants, including the GDM and control groups. To
facilitate subsequent cross-kingdom analysis and prediction model
construction, we additionally annotated the gut bacteria of all
participants. A total of 1,303 species of bacteria were found at
the species level, of which 62 species were common with relative
abundance greater than 0.10%, accounting for 61.02% of the total
gut bacteria (Wang and Jia, 2016).

Analysis of alpha diversity revealed that women who later
developed GDM exhibited significantly higher diversity (higher
Shannon, P = 0.007; Simpson, P = 0.003) compared to controls
(Figure 1D and Supplementary Table 2). PCoA plots based on
Bray-Curtis and Jaccard distances were constructed to detect the
differences in beta diversity, while both ADONIS and ANOSIM
analyses indicated no differences in the overall composition
of the gut virome between the two groups (Figure 1E and
Supplementary Table 3).

Differential gut microbiome and
correlation analysis

The MaAsLin2 analysis was conducted to investigate
differences in the gut microorganisms between GDM patients
and healthy controls. For gut viruses, there were increased
abundance of Escherichia phage SH2026Stx1 (MaAsLin
coefficient = 16.72, Q = 0.23), Enterobacteria phage mEp043
c-1 (MaAsLin coefficient = 15.41, Q = 0.21), crAssphage cr50_1
(MaAsLin coefficient = 11.52, Q = 0.21), Enterobacteria phage

phi80 (MaAsLin coefficient = 7.07, Q = 0.21), and Escherichia phage
HK106 (MaAsLin coefficient = 5.23, Q = 0.23) in GDM patients.
While, for gut microbiota, there were less Eubacterium eligens
(MaAsLin coefficient = −3.35, Q = 0.04) and Escherichia phage
HK106 (MaAsLin coefficient = −2.75, Q = 0.04) in GDM patients.
Even after adjusting for potential confounding factors such as age
and gestational age, significant differences in these species persisted
between the two groups (Figure 2A and Supplementary Table 4).

Spearman’s rank correlation showed that the relative
abundance of Enterobacteria phage phi80 is negatively correlated
with GLU (r = −0.217, P = 0.028), while other differential
gut viruses showed no statistically associations with clinical
factors (Supplementary Figure 1 and Supplementary Table 5).
Subsequently, the correlation between differential viruses and
bacteria was analyzed, revealing a negative correlation between
Eubacterium eligens and three bacteriophages (Escherichia phage
SH2026Stx1, Enterobacteria phage mEp043 c-1, and Escherichia
phage HK106) in GDM group (r < 0, P < 0.05) (Figure 2B
and Supplementary Table 6). However, no such correlation was
observed in the control group.

Virus-bacteria co-occurrence network
analysis

Co-occurrence network analysis was used to evaluate the
cross-kingdom correlation between gut viruses and bacteria. We
observed that Escherichia phages, including Enterobacteria phage
phi80, Escherichia phage SH2026Stx1, and Escherichia phage HK106,
were positively correlated with Prevotella copri, which suggested
that Prevotella copri could infect these species (Figure 3A). We also
found that Clostridium phage phiSM101 and Clostridium phage vB
CpeS were more abundant in control group, and multiple viruses,
including Escherichia phage D6, were negatively associated with
them (Figure 3B). The results showed the predominance of positive
correlations over negative ones in both groups (P < 0.05).

Structurally, the network of GDM cases comprised 98 nodes
and 163 edges, while that of controls consisted of 77 nodes and
135 edge. The densities of the networks in these two groups were
0.0283 and 0.0237, respectively. Degree distribution of the GDM
and healthy control network was different (Figure 3C). Despite the
higher number of nodes and edges in the network of GDM cases,
the network natural connectivity of which was more fragile than
the control group with up to 25% nodes removed (Figure 3D).
Specifically, virus-bacteria linkages increased from 33 in control
group to 40 in case group, suggesting the linkage is more pervasive
in GDM patients than healthy pregnant women (Figure 3E).

GDM prediction models

We employed both random forest and logistic regression
methods to build prediction models for GDM, integrating
differential clinical indicators, gut viruses, and gut bacteria. 70% of
the subjects were used as the training set, and 30% were used as the
validation set for model rehearsal to select the optimal model.

Model 1: We first constructed a predictive model for GDM
by using the significantly different clinical indicators. For random
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FIGURE 1

Composition and diversity analysis of gut virome in different groups. (A) Pie plot of the quality assessment; (B) rarefaction curve; (C) composition
analysis; (D) alpha diversity; (E) the PCOA and ANOSIM analysis on beta diversity. **P < 0.01.

forest method, the ROC curve indicated an AUC of 0.742 (95% CI:
0.528 ∼ 0.912). Importance analysis was performed on the model’s
included indicators using the Mean Decrease Gini coefficient. The
result showed that GLU, HGB, and height were ranked in order of
decreasing importance. As for logistic regression model, the ROC
curve indicated an AUC of 0.772 (95% CI: 0.663 ∼ 0.891).

Model 2: On the basis of Model 1, two differential gut
bacteria in early pregnancy were incorporated into Model 2
as predictive indicators. The ROC curve indicated an AUC of
0.733 (95% CI: 0.515 ∼ 0.902). The ranking of importance was
as follows: Eubacterium eligens, GLU, Parabacteroides distasonis,
HGB, and height.

Model 3: Based on Model 1, five differential gut viruses present
in early pregnancy were incorporated into Model 3 as predictive
indicators. The ROC curve indicated an AUC of 0.769 (95% CI:
0.473 ∼ 0.931). The ranking of importance was as follows: GLU,
HGB, height, crAssphage cr50_1, Escherichia phage SH2026Stx1,
Enterobacteria phage phi80, Enterobacteria phage mEp043 c-1, and
Escherichia phage HK106.

Model 4: Based on Model 1, seven differential gut microbial
species were all added into the Model 4 as predictive indicators. The
order of importance ranking was GLU, Eubacterium eligens, HGB,
Parabacteroides distasonis, crAssphage cr50_1, height, Escherichia
phage SH2026Stx1, Enterobacteria phage phi80, Enterobacteria
phage, and Escherichia phage HK106mEp043 c-1, indicated an AUC
of 0.893 (95% CI: 0.736 ∼ 0.990). The accuracy (0.878), recall
(0.941), precision (0.800), and F1 score (0.865) were higher than
those of Models 1, 2, and 3. As for logistic regression model,

the ROC curve indicated an AUC of 0.930 (95% CI: 0.872 ∼

0.991). Additionally, the accuracy (0.872), sensitivity (0.861), and
specificity (0.891) were higher than those of Models 1, 2, and 3
(Figure 4, Table 2, and Supplementary Figure 2).

Discussion

In this nested case–control study, we conducted shotgun
metagenomics sequencing of a total of 102 stool samples to
characterize and analyze the differences in the composition of
gut virome between GDM patients and healthy controls. We
investigated the cross-kingdom correlation between gut viruses
and bacteria, and developed a novel prediction model for early
pregnancy GDM using gut microbial features and clinical indexes,
demonstrating robust predictive performance.

In our study, the alpha diversity of gut virome in GMD
was higher than that of the control group, consistent with the
finding of Ma et al. (2018). However, beta diversity did not
show significant differences, suggesting that it may not be the
entire composition of the gut virome but rather specific taxa
that affect GDM. To explore this possibility, we performed
MaAsLin2 analysis and identified five differentially abundant virus
taxa in pregnant GDM patients, including four Enterobacteria
phages and crAssphage cr50_1. Our result showed that after
adjusting for confounding factors such as age and gestational
age, Enterobacteria phage phi80 was enriched in the GDM
patients. A similar difference was observed in patients with
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FIGURE 2

Differential gut microbiome and correlation analysis. (A) The relative abundance of differential gut viruses using MaAsLin2 analysis; (B)
cross-kingdom correlation analysis of the differential viruses and bacteria. *Q < 0.25 and P < 0.05 in panel (A), P < 0.05 in panel (B).

colorectal cancer (Zuo et al., 2022). Certain intestinal microbes
may increase intestinal permeability and the likelihood of harmful
intestinal metabolites entering the bloodstream, thereby affecting

systemic inflammation (Abdullah et al., 2021). The inflammatory
environment may also promote insulin resistance and β-cell
dysfunction, contributing to the onset of GDM (Pinto et al., 2023).
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FIGURE 3

Comparison of virus-bacteria co-occurrence networks between two groups. Virus-bacteria co-occurrence networks for panels (A) case and (B)
control groups. The nodes are viruses and bacterial species. Blue ellipses and orange rectangles represent viruses and bacteria, respectively. Edges
represent positive associations (red) and negative associations (green) between virus and bacteria at the species level. (C) Degrees of distribution of
virus-bacteria co-occurrence networks. (D) Alternations of virus-bacteria co-occurrence networks based on the proportion of removed modes.
(E) Degrees of viral nodes degree in virus-bacteria co-occurrence networks.

Another case-control study identified significant increases in
Enterobacter and its bacteriophages in patients with T2D,
along with elevated levels of serum LPS, IL-6 and TNF-
α (Chen et al., 2020). Enrichment of Enterobacteria phage
phi80 might increase circulating LPS levels, thereby inducing
systemic subclinical inflammation and affecting insulin sensitivity,
potentially contributing to GDM (Mehta et al., 2010).

Additionally, we found significantly elevated levels of
Escherichia phage HK10 and Enterobacteria phage mEp043 c-
1 in the GDM group and those of which were also negatively
correlated with the relative abundance of gut bacterium
Eubacterium eligens. As a short-chain fatty acid (SCFA) butyrate-
producing bacteria, Eubacterium has been reported to play
an important role in maintaining the integrity of intestinal
barrier, blood glucose response, and cholesterol homeostasis
(Forslund et al., 2015). SCFA can improve insulin sensitivity
and satiety by inhibiting HDAC-mediated reprogramming of
pancreatic β-cells (Khan and Jena, 2015). This implies that
increased levels of Escherichia phage HK106 and Enterobacteria
phage mEp043 c-1 may reduce the levels of Eubacterium eligens
(Shuwen and Kefeng, 2022), leading to butyrate depletion in the

intestine and initiating a cascade of pro-inflammatory reactions,
thus impacting the blood glucose metabolism of pregnant
women.

Consistent with our results, Ma et al. (2018) and Chen et al.
(2020) reported the increased cross-kingdom correlations between
enteric viruses and bacteria in T2D patients. Furthermore, the
positive correlations are significantly more than the negative
correlations. Yang et al. (2021) found the intensive cross-kingdom
correlations in lean controls compared to obese subjects with T2D,
which contradicted our findings. The conflicting results are likely
due to the limited sample size and sample heterogeneity. The
evidence suggests that gut viruses and bacteria are likely to exhibit
synergistic or mutually reinforcing relationships, influencing
glucose and lipid metabolism. However, additional functional
experiments and randomized controlled trials are needed to
confirm their association with GDM.

We first developed the model to predict early pregnancy
GDM using clinical indicators associated with GDM and achieved
an AUC of 0.724, similar to other published GDM prediction
models (AUC range: 0.672 ∼ 0.784) (Zheng et al., 2019; Gao
et al., 2020; Duo et al., 2023). At present, most of the prediction
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FIGURE 4

Gestational diabetes mellitus prediction models in early pregnancy using random forest method. GLU, glucose; HGB, hemoglobin; AUC, area under
curve; CI, confidence interval.
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models for GDM were based on clinical indicators and maternal
characteristics. However, recent studies increasingly suggest the
potential of gut viral and bacterial markers in diagnosing T2D
(Fan et al., 2023; Dash et al., 2023). Adding seven GDM-related
gut microbial features (five gut viruses and two bacteria) to
the initial model increased the AUC to 0.895 and recall rate
to 0.941, respectively. Pinto et al. (2023) established a GDM
prediction model incorporating early pregnancy gut microbiome
composition, cytokine levels, medical history, and dietary factors,
achieving an AUC of 0.830. Ma et al. (2020) and Hu et al. (2021) also
constructed the model with AUC of 0.771 and 0.736, respectively.
Comparing to the exsiting models only using gut microbiota and
other indicators, our study is the first to include gut viruses in
the GDM prediction model and demonstrated better prediction
performance, thus indicating a potential association between gut
viruses and GDM occurrence in early pregnancy. At the same
time, our study used two different methods (random forest and
logistic regression methods) to construct the model together with
training and validation datasets to perform internal validation. The
consistent results ensure the stability of our research. Furthermore,
all variables included in this model are in the first trimester of
pregnancy. Therefore, this model could predict the probability of
GDM better in early pregnancy, helping to target high-risk people.
Early intervention in these high-risk people may reduce the risk of
GDM and have better application value.

Our study has several strengths. Firstly, it is the first to
investigate the relationship between the gut virome and GDM, and
to analyze interactions between gut viruses and bacteria. Secondly,
the nested case-control design ensures that exposure (gut virome)
precedes outcome (GDM). Thirdly, our findings were reinforced
by a GDM prediction model incorporating early pregnancy gut
viruses, gut bacteria, and clinical indicators, which showed good
predictive capability.

There are several limitations in our study. Firstly, the cohort
only included pregnant women from Hunan Province, limiting the
generalizability of our findings to other populations. Secondly, due
to an incomplete database and the lack of standardized procedures
for handling virus sequences, some metagenomic sequencing
data could not be annotated, which affected the robustness
and reliability of our findings. Thirdly, while we observed the
relationship between the gut virome and GDM, the function and
underlying mechanisms remain unclear. Nevertheless, this study
is exploratory and aims to guide future research on gut virome
functions and gut virus-bacteria interactions in health and disease.

In conclusion, by conducting a nested case-control study, we
characterized the gut virome of GDM patients in early pregnancy
and explored the correlation between gut viruses and gut bacteria
across kingdoms. Using clinical indicators and gut microbial
features, we developed a new predictive model for GDM that
demonstrated good predictive performance. Our findings have
implications for both the prevention and treatment of GDM,
offering valuable insights into its pathogenesis. In the future,
the gut viruses and bacteria associated with GDM discovered
in this study would be validated through function annotation
and mouse experiments. Additionally, metabolites derived from
gut microbiome would be analyzed to clarify the connections
between metagenomics, metabolomics, and GDM, with the goal
of thoroughly investigating its pathogenesis and creating early
prediction models using a multi-omics approach.

Frontiers in Microbiology 09 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1461259
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-15-1461259 November 12, 2024 Time: 15:2 # 10

Wu et al. 10.3389/fmicb.2024.1461259

Data availability statement

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories
and accession number(s) can be found in this article/
Supplementary material.

Ethics statement

The studies involving humans were approved by the Maternity
and Child Health Hospital of Hunan Province (no. EC201624).
The studies were conducted in accordance with the local legislation
and institutional requirements. Written informed consent for
participation in this study was provided by the participants’ legal
guardians/next of kin.

Author contributions

XW: Conceptualization, Funding acquisition, Writing –
original draft, Writing – review and editing. XL: Software,
Visualization, Writing – original draft. WX: Investigation,
Writing – original draft. WC: Investigation, Writing –
original draft. ZZ: Investigation, Writing – original draft. HT:
Conceptualization, Supervision, Writing – review and editing. TX:
Formal analysis, Software, Visualization, Writing – original draft.

Funding

The author(s) declare that financial support was received for
the research, authorship, and/or publication of this article. This

work was supported by the National Natural Science Foundation
of China (82360665), the Natural Science Foundation of Hunan
Province (2024JJ7406 and 2024JJ9043), the Research Project on
Teaching Reform of Ordinary Colleges and Universities in Hunan
Province (202401000932), and the Degree and Graduate Education
Reform Research Project in Hunan Province (2024JGYB206).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.2024.
1461259/full#supplementary-material

References

Abdullah, M., Sukartini, N., Nursyirwan, S. A., Pribadi, R. R., Maulahela, H., Utari,
A. P., et al. (2021). Gut microbiota profiles in early- and late-onset colorectal cancer:
A potential diagnostic biomarker in the future. Digestion 102, 823–832. doi: 10.1159/
000516689

Bellamy, L., Casas, J. P., Hingorani, A. D., and Williams, D. (2009). Type 2 diabetes
mellitus after gestational diabetes: A systematic review and meta-analysis. Lancet 373,
1773–1779. doi: 10.1016/s0140-6736(09)60731-5

Billionnet, C., Mitanchez, D., Weill, A., Nizard, J., Alla, F., Hartemann, A.,
et al. (2017). Gestational diabetes and adverse perinatal outcomes from 716,152
births in France in 2012. Diabetologia 60, 636–644. doi: 10.1007/s00125-017-
4206-6

Buchanan, T. A., Xiang, A., Kjos, S. L., and Watanabe, R. (2007). What is gestational
diabetes? Diabetes Care 30(Suppl. 2), S105–S111. doi: 10.2337/dc07-s201

Chen, Q., Ma, X., Li, C., Shen, Y., Zhu, W., Zhang, Y., et al. (2020). Enteric phageome
alterations in patients with type 2 diabetes. Front. Cell Infect. Microbiol. 10:575084.
doi: 10.3389/fcimb.2020.575084

Chen, S. (2023). Ultrafast one-pass FASTQ data preprocessing, quality control, and
deduplication using fastp. Imeta 2:e107. doi: 10.1002/imt2.107

Crusell, M. K. W., Hansen, T. H., Nielsen, T., Allin, K. H., Rühlemann, M. C.,
Damm, P., et al. (2018). Gestational diabetes is associated with change in the gut
microbiota composition in third trimester of pregnancy and postpartum. Microbiome
6:89. doi: 10.1186/s40168-018-0472-x

Dabelea, D., and Pettitt, D. J. (2001). Intrauterine diabetic environment confers
risks for type 2 diabetes mellitus and obesity in the offspring, in addition to genetic
susceptibility. J. Pediatr. Endocrinol. Metab. 14, 1085–1091. doi: 10.1515/jpem-2001-
0803

Dash, N. R., Al Bataineh, M. T., Alili, R., Al Safar, H., Alkhayyal, N., Prifti, E., et al.
(2023). Functional alterations and predictive capacity of gut microbiome in type 2
diabetes. Sci. Rep. 13:22386. doi: 10.1038/s41598-023-49679-w

de Jonge, P. A., Wortelboer, K., Scheithauer, T. P. M., van den Born, B. H.,
Zwinderman, A. H., Nobrega, F. L., et al. (2022). Gut virome profiling identifies a
widespread bacteriophage family associated with metabolic syndrome. Nat Commun.
13:3594. doi: 10.1038/s41467-022-31390-5

Duo, Y., Song, S., Qiao, X., Zhang, Y., Xu, J., Zhang, J., et al. (2023). A simplified
screening model to predict the risk of gestational diabetes mellitus in pregnant chinese
women. Diabetes Ther. 14, 2143–2157. doi: 10.1007/s13300-023-01480-8

Esser, N., Legrand-Poels, S., Piette, J., Scheen, A. J., and Paquot, N. (2014).
Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes.
Diabetes Res. Clin. Pract. 105, 141–150. doi: 10.1016/j.diabres.2014.04.006

Fan, G., Cao, F., Kuang, T., Yi, H., Zhao, C., Wang, L., et al. (2023). Alterations in the
gut virome are associated with type 2 diabetes and diabetic nephropathy. Gut Microbes
15:2226925. doi: 10.1080/19490976.2023.2226925

Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S.,
et al. (2015). Disentangling type 2 diabetes and metformin treatment signatures in the
human gut microbiota. Nature 528, 262–266. doi: 10.1038/nature15766

Gao, S., Leng, J., Liu, H., Wang, S., Li, W., Wang, Y., et al. (2020). Development
and validation of an early pregnancy risk score for the prediction of gestational
diabetes mellitus in Chinese pregnant women. BMJOpenDiabetes Res. Care 8:e000909.
doi: 10.1136/bmjdrc-2019-000909

Glickman, M. E., Rao, S. R., and Schultz, M. R. (2014). False discovery rate control is
a recommended alternative to Bonferroni-type adjustments in health studies. J. Clin.
Epidemiol. 67, 850–857. doi: 10.1016/j.jclinepi.2014.03.012

Frontiers in Microbiology 10 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1461259
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1461259/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2024.1461259/full#supplementary-material
https://doi.org/10.1159/000516689
https://doi.org/10.1159/000516689
https://doi.org/10.1016/s0140-6736(09)60731-5
https://doi.org/10.1007/s00125-017-4206-6
https://doi.org/10.1007/s00125-017-4206-6
https://doi.org/10.2337/dc07-s201
https://doi.org/10.3389/fcimb.2020.575084
https://doi.org/10.1002/imt2.107
https://doi.org/10.1186/s40168-018-0472-x
https://doi.org/10.1515/jpem-2001-0803
https://doi.org/10.1515/jpem-2001-0803
https://doi.org/10.1038/s41598-023-49679-w
https://doi.org/10.1038/s41467-022-31390-5
https://doi.org/10.1007/s13300-023-01480-8
https://doi.org/10.1016/j.diabres.2014.04.006
https://doi.org/10.1080/19490976.2023.2226925
https://doi.org/10.1038/nature15766
https://doi.org/10.1136/bmjdrc-2019-000909
https://doi.org/10.1016/j.jclinepi.2014.03.012
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-15-1461259 November 12, 2024 Time: 15:2 # 11

Wu et al. 10.3389/fmicb.2024.1461259

Gogokhia, L., Buhrke, K., Bell, R., Hoffman, B., Brown, D. G., Hanke-Gogokhia,
C., et al. (2019). Expansion of bacteriophages is linked to aggravated intestinal
inflammation and colitis. Cell Host Microbe 25, 285–299.e8. doi: 10.1016/j.chom.2019.
01.008.

Han, M., Yang, P., Zhong, C., and Ning, K. (2018). The human gut virome in
hypertension. Front. Microbiol. 9:3150. doi: 10.3389/fmicb.2018.03150

Hu, P., Chen, X., Chu, X., Fan, M., Ye, Y., Wang, Y., et al. (2021). Association of gut
microbiota during early pregnancy with risk of incident gestational diabetes mellitus.
J. Clin. Endocrinol. Metab. 106, e4128–e4141. doi: 10.1210/clinem/dgab346

Khan, S., and Jena, G. (2015). The role of butyrate, a histone deacetylase inhibitor in
diabetes mellitus: Experimental evidence for therapeutic intervention. Epigenomics 7,
669–680. doi: 10.2217/epi.15.20

Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2.
Nat. Methods 9, 357–359. doi: 10.1038/nmeth.1923

Li, D., Luo, R., Liu, C. M., Leung, C. M., Ting, H. F., Sadakane, K., et al. (2016).
MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced
methodologies and community practices. Methods 102, 3–11. doi: 10.1016/j.ymeth.
2016.02.020

Ma, S., You, Y., Huang, L., Long, S., Zhang, J., Guo, C., et al. (2020).
Alterations in gut microbiota of gestational diabetes patients during the first
trimester of pregnancy. Front. Cell Infect. Microbiol. 10:58. doi: 10.3389/fcimb.2020.
00058

Ma, Y., You, X., Mai, G., Tokuyasu, T., and Liu, C. (2018). A human gut phage
catalog correlates the gut phageome with type 2 diabetes. Microbiome 6:24. doi: 10.
1186/s40168-018-0410-y

Mehta, N. N., McGillicuddy, F. C., Anderson, P. D., Hinkle, C. C., Shah, R.,
Pruscino, L., et al. (2010). Experimental endotoxemia induces adipose inflammation
and insulin resistance in humans. Diabetes 59, 172–181. doi: 10.2337/db09-
0367

Metzger, B. E., Gabbe, S. G., Persson, B., Buchanan, T. A., Catalano,
P. A., Damm, P., et al. (2010). International association of diabetes and
pregnancy study groups recommendations on the diagnosis and classification
of hyperglycemia in pregnancy. Diabetes Care 33, 676–682. doi: 10.2337/dc09-
1848

Metzger, B. E., Lowe, L. P., Dyer, A. R., Trimble, E. R., Chaovarindr, U., Coustan,
D. R., et al. (2008). Hyperglycemia and adverse pregnancy outcomes. N. Engl. J. Med.
358, 1991–2002. doi: 10.1056/NEJMoa0707943

Mitanchez, D. (2010). Foetal and neonatal complications in gestational diabetes:
Perinatal mortality, congenital malformations, macrosomia, shoulder dystocia, birth
injuries, neonatal complications. Diabetes Metab. 36, 617–627. doi: 10.1016/j.diabet.
2010.11.013

Morgan, X. C., Tickle, T. L., Sokol, H., Gevers, D., Devaney, K. L., Ward,
D. V., et al. (2012). Dysfunction of the intestinal microbiome in inflammatory
bowel disease and treatment. Genome Biol. 13:R79. doi: 10.1186/gb-2012-
13-9-r79

Nayfach, S., Camargo, A. P., Schulz, F., Eloe-Fadrosh, E., Roux, S., and Kyrpides,
N. C. (2021). CheckV assesses the quality and completeness of metagenome-
assembled viral genomes. Nat. Biotechnol. 39, 578–585. doi: 10.1038/s41587-020-
00774-7

Pinto, Y., Frishman, S., Turjeman, S., Eshel, A., Nuriel-Ohayon, M., Shrossel, O.,
et al. (2023). Gestational diabetes is driven by microbiota-induced inflammation
months before diagnosis. Gut 72, 918–928. doi: 10.1136/gutjnl-2022-328406

Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., et al. (2012). A metagenome-
wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60. doi:
10.1038/nature11450

Rasmussen, T. S., Mentzel, C. M. J., Kot, W., Castro-Mejía, J. L., Zuffa, S., Swann,
J. R., et al. (2020). Faecal virome transplantation decreases symptoms of type 2 diabetes
and obesity in a murine model. Gut 69, 2122–2130. doi: 10.1136/gutjnl-2019-320005

Reyes, A., Semenkovich, N. P., Whiteson, K., Rohwer, F., and Gordon, J. I. (2012).
Going viral: Next-generation sequencing applied to phage populations in the human
gut. Nat. Rev. Microbiol. 10, 607–617. doi: 10.1038/nrmicro2853

Shuwen, H., and Kefeng, D. (2022). Intestinal phages interact with bacteria and are
involved in human diseases. Gut Microbes 14:2113717. doi: 10.1080/19490976.2022.
2113717

Smith, G. D., and Ebrahim, S. (2002). Data dredging, bias, or confounding. Bmj 325,
1437–1438. doi: 10.1136/bmj.325.7378.1437

Wang, H., Li, N., Chivese, T., Werfalli, M., Sun, H., Yuen, L., et al. (2022).
IDF diabetes atlas: Estimation of global and regional gestational diabetes mellitus
prevalence for 2021 by international association of diabetes in pregnancy study group’s
criteria. Diabetes Res Clin Pract. 183:109050. doi: 10.1016/j.diabres.2021.109050

Wang, J., and Jia, H. (2016). Metagenome-wide association studies: Fine-mining the
microbiome. Nat. Rev. Microbiol. 14, 508–522. doi: 10.1038/nrmicro.2016.83

Wood, D. E., Lu, J., and Langmead, B. (2019). Improved metagenomic analysis with
Kraken 2. Genome Biol. 20:257. doi: 10.1186/s13059-019-1891-0

Wu, X., Lin, D., Li, Q., Cai, J., Huang, H., Xiang, T., et al. (2023). Investigating
causal associations among gut microbiota, gut microbiota-derived metabolites, and
gestational diabetes mellitus: A bidirectional Mendelian randomization study. Aging
15, 8345–8366. doi: 10.18632/aging.204973

Yang, K., Niu, J., Sun, Y., Xu, Z., Tang, W., et al. (2021). Alterations in the gut
virome in obesity and type 2 diabetes mellitus. Gastroenterology 161, 1257–1269.e13.
doi: 10.1053/j.gastro.2021.06.056

Zheng, T., Ye, W., Wang, X., Li, X., Zhang, J., Little, J., et al. (2019). A simple
model to predict risk of gestational diabetes mellitus from 8 to 20 weeks of gestation in
Chinese women. BMC Pregnancy Childbirth 19:252. doi: 10.1186/s12884-019-2374-8

Zhu, Y., and Zhang, C. (2016). Prevalence of gestational diabetes and risk of
progression to type 2 diabetes: A global perspective. Curr. Diab. Rep. 16:7. doi: 10.
1007/s11892-015-0699-x

Zuo, W., Michail, S., and Sun, F. (2022). Metagenomic analyses of multiple gut
datasets revealed the association of phage signatures in colorectal cancer. Front. Cell
Infect. Microbiol. 12:918010. doi: 10.3389/fcimb.2022.918010

Frontiers in Microbiology 11 frontiersin.org

https://doi.org/10.3389/fmicb.2024.1461259
https://doi.org/10.1016/j.chom.2019.01.008.
https://doi.org/10.1016/j.chom.2019.01.008.
https://doi.org/10.3389/fmicb.2018.03150
https://doi.org/10.1210/clinem/dgab346
https://doi.org/10.2217/epi.15.20
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1016/j.ymeth.2016.02.020
https://doi.org/10.1016/j.ymeth.2016.02.020
https://doi.org/10.3389/fcimb.2020.00058
https://doi.org/10.3389/fcimb.2020.00058
https://doi.org/10.1186/s40168-018-0410-y
https://doi.org/10.1186/s40168-018-0410-y
https://doi.org/10.2337/db09-0367
https://doi.org/10.2337/db09-0367
https://doi.org/10.2337/dc09-1848
https://doi.org/10.2337/dc09-1848
https://doi.org/10.1056/NEJMoa0707943
https://doi.org/10.1016/j.diabet.2010.11.013
https://doi.org/10.1016/j.diabet.2010.11.013
https://doi.org/10.1186/gb-2012-13-9-r79
https://doi.org/10.1186/gb-2012-13-9-r79
https://doi.org/10.1038/s41587-020-00774-7
https://doi.org/10.1038/s41587-020-00774-7
https://doi.org/10.1136/gutjnl-2022-328406
https://doi.org/10.1038/nature11450
https://doi.org/10.1038/nature11450
https://doi.org/10.1136/gutjnl-2019-320005
https://doi.org/10.1038/nrmicro2853
https://doi.org/10.1080/19490976.2022.2113717
https://doi.org/10.1080/19490976.2022.2113717
https://doi.org/10.1136/bmj.325.7378.1437
https://doi.org/10.1016/j.diabres.2021.109050
https://doi.org/10.1038/nrmicro.2016.83
https://doi.org/10.1186/s13059-019-1891-0
https://doi.org/10.18632/aging.204973
https://doi.org/10.1053/j.gastro.2021.06.056
https://doi.org/10.1186/s12884-019-2374-8
https://doi.org/10.1007/s11892-015-0699-x
https://doi.org/10.1007/s11892-015-0699-x
https://doi.org/10.3389/fcimb.2022.918010
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/

	A nested case-control study on the association of gut virome in early pregnancy and gestational diabetes mellitus
	Introduction
	Materials and methods
	Study population
	DNA extraction and metagenomics sequencing
	Statistical analyses

	Results
	Characteristics of the subjects
	Metagenomics sequencing analysis
	Composition and diversity analysis
	Differential gut microbiome and correlation analysis
	Virus-bacteria co-occurrence network analysis
	GDM prediction models

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


