Skip to main content
. 2024 Nov 15;15:1461259. doi: 10.3389/fmicb.2024.1461259

TABLE 2.

Gestational diabetes mellitus prediction models in early pregnancy.

Model Random forest model Logistic regression model
AUC (95% CI) Accuracy Recall Precision F1 score AUC (95% CI) Accuracy Sensitivity Specificity
Model 1 0.742 (0.528, 0.912) 0.718 0.667 0.778 0.718 0.772 (0.663, 0.891) 0.751 0.832 0.672
Model 2 0.733 (0.515, 0.902) 0.763 0.789 0.750 0.769 0.881 (0.801, 0.963) 0.822 0.889 0.743
Model 3 0.769 (0.473, 0.931) 0.774 0.846 0.688 0.759 0.849 (0.772, 0.942) 0.772 0.781 0.769
Model 4 0.893 (0.736, 0.990) 0.878 0.941 0.800 0.865 0.930 (0.872, 0.991) 0.872 0.861 0.891

It shows the results in the training dataset; GDM, gestational diabetes mellitus; AUC, area under curve; CI, confidence interval.