TABLE 2.
Gestational diabetes mellitus prediction models in early pregnancy.
Model | Random forest model | Logistic regression model | |||||||
AUC (95% CI) | Accuracy | Recall | Precision | F1 score | AUC (95% CI) | Accuracy | Sensitivity | Specificity | |
Model 1 | 0.742 (0.528, 0.912) | 0.718 | 0.667 | 0.778 | 0.718 | 0.772 (0.663, 0.891) | 0.751 | 0.832 | 0.672 |
Model 2 | 0.733 (0.515, 0.902) | 0.763 | 0.789 | 0.750 | 0.769 | 0.881 (0.801, 0.963) | 0.822 | 0.889 | 0.743 |
Model 3 | 0.769 (0.473, 0.931) | 0.774 | 0.846 | 0.688 | 0.759 | 0.849 (0.772, 0.942) | 0.772 | 0.781 | 0.769 |
Model 4 | 0.893 (0.736, 0.990) | 0.878 | 0.941 | 0.800 | 0.865 | 0.930 (0.872, 0.991) | 0.872 | 0.861 | 0.891 |
It shows the results in the training dataset; GDM, gestational diabetes mellitus; AUC, area under curve; CI, confidence interval.