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Aim and background: Tertiary lymphoid structures (TLS) are increasingly

recognized for their role in immunity. Despite growing interest, a systematic

bibliometric analysis of TLS-related research has been lacking. To provide a

comprehensive overview of current research trends and hotspots, we conducted

a bibliometric analysis using data from the Web of Science Core Collection.

Methods: We retrieved TLS-related publications from the Science Citation Index

Expanded within the Web of Science Core Collection from January 2014 to

December 2023. Co-occurrence analysis with “VOSviewer” identified current

status and research hotspots, while “CiteSpace” was used for co-citation analysis

to assess knowledge evolution and bursts. Thematic evolution was explored

using bibliometrics to identify emerging keyword trends. Additionally, we

examined country/region, institutional, and author contributions and

collaborations. Tables were created using Microsoft Word.

Results: A total of 785 publications were analyzed, showing a continuous growth

trend from 2017 to 2023, indicating escalating interest in TLS among researchers.

Leading countries in TLS research were China (231 publications), the United

States (212 publications), and France (89 publications). The most productive

institution and author were the “Institut national de la santé et de la recherche

médicale” (70 publications) and Catherine Sautes-Fridman (21 publications),

respectively. Key topics included TLS, B cells, and immunotherapy. Recent

research has focused on mechanisms linking TLS with cancers, such as

immunotherapy, tumor microenvironment, tumor-infiltrating lymphocytes,

prognosis, and immune checkpoint inhibitors, highlighting an expanding area

of study. Additionally, TLS ’ potential as a biomarker for predicting

immunotherapy efficacy across different cancer types remains a burgeoning

research direction.
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Abbreviations: HEVs, high endothelial venules; ICIs

inhibitors; NSCLC, non-small cell lung cancer; TL

structures; WOSCC, Web of Science Core Collection.
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Conclusions: This study provides a comprehensive analysis of global TLS-related

publications, revealing key literature metrics and identifying influential articles and

emerging research concerns. These findings contribute valuable insights into the

role of TLS in immunotherapy and suggest future directions for this dynamic field.
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1 Introduction

Immune cells are frequently found in the microenvironment

surrounding tumor cells (1). The prognostic impact of these tumor-

infiltrating immune cells across different cancer types has long been

of interest (2–4). In recent years, immunotherapy, particularly the use

of immune checkpoint inhibitors (ICIs), has made remarkable strides

in antitumor therapy (5). ICIs primarily enhance antitumor efficacy

by reversing the functional exhaustion of lymphocytes infiltrating

within or around tumors (6, 7). Consequently, there has been

increased attention on the prognostic role and regulatory

mechanisms of these tumor-infiltrating immune cells. For instance,

patients with enriched intratumoral immune cell populations in non-

small cell lung cancer (NSCLC) treated with ICIs often exhibit higher

response rates and improved outcomes (8, 9). In chronic

inflammatory or tumor environments, a type of lymphocyte

aggregate known as tertiary lymphoid structures (TLS) frequently

forms (10). TLS develops postnatally in non-lymphoid tissues, also

referred to as ectopic lymphoid structures. TLS has been identified in

autoimmune diseases and chronic infections (11, 12). Additionally,

several studies suggest that the presence of TLS in tumor tissue serves

as a promising prognostic marker for immunotherapy (9, 13, 14).

However, TLS may not consistently predict positive outcomes in

certain tumor subtypes (15, 16). This variability in immunotherapy

outcomes has further stimulated research into the functions and

regulatory mechanisms of TLS within tumors.

The structure, cellular composition, and regulation of TLS may

be different between diseases (10). As a result, investigating the

mechanisms of action and the potential therapeutic predictive role

of TLS has emerged as a prominent research area, leading to the

publication of numerous related studies. Bibliometric analysis, a

statistical methodology utilizing public literature databases,

quantitatively and qualitatively assesses relevant publications to

summarize research trends and hotspots in a specific field (17).

Widely applied in scientific research, bibliometrics systematically

analyzes various aspects of a research field, including countries/

regions, keywords, references, authors, journals, and institutions
, immune checkpoint

S, tertiary lymphoid
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(18, 19). However, the comprehensive exploration of global trends

in TLS through bibliometric analysis remains relatively unexplored.

Therefore, conducting a bibliometric analysis to explore

research trends and hotspots related to TLS can significantly aid

researchers in quickly grasping essential information, identifying

pivotal developments, and discerning future directions in

TLS research.
2 Materials and methods

2.1 Data collection and extraction

Data from the Web of Science Core Collection database

(WOSCC) were utilized for this study. Articles and reviews in

English were retrieved from the WOSCC on February 27, 2024. The

search terms in this article are derived from the subject terms in the

MeSH database (https://www.ncbi.nlm.nih.gov/mesh). We defined

the search keywords as: “Tertiary lymphoid structure*”, “Lymphoid

Structure*, Tertiary”, “Ectopic Lymphoid-Like Structure*”,

“Lymphoid-Like Structure*, Ectopic”, “Lymphoid Formation*,

Ectopic”, “Ectopic Lymphoid Tissue*”, “Lymphoid Tissue*,

Ectopic”, “Ectopic Lymphoid Organ*”, “Lymphoid Organ*,

Ectopic”, “Ectopic Lymph Node*”, “Lymph Node*, Ectopic”,

“Ectopic Lymphoid Follicle*”, and “Lymphoid Follicle*, Ectopic”.

The terms attached to TLS were searched in the titles (TI),

abstracts (AB), or author keywords (AK), a search strategy

commonly used in bibliometric analysis (20–22). The detailed

search formula is as follows: ((TI=(“Tertiary lymphoid structure*”

OR “Lymphoid Structure*, Tertiary” OR “Ectopic Lymphoid-Like

Structure*” OR “Lymphoid-Like Structure*,Ectopic” OR

“Lymphoid Formation*, Ectopic” OR “Ectopic Lymphoid Tissue*”

OR “Lymphoid Tissue*, Ectopic” OR “Ectopic Lymphoid Organ*”

OR “Lymphoid Organ*, Ectopic” OR “Ectopic Lymph Node*” OR

“Lymph Node*, Ectopic” OR “Ectopic Lymphoid Follicle*” OR

“Lymphoid Follicle*, Ectopic”)) OR AB=(“Tertiary lymphoid

structure*” OR “Lymphoid Structure*, Tertiary” OR “Ectopic

Lymphoid-Like Structure*” OR “Lymphoid-Like Structure*,

Ectopic” OR “Lymphoid Formation*, Ectopic” OR “Ectopic

Lymphoid Tissue*” OR “Lymphoid Tissue*, Ectopic” OR “Ectopic

Lymphoid Organ*” OR “Lymphoid Organ*, Ectopic” OR “Ectopic

Lymph Node*” OR “Lymph Node*, Ectopic” OR “Ectopic
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Lymphoid Follicle*” OR “Lymphoid Follicle*, Ectopic”)) OR AK=

(“Tertiary lymphoid structure*” OR “Lymphoid Structure*,

Tertiary” OR “Ectopic Lymphoid-Like Structure*” OR

“Lymphoid-Like Structure*,Ectopic” OR “Lymphoid Formation*,

Ectopic” OR “Ectopic Lymphoid Tissue*” OR “Lymphoid Tissue*,

Ectopic” OR “Ectopic Lymphoid Organ*” OR “Lymphoid Organ*,

Ectopic” OR “Ectopic Lymph Node*” OR “Lymph Node*, Ectopic”

OR “Ectopic Lymphoid Follicle*” OR “Lymphoid Follicle*,

Ectopic”). Our selection criteria included articles published in

English between 1 January 2014 and 31 December 2023. The

process of article selection and review is illustrated in Figure 1.
2.2 Data analysis and visualization

The study was conducted by two independent researchers to

ensure the reliability of the results. These researchers evaluated the

outcomes of independent scans and included studies that met the

predefined inclusion and exclusion criteria. Documents retrieved

from the search were downloaded in plain text format, and relevant

information including author details, country or region, institution,

keywords, and references was extracted for subsequent data

analysis. In our analysis, we examined various aspects including

journals, countries, institutions, cited publications, authors,

keyword co-occurrence networks, abstract content analysis, and

co-citations. We utilized several software tools for this purpose:

“VOSviewer 1.6.17”, “CiteSpace 5.8 R3”, and the “bibliometrics”

function in R Version 4.2.2 (R Foundation for Statistical

Computing, Vienna, Austria; http://www.R-project.org/).

Additionally, Tables were created using Microsoft Word.
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3 Results

3.1 Annual publications and trends

A total of 589 articles (74.8%) and 198 reviews (25.2%) related

to TLS were included in the WOSCC. Of these, 785 publications

were written in English. Over the period from 2014 to 2023, there

has been a consistent annual increase in publications on TLS

(Figure 2A). The growth rate reached its peak in 2023 at 24.076%,

indicating a significant rise in interest in TLS within the

academic community.

Since 2014, articles originating in the United States (212

documents) have maintained a high percentage, China (231

documents) has seen a dramatic increase in the number of

articles published in recent years and was expected to overtake

the United States as the most published country after 2022

(Figure 2B). In addition, France, the United Kingdom, Germany,

and Japan are also common countries for publication on TLS

(Table 1). Single country publications are generally more

numerous than multiple country publications. The countries with

a high proportion of multiple country publications are mainly the

Netherlands, Belgium and the United Kingdom, whereas China has

the lowest proportion (Figure 2C). These collaborations have

resulted in stronger linkages within the TLS research community

in these countries compared to others (Figures 2D, E; Table 1). East

Asian countries such as China, South Korea, and Japan have

increasingly engaged in joint publications with authors from

various nations. Additionally, countries like Brazil, Ireland, and

Iran have also begun contributing notable results on TLS in recent

years (Figure 2E). These trends underscore the global and

collaborative nature of TLS research.
FIGURE 1

The diagram illustrates the process of data filtering and bibliometric analysis.
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3.2 Analysis of keywords

3.2.1 Gene signature
This keyword clustering map generated by “CiteSpace” reveals

several primary research themes identified through keyword

clustering in the literature. These themes include gene signature,

prognostic significance, inflammation, high endothelial venules

(HEVs), and angiogenesis (Figure 3A).

It is interesting to find suitable gene set scores to identify TLS.

Of particular interest is the development of gene set scores tailored

for identifying TLS. For instance, researchers have utilized a 12-

gene expression signature (including CCL2, CCL3, CCL4, CCL5,

and others) to assess TLS presence across different cancer types (23,

24). Other gene set scores were also attempted to be applied (15, 25).

Given the variability and dynamics in gene expression,

immunohistochemistry and hematoxylin-eosin staining continue

to be crucial for determining TLS presence and abundance (23, 26).

Thus, integrating pathological evaluation with gene signatures may

offer a more comprehensive and accurate approach.

3.2.2 Prognostic significance
The prognostic role of TLS in cancer treatment, particularly in

immunotherapy, has garnered significant attention. Studies indicate

that high intratumor TLS abundance in colorectal cancer, NSCLC,
Frontiers in Immunology 04
head and neck squamous cell carcinoma, hepatocellular carcinoma,

and cutaneous melanoma is associated with improved patient

survival and enhanced immunotherapy efficacy (23, 26–30).

However, research also reveals nuances where certain TLS

subtypes may not uniformly predict favorable outcomes across all
TABLE 1 The top 10 highly documents countries/regions for
TLS research.

Country Documents Citations Total link strength

China 231 3921 58

USA 212 11425 173

France 89 7655 84

UK 80 3834 102

Germany 71 3352 72

Japan 67 1722 35

Netherlands 37 3525 55

Switzerland 37 2621 52

Italy 35 941 42

South Korea 29 859 20
USA, the United States of America; UK, United Kingdom.
FIGURE 2

Annual publications and interactions between countries. (A) The total number and growth rate of TLS-related publications per year during 2014-2023.
(B) Comparison of the number of articles published in several countries over 10 years. (C) The partnerships of different countries. (D) Visual map of
transnational/regional cooperation. The size of the border lines separating countries indicates the extent of cooperative interaction. (E) The networks of
cooperation between 53 countries with at least one publication. SCP, Single country publications; MCP, Multiple Country publications; USA, the United
States of America; UK, the United Kingdom.
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cancer types. For instance, high infiltration (>151) of scattered

tumor-infiltrating lymphocytes is identified as a poor prognostic

factor in metastatic colorectal cancer (31). Additionally, the level of

TLS infiltration did not impact the prognosis of patients with acral

melanoma receiving adjuvant anti-PD-1 therapy (15). Moreover,

the presence of tumor-distal TLS correlates with poor prognosis in

clear cell renal cell carcinoma, whereas tumor-proximal TLS

exhibits the opposite effect (32).

These findings underscore the varied predictive value of TLS

across different cancer types and even within the same cancer type

based on factors such as anatomical location, structure, and

abundance of TLS. These factors may influence the tumor

immune microenvironment, ultimately impacting patient

survival outcomes.

3.2.3 HEVs and angiogenesis
Tumor-associated HEVs play a crucial role in facilitating

efficient lymphocyte infiltration into tumors (33). They are also

recognized as components of TLS (34, 35). Studies have highlighted

that a dense presence of HEVs within tumors correlates with

improved efficacy of immunotherapy, chemotherapy, and other

treatments (33, 34, 36–38). However, elevated expression of

immune checkpoint ligands on tumor-associated HEVs can
Frontiers in Immunology 05
hinder CD8-positive T cell infiltration, potentially leading to

poorer prognosis in patients with NSCLC (39). Conversely, the

presence of HEVs indicates effective treatment response in NSCLC

patients receiving PD-1 inhibitors combined with anti-angiogenic

therapy (40).

The relationship between angiogenesis and TLS is also

noteworthy. For instance, intratumoral injection of the STING

agonist ADU S-100 in melanoma induced vascular normalization

and TLS formation, enhancing control over tumor growth (41).

Similar observations have been made in pancreatic neuroendocrine

tumors, where vascular normalization and TLS formation

attenuated resistance to immunotherapy (42). These findings

underscore the critical role of angiogenesis normalization and

effective infiltration of antitumorigenic lymphocytes in reshaping

the tumor immune microenvironment.

3.2.4 Networks
In the keyword network analysis, TLS, B cells, immunotherapy,

survival, and cancer emerge as the most frequently occurring

keywords (Figure 3B; Table 2), highlighting TLS as a prominent

area of research interest. Over time, additional keywords such as

Treg, lung adenocarcinoma, chemotherapy, radiomics, and

immune infiltration are gaining prominence in relation to TLS.
FIGURE 3

The network map of keywords. (A) the clustered network map of keywords in the field of TLS. (B) Network visualization of keyword co-occurrence
which appeared at least 5 times (67 author keywords).
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For instance, CT-based radiomics nomograms have shown

promise in predict ing TLS presence in intrahepat ic

cholangiocarcinoma, while MRI radiomics appears to offer similar

capabilities (43, 44). Radiomics’ noninvasive approach offers

convenience for detecting TLS (43, 45). However, additional

clinical evidence is required to validate the reliability of radiomics

findings. Notably, “activation” emerged as the keyword with the

highest centrality value in Table 2, highlighting a predominant

focus on immune cell activation in TLS research.

3.2.5 Citation bursts
To track the evolving research hotspots in TLS, we analyzed the

top 25 keywords with the strongest citation bursts (Figure 4),

organized by the onset year of their burst. From 2014 to 2018,

significant areas of focus included “Breast cancer”, “Sjogrens

syndrome”, “Node like structures”, “Rheumatoid arthritis”,

“Lymphoid neogenes is” , “Dendr i t ic ce l l s” , “NF-kB” ,
“Lymphotoxin beta receptor”, “Antigen”, “B lymphocytes”, and

“Autoantibody production”. Recent years have seen a shift

towards keywords like “Cells”, “Predictive value”, “Inflammation”,

“Infection”, and “Pathogenesis”.

When sorted by the duration of their burst, the “Sjogrens

syndrome”, “Rheumatoid arthritis”, and “NF-kB “ exhibited the

longest-lasting impact over a continuous three-year period. In

terms of burst strength, which reflects significance, the “Sjogrens

syndrome” peaked with a substantial citation spike of 6.85 intensity

from 2014 to 2019, while “Pathogenesis” showed a notable spike of

2.29 intensity in 2020. These findings indicate that while early

research likely explored the connection between TLS and

autoimmune diseases (46, 47), recent trends suggest a growing

interest in tumor immunity (12).
3.3 Analysis of references

Burst-detection analysis identifies papers experiencing

significant citation surges, pivotal for tracing the evolution of

research domains. In the TLS field from 2014 to 2023, notable
Frontiers in Immunology 06
references were determined (Figure 5A). A standout publication is

the 2013 study by Gu-Trantien C et al., “CD4+ follicular helper T

cell infiltration predicts breast cancer survival” which exhibited the

strongest citation burst (48). This study highlights that CD4+

follicular helper T cells within tertiary lymphoid structure

germinal centers can predict survival and response to

neoadjuvant chemotherapy in breast cancer. Moreover, it may be

the first to identify follicular helper T cells as a subset of tumor-

infiltrating T cells in solid tumors.

Another significant article, “Presence of B Cells in Tertiary

Lymphoid Structures Is Associated with Protective Immunity in

Patients with Lung Cancer” by Germain C et al. in 2014, ranks

second in strength value (49). This research demonstrates that a

high density of follicular B cells correlates positively with long-term

survival in both early and advanced chemotherapy-treated NSCLC

patients. Additionally, patients with high densities of intratumoral

follicular B cells and mature dendritic cells exhibited significantly

better survival outcomes. Furthermore, the article “Tertiary

Lymphoid Structures in Cancers: Prognostic Value, Regulation,

and Manipulation for Therapeutic Intervention” by Sautès-

Fridman C et al., published recently, holds the highest strength

value (16.97) (50). These findings underscore the integral role of

TLS formation and maturity in tumor progression and response to

treatment interventions.

The timeline analysis reveals 710 keywords grouped into 9 large

clusters (see Figure 5B), indicating the evolution of co-cited

literature by keyword clustering. Recent prominence is observed

with keywords like “favorable prognosis” and “sarcoma,” suggesting

active research engagement in TLS related to these areas.

Concurrently, research on “autoimmunity” and “immune cell

infiltration” has demonstrated sustained interest over time.

Notably, there has been a notable surge in TLS research related

to hepatocellular carcinoma in recent years, coinciding with

advancements in ICIs for HCC treatment (51). Recent studies

highlight TLS as a reliable predictor of ICIs efficacy and prognosis

(52, 53). This trend suggests that the predictive role of TLS in new

cancer types will likely garner increased attention amid the

expanding landscape of immunotherapy.
TABLE 2 The top 10 keywords for TLS research.

Rank Count Keywords Rank Centrality Keywords

1 363 Tertiary lymphoid structures 1 0.1 Activation

2 292 B cells 2 0.09 Neogenesis

3 203 Immunotherapy 3 0.08 Expression

4 187 Survival 4 0.08 Germinal centers

5 187 Cancer 5 0.08 Receptor

6 159 Expression 6 0.07 Breast cancer

7 136 T cells 7 0.07 Antibody

8 117 Dendritic cells 8 0.07 Rheumatoid arthritis

9 109 Tumor-infiltrating lymphocytes 9 0.06 T cells

10 74 Tumor microenvironment 10 0.06 Tissue
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FIGURE 5

Analysis of literature references. (A) Top 25 references with the strongest citation bursts (sorted by the beginning year of burst). (B) The Timeline of
co-cited literature related to TLS.
FIGURE 4

The top 25 keywords with the strongest citation bursts on TLS field.
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Analysis of references underscores the dynamic change of TLS

research, reflecting both emerging trends and enduring themes in

understanding their impact across different cancers and

immunotherapeutic strategies.
3.4 Top contributing authors
and institutions

A co-authorship network analysis utilizing “VOSviewer”

software illustrates collaborative efforts among authors in TLS

research spanning from 2014 to 2024. Among 5,739 authors, 224
Frontiers in Immunology 08
have contributed three or more publications, resulting in the

identification of 6 major network clusters (Figure 6A).

The top three authors by publication count are Catherine

Sautes-Fridman (21), Wolf Herman Fridman (19), and Dieu-

Nosjean Marie-Caroline (16) (Table 3), all affiliated with French

research organizations. Their collaborative efforts have yielded

numerous impactful articles in the TLS field (49, 54, 55).

Similarly, Soizic Garaud, Denis Larsimont, and Karen Willard-

Gallo hold the highest total link strength values (108), representing

significant collaborative networks within Belgian research

institutions (56, 57). In recent years, Alessandra Vaccaro and

Anna Dimberg from Sweden, among others, have made notable
FIGURE 6

The co-authorship of authors and institutions. (A) The co-authorship network clusters of authors. (B) The co-authorship network timeline of authors.
(C) The network of institutions.
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contributions with multiple publications on glioma-associated TLS

(Figure 6B) (58, 59). While these authors are highlighted, it’s

important to acknowledge the diverse contributions of others who

have propelled TLS research forward.

In terms of institutional contributions, node sizes denote the

number of publications, while centrality reflects the influence of

links passing through each node. Notably, TLS has garnered

substantial attention across numerous research institutions. The

top five institutions by publication volume include “Institut

National de la Sante et de la Recherche Medicale” (70),

“Universite Paris Cite” (49), “Sorbonne Universite” (45),

“University of London” (33), and “UNICANCER” (30)

(Figure 6C; Table 4). Recent years have seen increasing focus

from Chinese research organizations like “Fudan University” (24)

and “Sun Yat-sen University” (28), underscoring their emerging

role in TLS research.

Moreover, institutions like “Harvard University” and “the

University of Texas System”, marked with a purple ring denoting

high centrality nodes, serve as pivotal connectors in the scholarly
Frontiers in Immunology 09
communication and collaboration network within this domain.

Maybe their influence extends across various research teams,

facilitating interdisciplinary advancements in TLS research.
3.5 Distribution of the top cited journals

Using “CiteSpace” software, a dual map overlay of journals

reveals the distribution of citing and cited journals in TLS research.

On the left side, representing citing journals, prominent disciplines

include Molecular/Biology/Immunology and Dentistry/

Dermatology/Surgery, which primarily cite publications in

Molecular Biology/Genetics journals (Figure 7A).

TLS-related articles have been published across 290 academic

journals, with 109 journals contributing two or more articles.

Leading the publication count are “Frontiers in Immunology”

(119), “Cancers” (30), “Journal for Immunotherapy of Cancer”

(28), “Oncoimmunology” (27), and “Nature Communications”

(17) (Table 5). “Frontiers in Immunology” stands out as a central
TABLE 3 The 18 most productive authors for TLS research.

Author Documents Citations Total link
strength

Author Documents Citations Total link
strength

Catherine
Sautes-Fridman

21 3744 104 Denis Larsimont 10 879 108

Wolf-H. Fridman 19 3605 100 Walter J. Storkus 10 412 27

Dieu-Nosjean
Marie-Caroline

16 2416 85 Karen Willard-Gallo 10 879 108

Michele Bombardieri 11 911 24 Francesca Barone 9 413 34

Soizic Garaud 11 882 108 Alexandre De Wind 9 866 100

Claire Germain 11 1674 72 In Ah Park 9 521 56

Gyungyub Gong 11 550 64 In Hye Song 9 910 18

Hee Jin Lee 11 550 64 Costantino Pitzalis 9 768 25

Craig L. Slingluff 11 330 35 Karina Silina 9 521 56
TABLE 4 Top 10 most productive institutions for TLS research.

Rank Institutions Count Centrality Year

1 Institut National de la Sante et de la Recherche Medicale (Inserm) 70 0.07 2014

2 Universite Paris Cite 49 0.05 2014

3 Sorbonne Universite 45 0.05 2014

4 University of London 33 0.07 2014

5 UNICANCER 30 0.01 2018

6 Assistance Publique Hopitaux Paris (APHP) 29 0.07 2014

7 Sun Yat Sen University 28 0.01 2020

8 University of Texas System 24 0.14 2017

9 Fudan University 24 0.02 2020

10 Centre National de la Recherche Scientifique (CNRS) 24 0.07 2018
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player in the network of journal associations (Figure 7B). However,

the most cited journal in TLS research is “Nature” (cited 3230

times). The top three most highly cited articles on TLS were all

published in “Nature.” For instance, Helmink BA et al.’s article

titled “B cells and tertiary lymphoid structures promote

immunotherapy response” has amassed 1186 citations (60).

This analysis illustrates a complex network of journal

relationships in TLS research, highlighting key journals and

influential articles that have shaped the discourse and

advancements in the field.
4 Discussion

Our findings demonstrate a rapid growth in studies focusing on

TLS over the past decade, driven by advancements in

immunotherapy, particularly ICIs, which have revolutionized

anti-tumor treatments. Concurrently, there is a burgeoning

understanding of the tumor immune microenvironment, where

TLS plays a pivotal role. Based on the results analyzed above, we will

further summarize and discuss the research value of TLS in terms of

significant advancements, current status, clinical applications,

and challenges.
Frontiers in Immunology 10
4.1 Significant advancements and
current status

Autoimmune diseases are closely associated with dysregulated

immunity, and the formation and maturation of TLS may play a

significant role in this process. Furthermore, TLS in various

immune disorders may exhibit distinct characteristic cell

populations. For instance, Th17 cells are implicated in developing

autoimmune encephalomyelitis within the central nervous system

(61). Similarly, the enrichment of Th17 cells is closely linked to the

progression of follicular pancreatitis (62). Other subtypes of

peripheral helper T cells and follicular helper T cells also

contribute to the formation and maturation of TLS in immune

disease lesions, including rheumatoid arthritis, Sjögren syndrome,

and systemic lupus erythematosus (63, 64). Additionally, other

immune cell subsets within TLS, such as dendritic cells, B

lymphocytes, and macrophages, have been shown to play diverse

roles in the development and progression of autoimmune diseases

(11, 65). Emerging technologies, such as single-cell sequencing, are

increasingly being utilized to analyze cell subsets in TLS associated

with autoimmune diseases (11, 66, 67). These advanced techniques

may offer valuable insights for identifying a broader range of

immune cell subsets and elucidating their mechanisms of action.
FIGURE 7

Collaboration among journals. (A) The dual map overlay of journals. This map uses different colors to symbolize the journals in different disciplines.
The map can be divided into two parts, the left side is the distribution of the cited journals, which represents the main disciplines of Science
mapping, and the right side is the distribution of the cited journals. (B) The network map of cited journals.
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Advancements have also been made in understanding the

mechanisms of action and predictive value of immune cell subsets

in tumors. Early studies have indicated that B cell enrichment in

TLS is associated with a favorable prognosis in various cancers,

including lung cancer, pancreatic cancer, gastric cancer, and

melanoma (49, 60, 68, 69). The application of single-cell

sequencing, spatial transcriptomics, and immunohistochemistry

aims to identify B cells with specific markers in TLS. For instance,

TCL1A-expressing B cells have been linked to oral squamous cell

carcinoma, distinct B cell subsets have been identified in

nasopharyngeal carcinoma, an interferon-stimulated B cell

subtype has been associated with muscle-invasive bladder cancer,

and CD20+CD22+ADAM28+ ICI-responsive B cells have also been

characterized (70–73).

An increasing number of T cell subtypes within TLS have been

analyzed. For instance, TCF1/TCF7-positive T cells located in and

around TLS are associated with a better prognosis for oral cancer

(74). Chemokine (CXCL13)-high-expressing T cells are also

believed to be critical for TLS maturation, thereby influencing

tumor progression (75–77). Furthermore, different T cell subtypes

within TLS may produce opposing anti-tumor effects (74, 78–80).

Additionally, immune cells such as dendritic cells, macrophages,

and natural killer cells within TLS play essential roles in

shaping the tumor immune microenvironment (81, 82). These

immune cells are also continuously being identified and

evaluated (65, 83, 84).

Due to their small size, diverse shapes, and multifocal spatial

distribution, TLS present a significant challenge for pathologists and

physicians in determining their nature. Consequently, researchers

are exploring additional markers beyond the commonly used ones,

such as CD20, CD4, and CD8. For instance, CD23 expression, a

TLS-specific marker, has been found to be positively correlated with

disease-free survival and overall survival in breast cancer (85).

L1CAM is also recognized as a reliable marker for mature TLS

associated with endometrial cancer (86). Furthermore, BCL6-

expressing B cells and CD21-positive follicular dendritic cells

have been shown to be concentrated in TLS in ovarian cancer

(87). Similarly, LGALS2 has been identified as a key marker within

TLS in breast cancer, demonstrating a positive correlation with

prolonged survival (84). It is likely that more markers will be

revealed in the future.

Another point of interest is the relationship between TLS

maturity and tumor progression. Several studies have

demonstrated that mature TLS is positively correlated with the

prognosis of solid tumors treated with ICIs (88–90). This

correlation may be linked to the enrichment of immunologically

activated cells within mature TLS (13, 91). In contrast, immature

TLS appears to be enriched with immunosuppressive immune

cells and exhibits immunosuppressive characteristics (32, 83, 92).

Immature TLS is likely to contribute to resistance against ICIs (93).

For instance, peritoneal metastases derived from gastric cancers are

often enriched with tumor-infiltrating macrophages and regulatory

T cells, while exhibiting a reduced presence of plasma cells, thereby

creating an immunosuppressive microenvironment (83). It is

likely that increasing differences between TLS in various cancer

types and metastatic lesions will be identified and assessed.
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4.2 Clinical applications

The search for reliable prognostic markers for immunotherapy

has long been a focus of clinical research. However, dependable

markers with broad applicability are still lacking in solid tumors

(94, 95). TLS appears to be a promising candidate (96). Results

from several clinical trials have demonstrated that TLS is one

of the biomarkers associated with responses to neoadjuvant

immunotherapy in conditions such as hepatocellular carcinoma,

NSCLC, urothelial cancer, and esophageal squamous cell carcinoma

(97–100). These findings suggest that effective ICIs treatment may

promote TLS maturation, thereby creating a positive feedback loop.

Furthermore, several studies have indicated a close association

between chemotherapy and TLS, with chemotherapy also capable

of inducing TLS maturation, which may enhance the efficacy of

immunotherapy (101–104). The results of multiple clinical studies

have shown that neoadjuvant immunochemotherapy combinations

exhibit superior efficacy compared to either neoadjuvant

chemotherapy or neoadjuvant immunotherapy alone (105–107).

The maturity of TLS may be one of the influencing factors in this

context. It is anticipated that effectively inducing intratumoral TLS

maturation will become a focal point of research in the future.
4.3 Challenges of TLS

As previously mentioned, the predictive efficacy of mature TLS

and immature TLS against tumors may be contradictory.

Furthermore, TLS located in different regions of a tumor may

exhibit distinct cellular compositions, resulting in variations in

the immune microenvironment. These factors raise concerns

about the reliability of using TLS as prognostic biomarkers,

particularly given the inherent differences among various cancer

types. Therefore, it may be beneficial to identify TLS with specific

markers in particular cancers as predictive factors. However, due to

the complexity and diversity of TLS structures, standardized

diagnostic criteria remain lacking, despite the ongoing application

of techniques such as immunohistochemistry, hematoxylin and

eosin staining, and gene sequencing. The introduction of new

diagnostic methods not only increases the costs associated with

learning and treatment but may also hinder their widespread

implementation. Lastly, the mechanisms underlying the

transformation from immature TLS to mature TLS are not yet

fully understood, and the distinctions between TLS in primary

lesions and those in metastatic lesions are not completely

recognized. These challenges may continue to motivate the

scientific community to further investigate TLS, and we anticipate

more positive outcomes in the future.
5 Limitation

The study still has a few limitations. First, the data associated

with the TLS were sourced from a single database (the WOSCC) so

that they would accommodate the data format for bibliometric tools
Frontiers in Immunology 12
in all “VOSviewer”, “CiteSpace”, and “bibliometrics”. This could

have led to selection bias. There are other data sources, such as

PubMed or Scopus, that can usually only be used effectively with

one of the bibliometric tools (usually “VOSviewer”). To reduce

selection bias, we used three bibliometric tools to conduct a

comprehensive analysis. In addition, our study only included

articles published in English, which may have led to the presence

of language bias. In order to obtain a more comprehensive analysis,

it might be more appropriate for future investigations to include

publications in languages beyond English.
6 Conclusion

This study systematically reviewed global publications on TLS,

analyzed their bibliometric characteristics, and identified influential

articles. In summary, our bibliometric analysis has traced the

evolution of TLS research and highlighted shifting research

priorities over the past decade. These findings provide valuable

insights into the pivotal role of TLS in immunotherapy and offer

glimpses into future directions for this rapidly evolving field.
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