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Abstract
A key developmental stage in mammalian folliculogenesis is the formation of a fluid-filled lumen (antrum) prior to ovulation.
While it has long been speculated that the follicular fluid is essential for oocyte maturation and ovulation, little is known
about the morphogenesis and the mechanisms driving the antrum formation and ovulation, potentially due to challenges in
imaging tissue dynamics in large tissues. Misregulation of such processes leads to anovulation, a hallmark of infertility in
ageing and diseases such as the polycystic ovary syndrome (PCOS). In this review, we discuss recent advances in deep tissue
imaging techniques, machine learning and theoretical approaches that have been applied to study development and diseases.
We propose that an integrative approach combining these techniques is essential for understanding the physics of hydraulics
in follicle development and ovarian functions.

Keywords Ovary · Folliculogenesis · Ovulation · Biophotonics · Machine learning · Tissue mechanics

Introduction

The development of functional oocytes followed by suc-
cessful ovulation is a critical process in early mammalian
reproduction (Biswas et al. 2022; Telfer et al. 2023). During
folliculogenesis, the follicle morphology provides a rough
classification of its stage of development (Fig. 1). In the
secondary follicle stage, the follicle consists of an oocyte sur-
rounded by multi-layered granulosa cells (GC) with an outer
layer of elongated theca cells (TC) (Fig. 1B) (Rodgers and
Irving-Rodgers 2010; Biswas et al. 2022). The formation of a
fluid-filled lumen, also known as the antrum, begins as small
pockets of interstitial fluids which nucleate between theGCs.
As the fluid volume increases, these fluids evolve to form
a singly resolved antrum showing a stereotypical “smiley”
pattern in the case of mouse ovaries (Fig. 1C) (Rodgers and
Irving-Rodgers 2010;Biswas et al. 2022).However, the exact
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mechanisms for the de novo luminogenesis during antrum
development remain largely unknown. As the follicles grow
further, and with the stimulation of luteinizing hormones,
they rupture and release the fluid, along with the ejection
of the cumulus-oocyte complex (Fig. 1D) (Converse et al.
2023; Zaniker et al. 2023; Komatsu and Masubuchi 2017;
Matsuzaki 2021).

While extensive studies in the past have identified various
key signalling pathways controlling oocyte growth, less is
known about the roles of mechanical stress and biophysics
in folliculogenesis (Biswas et al. 2022; Prasasya and Mayo
2019; Telfer et al. 2023). In recent years, tissue mechanics
has emerged as a central regulator of various developmental
processes, such as tissue folding and patterning (Matsuzaki
2021; Bevilacqua et al. 2023; Zhang and Fodor 2023; Biswas
et al. 2022, 2024; Athilingam et al. 2021; Barriga et al. 2018;
Fiorentino et al. 2023). In mice, mechanical stress exerted by
the extracellular matrix (ECM) or the TCs surrounding the
follicles have been shown to influence follicle activation and
growth (Nagamatsu et al. 2019; Biswas et al. 2024). During
ageing, the aged ovaries have shown significant increase in
the ECM stiffness (Mara et al. 2020; Fiorentino et al. 2023),
which correlates with impaired follicle and oocyte functions
(Pietroforte et al. 2024) and ovulation (Umehara et al. 2022).
In PCOS patients, the ovaries are characterised by multiple
cystic-like follicles that fail to ovulate (Mara et al. 2020; Lee
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Fig. 1 Hydraulic control of
late-stage ovarian follicle
development. A Early secondary
follicle (100–180 µm). B
Secondary follicle with small
pockets of fluids (180–300 µm).
C Pre-ovulatory follicle with
fully formed “smiley-faced”
antrum (300–400 µm). D A
mouse ovarian tissue slice with
DNA (Blue), pan-collagen
(yellow) and anti-Müllerian
hormone (grey). Scale bar, 300
µm. E-E’ Ovulation involves
the rupture of the follicle wall
and the release of oocyte,
though the exact mechanism
remains poorly understood

et al. 2024c; Fiorentino et al. 2023), suggesting that impaired
luminogenesis and follicle rupture may contribute to devel-
opmental arrest in ovarian disease and ageing.

Indeed, in addition to cell-generated cytoskeleton forces,
there has been increasing evidence that tissue-scale fluid
forces can transmit long-range mechanical signals to influ-
ence morphogenesis and cellular functions during develop-
ment (Chan and Hirashima 2022; Chan and Hiiragi 2020).
However, how tissue hydraulics impacts mammalian folli-
cle development has not been addressed so far. One reason
for this is the challenge of studying tissue dynamics in large
organs. In this review, we highlight recent advances in deep
tissue imaging techniques, machine learning and theoretical
models that have been increasingly applied to study com-
plex 3D tissue dynamics in vivo. We discuss how these
approaches, when applied individually or together, could
deepen our basic understanding of late-stage folliculogen-
esis (for mechanobiology of earlier stages, see recent review
(Telfer et al. 2023; Prasasya and Mayo 2019; Biswas et al.
2022)), with important clinical implications in future infer-
tility studies and assisted reproductive technology.

Non-invasive and label-free imaging
techniques to study tissue dynamics during
folliculogenesis

In the study of late-stage ovarian folliculogenesis, the use
of intravital imaging combined with histological analysis of
fixed ovary tissues has helped to establish a general under-
standing of the developmental processes (Feng et al. 2018).
However, the tissue dynamics of these morphological events

are less well understood. To do so, direct live imaging of the
spatiotemporal dynamics of cellular and fluid movements
is required. Here, we discuss recent advances in the devel-
opment of novel biophotonic tools that have the potential
to overcome current imaging limitations and provide new
mechanistic insights to our understanding of fluid antrum
formation and ovulation.

Current imaging techniques utilised in ovarian
studies

In the past, measurements of fluid fraction using ultrasonog-
raphy have shed light on lumen expansion during follicle
growth (Rodgers and Irving-Rodgers 2010). Alongside the
identification of the ECM at the GC apical surface in elec-
tron micrographs, it was hypothesised that the directional
secretion of large molecules, such as proteoglycans and
hyaluronans, establishes an osmotic gradient against the
surrounding thecal vasculature, thereby recruiting fluid for
lumen growth (Clarke et al. 2006). In the study of ovula-
tion, intravital imaging of blood vessel thickness and blood
flow surrounding the ovary using multiphoton microscopy
(Migone et al. 2013) and ultrasonography helped reveal the
mechanism of endothelin-induced contractions of smooth
muscle cells, causing basolateral invaginations prior to ovu-
lation (Migone et al. 2016). Subsequent work using serial
tissue section indirectly suggested complementary action
from the inward migration of mural GCs following the surge
of luteinizing hormones (Owen and Jaffe 2023). Neverthe-
less, ultrasonography-based intravital imaging is constrained
by its poor spatial resolution of a few millimeters. In con-
trast, multiphoton microscopy offers better spatial resolution
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but is limited to a depth penetration of about 200 µm
in ovarian tissues (Migone et al. 2016) and has signif-
icantly slower imaging speeds. Additionally, multiphoton
microscopy requires the use of fluorescent labels, which
may incur phototoxic effects. While transgenic animal lines
expressing fluorescent proteins are useful, such an approach
is typically restricted to mice, making it difficult to translate
to other mammalian species and humans. Another imaging
approach is ultrastructural studies using electronmicroscopy.
While these studies have led to the discovery of novel
features such as the Call-Exner bodies during luminogen-
esis (Gosden et al. 1989; Van Wezel et al. 1999), they
remain largely descriptive and do not inform the dynamic
processes underlying luminogenesis. To address this, other
label-free imaging techniques may be required, as outlined
below.

Optical coherence tomography

Here, we introduce optical coherence tomography (OCT), an
emerging label-free modality with intermediate depth pene-
tration and resolution used in intravital imaging. OCT works
on the basis of detecting back-scattered signals, analogous to
ultrasound, except that OCT uses light rather than acoustic
waves which therefore offers higher spatial resolutions of 1–
15 µm (Fujimoto 2003; Chow et al. 2024), with reasonable
penetration depths of up to 1mm during intravital imaging
of ovarian tissues. As a label-free technique, OCT is not
bound by a “fluorescence budget” as is the case for confocal
microscopy, allowing for prolonged imaging without sig-
nal degradation. Typically used in ophthalmic diagnosis and
research (Everett et al. 2021), OCT has recently been applied
to reproductive biology (Burton et al. 2015) as an optical
biopsy tool for assessing ovarian reserve anddetectingmetas-
tases (Takae et al. 2017, 2018; Peters et al. 2016). Owing
to the high optical contrast between different tissue compo-
nents and its high-speed volumetric imaging capability, OCT
has been employed to capture real-time dynamics of oocytes
and pre-implantation embryo transport in the mouse oviduct,
revealing uncharted location-dependent movement trajecto-
ries (Wang and Larina 2021; Umezu and Larina 2023).

Nevertheless, intravital imaging using OCT requires pre-
cise orientation of the imaged organs, and can be exacerbated
by tissue motion such as muscle contraction and breath-
ing (Burton et al. 2015). To overcome these limitations
in imaging ovaries, advancement in ex vivo cultures such
as 3D follicle culture (Converse et al. 2023), multifolli-
cle tissue (Biswas et al. 2022) and slice culture of ovaries
(Komatsu et al. 2018) can be utilised. Furthermore, ex vivo
culture is more amenable to optical coherence microscopy
(OCM), a variant of OCT that offers higher spatial resolu-
tion with reduced imaging depth (Aguirre et al. 2015). This
has been demonstrated in live imaging of rapid fluid dynam-

ics and muscle hydraulics in sea animals such as cnidarian
Nematostella vectensis (Stokkermans et al. 2022) and fresh-
water sponge Spongilla lacustris (Ruperti et al. 2024). In a
similar vein, we propose that OCM will be a powerful tool
for studying antrum formation and ovulation in mammalian
species, allowing for unprecedented tracking of lumen fluid
growth andorganisation and cellular dynamics during follicle
rupture in ex vivo culture (Fig. 2H). Recently, other applica-
tions of OCM in vivo have also been explored, expanding
its potential for future use in intravital imaging (Moore et al.
2019) and imaging-based biophysical measurements (see the
“Biophysical control of ovulation” section).

Quantitative phase imaging

Building on existing phase measurement techniques in OCT
(Nguyen et al. 2022; Park et al. 2018), quantitative phase
imaging (QPI) technique was developed as another fast,
label-free and non-invasive technique for biological imaging.
A detailed review of the underlying principles and the differ-
ent applications in biomedicine has been published (Nguyen
et al. 2022; Park et al. 2018). In brief, QPI measures the
change in the phase component of light, providing intrinsic
optical imaging contrast. The phase change can be used to
determine both the refractive index (RI) and thickness of
a sample, allowing identification of subcellular structures
with known RI, such as mitochondria and nuclei, thus pro-
viding greater specificity. Additionally, the RI and volume
measurements can be used to estimate the dry mass of the
sample (Barer 1952; Schürmann et al. 2016). In the past,
QPI has been limited to the study of single cells since multi-
ple scattering leads to reduced contrast and image quality
in thick samples. Recently, the use of the phase-gradient
contrast technique (Ford et al. 2012) enabled the reconstruc-
tion of quantitative phase information in thick samples, as
demonstrated in dissected whole mouse brains, and human
liver organoids (Ledwig and Robles 2019; Filan et al. 2024).
Notably, tracking of single cells flowing through blood ves-
sels in free-swimming zebrafish larvae exemplified QPI’s
high-speed imaging capability (Kandel et al. 2019).

While complex imagingmodalities often require in-house
instrumentation, this challenge is mitigated by the availabil-
ity of commercialised QPI systems. This had proved to be
invaluable for monitoring preimplantation mouse develop-
ment, revealing features used for differentiating embryos
with varying developmental potentials (Lee et al. 2024b).
Applied to intestinal organoids, it has successfully identi-
fied different cell types based on morphometric differences
used to select viable organoids (Lee et al. 2023). In study-
ing ovarian folliculogenesis ex vivo, QPI offers a unique
approach to trackGC rearrangement, proliferation and deaths
(Fig. 2I). Since the lumen has a distinctly lower RI than that
of cellular structures, QPI also holds promise in unravelling
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Fig. 2 Investigating tissue hydraulics in mammalian ovarian fol-
liculogenesis using an integrative approach that combines advanced
biophotonics, deep learning and biophysical modelling. A Label-free
RI imaging combined with deep learning enables visualisation of sub-
cellular structures and dynamics with high specificity (Jo et al. 2021).
B Deep learning model detects cell divisions during wound healing
with high accuracy (Turley et al. 2024a). C 3D segmentation of GCs
in the ovarian follicle. D Machine learning based on physics-informed
neural networks allows inference of traction forces in a cell (Schmitt

et al. 2024). E Computational approach to model luminogenesis in fol-
licles based on fluid mixing-demixing transition. FMeasurement of the
surface tension of ovarian follicle usingmicropipette aspiration.GRep-
resentative “stiffness map” of an ovarian follicle imaged by Brillouin
microscopy, revealing clear intrafollicular mechanical heterogeneities
(Chan et al. 2021). H An image of pre-ovulatory follicle acquired with
OCM. Scale bar, 100 µm. I Images showing a cell undergoing divi-
sion, acquired through QPI. Interstitial fluids are also visible due to its
distinct RI from cellular bodies

the precise dynamics of lumniongenesis. Direct quantifica-
tion of luminal RI will also potentially inform changes in
lumen composition during antral follicle development. Cur-
rently, intravital QPI imaging remains challenging due to
severe light scattering in optically inhomogeneous biolog-
ical tissues. However, scattering reduction techniques have
successfully retrieved signals from circulating blood cells in
the mesentery of live mice (Kim et al. 2016), highlighting
the potential for future advancements in imaging dynamic
processes in vivo.

Ideally, applying OCT to in vivo contexts will reveal
true tissue dynamics in their native state, but it comes with
limitations in spatial resolution and setup complexity. Alter-
natively, multiphoton imaging provides higher spatial detail
but is constrained by reduced temporal resolution due to pho-
totoxicity. We advocate the use of OCM and QPI to study

ovarian folliculogenesis in ex vivo cultures, which should
offer an optimal spatiotemporal resolution that captures the
essential features of ovarian dynamics.

A general drawback of label-free imaging techniques dis-
cussed above lies in their limited cellular and molecular
specificity. Nevertheless, these methods can be combined
with fluorescence-based modalities (Mowla et al. 2024;
Bevilacqua et al. 2023; Lee et al. 2023; Nguyen et al.
2017). Additionally, the adoption of virtual staining tech-
niques enabled the prediction of both dye and fluorescence
signals in label-free images (Fig. 2A) (Winetraub et al. 2024;
Park et al. 2023a, b). This integrationwith the artificial intelli-
gence (AI) approach enhances the specificity and versatility
of label-free imaging, opening avenues for comprehensive
cellular and molecular characterisation, a topic we will delve
into in the following section.
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Machine learning approaches to quantify
tissue properties from large datasets

Quantitative studies of tissue dynamics in large systems
can generate enormous amounts of data, particularly if
the dynamics are fast. In this section, we describe several
machine-learning approaches used to investigate biological
processes and highlight their potential use in studying late-
stage follicle development.

What is machine learning?

Machine learning comprises a set of algorithms in which a
model is trained to complete repetitive sets of tasks (Hallou
et al. 2021; Jones et al. 2017; Howard and Gugger 2020).
Deep learning is one type of these algorithms, which are vast
“artificial neural” networks with the ability to learn complex
patterns from the data and solve problems which require
extensive manual work (Howard and Gugger 2020). Deep
learning has been particularly successful and is increasingly
being used in biological and medical imaging (Culley et al.
2023;Hallou et al. 2021; Singh et al. 2020). Themajor advan-
tage of using these algorithms is they often outperform other
automation approaches and that once trained, the model can
be applied to vast datasets with minimal or no human input.
One method of training the models is by supplying a dataset
of labelled examples where a human expert first completes
the classification or segmentation task by hand, followed by
training themachine learningmodel to perform a similar task
on new data (Howard and Gugger 2020).

Segmenting and quantifying 3D data

One of the most common applications of deep learning is
cell segmentation, which has been extensively applied to
tissue morphogenesis, wound healing and tumour segmenta-
tion (Turley et al. 2024a, b; Chattopadhyay and Maitra 2022;
Işin et al. 2016; McDole et al. 2018; Wang et al. 2022;
Mitchell and Cislo 2023; Ichbiah et al. 2023; Boylan et al.
2024). Recently, 3D segmentation models have been used
to investigate cell layers surrounding a lumen in MDCK
cells (Andrés-San Román et al. 2023) and early stages of
sea star embryo development (Barone et al. 2024). Follow-
ing segmentation, other morphometric information such as
cell volume, elongation and packing ratios can be quantified
readily. The differences in tissue packing and rates of cell
rearrangements can indicate changes to tissue stiffness and
rheology, respectively (Lou et al. 2023; Tetley et al. 2019;
Stroka andAranda-Espinoza 2011).Without automated deep
learning models, segmentation studies on this vast scale
would not be feasible. Such techniqueswill be highly relevant
to quantifying intraofollicular dynamics, where the precise
segmentation of oocyte and GC size, shape and movements

may lead to new insights on tissue phase transitions during
folliculogenesis (see the “Potential phase transitions during
antral folicle development” section).

Virtual stain of label-free data

Label-free imaging techniques, as discussed in the “Quan-
titative phase imaging” section, can also benefit from deep
learning methods. Here, deep learning models can be used
to virtually stain or segment regions of the cells such as the
nucleus (Christiansen et al. 2018; Jo et al. 2021; Park et al.
2023a). This has recently been demonstrated on images of
cells acquired through combined quantitative phase imaging
and fluorescence microscopy (Jo et al. 2021). Using fluores-
cent microscopy images as the ground truth, deep learning
models were trained to segment various cytoskeleton com-
ponents and organelles from the quantitative phase images.
Thismodel was highly accurate and even capable of labelling
other cell lines which it was not trained on Jo et al. (2021).
Importantly, this implies that the model, once trained, can be
extended to label cells during live imaging, where the use
of dyes may be cytotoxic, or in non-transgenic organisms
such as human samples. Hence, we propose that quantitative
phase imaging, combined with deep learning, will provide a
unique and timely approach to study the dynamics of ovar-
ian folliculogenesis, particularly when the interstitial fluids
cannot be labelled with fluorescent tags readily.

Deep learningmodels to detect dynamic behaviors
and forces

Beyond segmenting and classifying regions of a tissue, deep
learning methods can be used to detect dynamic behaviour
such as cell divisions and extrusions (McDole et al. 2018;
Turley et al. 2024b, a; Villars et al. 2023). The dynamics of
cell divisions with daughter nuclei undergoing splitting and
cytokinesis are visually distinct from the relatively stationary
non-dividing cells. Therefore detection of cell divisions using
deep learning models has been highly successful (McDole
et al. 2018; Turley et al. 2024b, a; Villars et al. 2023).
Combined with additional fluorescent markers labelling cell
membrane, the detection of cell division remains robust even
in noisy environments. This has been demonstrated in the
case of wound healing inDrosophila (Turley et al. 2024b, a),
where the presence of cell debris and immune cells did not
pose a challenge for analysing cell division dynamics through
deep learning. So far, deep learning analysis has been larged
confined to 2D tissues. The extension of such approach to
3D tissue dynamics, such as ovarian folliculogenesis, will
be necessary given the huge datasets and natural biological
variation that can only be overcome with machine learning.

AI algorithms have also been used to infer cellular forces
from microscopy data (Schmitt et al. 2023). Here, traction
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force microscopy was used as the ground truth to quan-
tify forces generated by single cells. Based on the confocal
images, the information provided by the distribution of zyxin
was sufficient to train a deep-learning model to determine
the traction forces. Remarkably, even though the model has
not been trained on cells treated with cytoskeletal perturba-
tions, it was able to predict the traction stress field in these
conditions which matches the experimental results (Schmitt
et al. 2023, 2024). Using physics-informed neural networks,
these work also demonstrate the unique possibility of con-
structing a physical model with interpretable physics and
parameters (Schmitt et al. 2024; Karniadakis et al. 2021;
Colen et al. 2021). Such approachhas recently been applied to
Drosophila embryogenesis (Lefebvre et al. 2024), where the
active stress generated by themyosin distribution is sufficient
to train the neural networks to predict the tissue flow pat-
tern driving germ-band extension. Importantly, themodel can
also be trained to “construct” the minimal sets of equations
describing the dynamics of the myosin field (Lefebvre et al.
2024), thereby unravelling previously hidden physics under-
lying such processes. In ovarian follicle development, such a
data-driven biophysical modelling approach may provide an
exciting alternative approach to understand the underlying
physical principles governing robust folliculogenesis.

Unbiased pattern detection in tissues without
supervision

In addition to quantifying cellular features, deep learning
methods could also inform how these properties change in
time and space. Here, a certain kind of deep learning model
based on unsupervised learning techniques (Zinchenko et al.
2023; Lu et al. 2019; Lafarge et al. 2019) provides an
unbiased approach to distinguish the distinct morpholog-
ical features from different cell types. This was recently
applied to electron microscopy data from a marine annelid
(P. dumerilii), where the model extracted features of both
cell shape and texture using dimensionality reduction tech-
niques (Zinchenko et al. 2023). In this “MorphoFeatures”
space, clear clusters of cell types can be extracted, which
demonstrates that the model has learned to distinguish indi-
vidual cell typeswithout supervision. In addition, the features
extracted by the deep learning model can further reveal the
unique cellular modules defining the different cell types
(Zinchenko et al. 2023). In the study, different cell types
were used, but similar techniques may be applied to track
the different stages of development for a given cell type. In
future, it will be exciting to apply such models to identify
changes in GC identity during ovulation or to compare GC
or oocyte features in follicles from young, old and diseased
ovaries in an unbiased manner.

Theoretical approaches to study the physics
of antrum formation and ovulation

In the past decades, various theoretical approaches have been
developed to study tissuemorphogenesis, wound healing and
cancer progression (Tse et al. 2012; Jacques et al. 2023;
Etournay et al. 2015; Salbreux et al. 2009; Tetley et al.
2019; Turley et al. 2022). These approaches modelled bio-
logical systems as active soft matter, where individual cells
are able to convert chemical energy to execute various bio-
logical functions (Lou 2023; Marchetti et al. 2013; Fuji et al.
2022). Here, we review recent in silico work and biophysi-
cal approaches to model and measure tissue hydraulics, and
propose new theoretical frameworks to investigate antrum
formation and ovulation in late-stage folliculogenesis.

Computational models of luminogenesis

While the cellular dynamics in tissues have been mod-
elled extensively, theoretical work on modelling lumen
remains rather limited. Recently, a number of computational
approaches have been developed to study lumen growth
in development and organoids. One such approach is the
phase field model, which can model cellular and lumen
dynamics (Akiyama et al. 2018; Nonomura 2012; Fuji et al.
2022; Tanida et al. 2024). Phase field model has recently
been applied to study the formation of MDCK cysts, pan-
creatic spheres and epiblasts, revealing a generic rule of
the two-phase process of luminogenesis (Lu et al. 2024)
characterised by lumen nucleation mediated by actin poly-
merization (Vasquez et al. 2021; Mukenhirn et al. 2023;
Indana et al. 2024), and later expansion via osmotic gra-
dient (Indana et al. 2024). The phase field model also reveals
the interplay between cell proliferation and lumen pressure
in changing organoid topology, as in the case of pancreatic
spheres or branched networks (Lee et al. 2024a). Another
popular approach in modelling luminogenesis is the Cel-
lular Potts model (Graner and Glazier 1992; Hirashima
et al. 2017). This technique has been applied to study
organ cystogenesis (Belmonte et al. 2016; Engelberg et al.
2011) and development (Mombach et al. 2001). Recent
work has extended the Cellular Potts model to include non-
conservative forces arising from active cellular fluctuations
(Belousov et al. 2024), which can be a novel approach to
model non-equilibrium aspects of luminogenesis.

Potential phase transitions during antral folicle
development

A key application of physics to the study of biological sys-
tems is the modelling of tissues as fluid- and solid-like
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materials, as reviewed in Lenne and Trivedi (2022). These
theoretical models have predicted key cellular parameters
that describe the mechanical states of tissues, and the critical
points where phase transitions may occur. These parame-
ters include cell elongation, active fluctuations and changes
in extracellular space between the cells (Mongera et al.
2018; Petridou et al. 2021, 2019). An example is blasto-
derm spreading in early zebrafish development, where the
center of the dome fluidises while the margin of the dome
remains solid-like (Petridou et al. 2019). As the volume frac-
tion of interstitial fluid increases and the cellular network
breaks down, the marginal tissue becomes more fluid-like,
leading to tissue flow. Here, we speculate that similar physics
may apply to secondary follicles undergoing luminogenesis,
where decreased GC packing may lead to increased tissue
fluidisation (Biswas et al. 2022; Telfer et al. 2023). Tissue
fluidization brings about another type of phase transition
during antrum formation,which is themixing-demixing tran-
sition in a fluid mixture. Here, the lumen and GCs could
be considered effectively as a binary mixture of fluids, and
luminogenesis may be modelled as liquid-liquid phase sep-
aration. While previous Cellular Potts model or phase field
models have simulated lumen dynamics in various contexts,
it is often assumed a priori that the systems exist far from
criticality. Here, we hypothesise that the antrum formation
in ovarian follicles may involve a phase transition from criti-
cal to supercritical states as the lumen undergoes fusion and
maturation.

To test these models, it is essential to develop experi-
mental approaches to measure and perturb tissue mechanics
in follicles. Recently, 3D force sensors like polyacrylamide
microbeads have been developed to measure mechanical
stress distributionwithin cancer cell spheroids, revealing that
an increased tissue pressure toward the inner core leads to
inhibition of cell proliferation (Dolega et al. 2017; Tauben-
berger et al. 2019). Interestingly, tissue pressure has recently
been shown to impact GC proliferation and follicle growth
in the secondary follicle stage (Biswas et al. 2024, 2022),
raising the intriguing possibility that intrafollicular pressure
may impact subsequent events such as luminogenesis.

Biophysical control of ovulation

While it is well known that ovulation is triggered by hor-
monal signalling, the dynamics andmechanics of this process
remain poorly characterised. Early studies have proposed that
various mechanical factors, such as follicle volume increase,
degradation of follicle wall and a build-up of hydrostatic
pressure, may all be involved in ovulation (Matsuzaki 2021;
Rondell 1970). However, these hypotheses remain to be
tested. Here, a first characterisation of tissue mechanics dur-
ing ovulation, such as changes in hydrostatic or osmotic

pressure of the antrum by micropressure probes or pres-
sure sensors may be instructive (Matousek et al. 2001;
Espey and Lipner 1963; Bronson et al. 1979; Vian et al.
2023; Chan et al. 2021). Measurement of follicle wall ten-
sion or stiffness by micropipette aspiration or atomic force
microscopy could also provide physical parameters to sup-
port model construction. Recently, new imaging-based tools
to probe tissue stiffness have emerged. For example, opti-
cal coherence elastography (OCE), which is an extension
of OCM (see the “Optical coherence tomography” section),
relies on measuring local strain and stress to derive elas-
ticity upon compressive load application (Li et al. 2021).
OCE has been applied to study cancer cell metastasis, where
the peripheral cells in breast cancer spheroids were shown
to soften the surrounding ECM leading to invasive migra-
tion (Mowla et al. 2023). OCE has also revealed changes
in mechanical properties of corpora lutea and follicles dur-
ing ovarian ageing (Hepburn et al. 2024). Regardless, OCE
measurements require the application of a load on the sam-
ple, which can result in changes of the sample itself. An
alternative is the use of contact-free Brillouin microscopy,
which measures the longitudinal modulus of tissue with
submicron resolution (Prevedel et al. 2019). Recent work
using Brillouin microscopy has revealed the emergence of
distinct mechanical compartments within follicles during
development (Fig. 2G) (Chan et al. 2021). With the recent
advancement in Brillouin microscopy (Bevilacqua et al.
2023), rapid 3D live mapping of tissue material properties is
now possible, paving the way for future application of such
technique in studying basement membrane remodelling dur-
ing ovulation.

An interesting biophysical aspect of ovulation is inspired
by the physics of liquid crystals (Marchetti et al. 2013; Sal-
breux et al. 2009; Olenik et al. 2023; Colen et al. 2021;
Popović et al. 2017). These frameworks are relevant when
elongated cells align with each other and create long-range
nematic order in tissues, as observed in fibroblasts,myoblasts
and epithelial cells (Saw et al. 2017; Duclos et al. 2016;
Sonam et al. 2022). In cases where apical-basal polarisa-
tion occurs, such polar order can further form topological
defects in 3D, as observed during luminogenesis of the
inner cell mass at the mouse pre-implantation stage (Guru-
ciaga et al. 2024; Ichikawa et al. 2022). During Hydra
regeneration, long, super-cellular actin bundles can form
nematic order (Ravichandran et al. 2024; Maroudas-Sacks
et al. 2021). The “closed” topology of this tissue implies
that topological defects must be present. Interestingly, such
topological defects have implications inHydra development,
where breaches only occur at these defects to relieve tissue
pressure (Ravichandran et al. 2024), supporting the notion
that topological defects can act as mechanical organisers
during morphogenesis (Ravichandran et al. 2024). We pro-
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pose that similar physics may apply to ovulation, where the
spindle-like TCsmay arrange into a nematic state and exhibit
potential topological defects that facilitate follicle rupture
during ovulation.

Conclusions and perspectives

In this review, we introduced the latest developments in
microscopy,machine learning approach and theoreticalmod-
els that may advance our understanding in late-stage mam-
malian folliculogenesis.We foresee that such techniquesmay
lead to immediate new findings when applied to follicles
grown ex vivo, but studying follicle development in vivo
may pose additional challenges due to sample size andmulti-
scale complexity. To move beyond classical histological and
descriptive studies, and to have a more comprehensive and
quantitative understanding of mammalian folliculogenesis,
a multidisciplinary approach combining biophotonics, bio-
physics and machine learning is essential (Fig. 2).

Individually, the methods discussed above can provide
insights but when integrated together they become more
powerful. Advanced microscopy informs microscopic inter-
actions between cells. This qualitative information can be
transformed into quantified data using deep learning models,
done accurately and efficiently on a large scale. Biophys-
ical tools can be used to measure macroscopic properties
of the tissue and theory can be deployed to understand
how the microscopic interactions can produce macroscopic
effects. Perturbations of the models can then be tested using
the same quantitative tools to validate the theory. We envi-
sion this as an iterative process with advanced imaging
experiments and analyses informing biophysical modelling,
followed by a theoretical approach guiding further experi-
ments and generating new hypotheses for testing. The use
of novel biophotonic tools to directly infer tissue mechan-
ics (e.g., Brillouin microscopy) also facilitates construction
of biophysical models. Such an integrative framework to
study 3D tissue dynamics will also be useful in the study
of organoids and disease models (Beghin et al. 2022).

In addition to deepening our knowledge of female repro-
ductive biology, a quantitative understanding of tissue hydra-
ulics in late-stage folliculogenesis also has profound clinical
implications. For example, it will be interesting to compare
antrum formation and ovulation dynamics in the young and
old follicles for possible biomechanical origin of infertil-
ity. Similarly, extending these approaches to ovarian disease
models, such as PCOSovaries,will shed light on the potential
misregulation of tissue hydraulics in these systems.
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