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In this research, enhanced versions of the Artificial Hummingbird Algorithm are used to accurately 
identify unknown parameters in Proton Exchange Membrane Fuel Cell (PEMFC) models. In particular, 
we propose a multi strategy variant, the Lévy Chaotic Artificial Hummingbird Algorithm (LCAHA), 
which combines sinusoidal chaotic mapping, Lévy flights and a new cross update foraging strategy. The 
combination of this method with PEMFC parameters results in a significantly improved performance 
compared to traditional methods, such as Particle Swarm Optimization (PSO), Differential Evolution 
(DE), Grey Wolf Optimizer (GWO), and Sparrow Search Algorithm (SSA), which we use as baselines to 
validate PEMFC parameters. The quantitative results demonstrate that LCAHA attains a minimum 
Sum of Squared Errors (SSE) of 0.0254 and standard deviation of 4.59E−08 for the BCS 500W PEMFC 
model, which is much lower than the SSE values obtained for PSO (0.1924) and GWO (0.0364), thereby 
validating the superior accuracy and stability of LCAHA. Moreover, LCAHA converges faster than DE 
and SSA, reducing runtime by about 47%. The robustness and reliability of LCAHA-simulated and 
actual I–V curves across six PEMFC stacks are shown to be in close alignment.

Keywords PEM fuel cell, Optimal parameter estimation, Electrical Engineering Optimization, Artificial 
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Abbreviations
Vfc   Output voltage of the Fuel Cell (FC) stack
VNernst   Reversible cell voltage (Nernst voltage)
Vact   Activation polarization due to reaction rates at the electrode surface
Vohmic   Ohmic polarization, representing electrical and ionic conduction losses
Vcon   Concentration polarization, indicating concentration variance at the electrode surface
Ncell   Number of cells in the FC stack
Tstack    Stack temperature (K)
pH2    Partial pressure of hydrogen (bar)
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pO2    Partial pressure of oxygen (bar)
ξ1, ξ2, ξ3, ξ4   Semi-empirical coefficients in the activation polarization formula
Rc   Contact resistance (Ω)
Rm   Membrane resistance (Ω)
ρm   Membrane resistivity (Ω·cm)
J    Current density (A·cm−2)
Jmax   Maximum current density (A·cm−2)
SSE  Sum of Squared Errors, objective function for parameter estimation
MBE  Mean Biased Error, indicating accuracy of voltage estimation
LCAHA  Lévy Chaotic Artificial Hummingbird Algorithm, a proposed multi-strategy improved form 

of AHA
PSO  Particle Swarm Optimization
DE  Differential Evolution
GWO  Grey Wolf Optimizer
SSA  Sparrow Search Algorithm
AHA  Artificial Hummingbird Algorithm
DC  Direct Current
PEMFC  Proton Exchange Membrane Fuel Cell
SOFC  Solid Oxide Fuel Cell
Acell   Effective cell area (cm2)
λ   Adjustable parameter related to the membrane
α   Parameter in Lévy flight for step size
RT  Runtime, indicating computational efficiency
FR  Friedman Rank, metric indicating algorithm ranking across different metrics
c1, c2   Coefficients in the cross-foraging strategy of LCAHA

DC microgrids are increasingly becoming more efficient and reliable, primarily due to the prevalence of DC 
loads and the DC output from various sources like renewable energy, storage systems, and fuel cells. Fuel cell 
(FC) systems are integral components within DC microgrids. The combination of solar energy with hydrogen, 
known for being a safe and sustainable storage system, forms the basis of hydrogen energy1,2. Although hydrogen 
is the third most abundant element on Earth, found in water, fossil fuels, and other minute entities, after oxygen 
and silicon3,4, hydrogen gas does not naturally exist in isolation, except within natural gas reservoirs5. This 
resource is garnering increasing global interest6.

Fuel cells are electrochemical devices that convert the chemical energy of hydrogen into electricity7,8. They 
are becoming increasingly popular across transportation, portable, and stationary applications due to their 
significant benefits such as high efficiency, clean and quiet operation, and high power and energy density9,10. 
Presently, the market features several types of fuel cells, with the most notable being proton exchange membrane 
FC (PEMFC)11, alkaline FC (AFC)12, solid oxide FC (SOFC)13, phosphoric acid fuel cell (PAFC)14,15, and 
microbial fuel cell (MFC)16,17.

Mann’s model is one of the semi-empirical models used to describe PEMFC performance, which consists 
of seven unknown parameters18. Accurately determining these parameters is crucial as the model’s precision is 
dependent on them. These parameters can be extracted using either meta-heuristic optimization algorithms or 
traditional analytical methods. Among the conventional methods are the stochastic method19, the input–output 
diffusive approach20, and the proper generalized decomposition approach21. Geem and colleagues22 employed 
the generalized reduced gradient method. However, these methods are often limited by their reliance on the 
initial conditions of the problem, the risk of converging to a local minimum, and their accuracy being contingent 
on the error of the differential equations’ solver5.

Given the limitations discussed earlier, numerous researchers have turned to meta-heuristic algorithms due 
to their flexibility with problem formulations, derivative-free nature, and applicability to diverse real-world 
engineering challenges23. Specific researchers have applied unique algorithms; EL-Fergany and colleagues 
adopted the grasshopper optimizer16, whale optimization algorithm17, and salp swarm optimizer24. Seleem and 
associates used the equilibrium optimizer in their research25, while Alsaidan applied the chaos game optimization 
technique26. Sultan and his team identified fuel cell parameters using improved chaotic electromagnetic field 
optimization27, and the artificial ecosystem optimizer was employed in another study28. Rao and colleagues used 
a shark smell optimizer for the PEMFC model29, Fahim and associates implemented the hunger games search 
algorithm30, and a novel circle search algorithm was explored in another study31.

Additionally, Ali and others proposed using a grey wolf optimizer (GWO) to achieve optimal PEMFC 
parameters32, Abaza and colleagues introduced a coyote optimization algorithm (COA) for solving the 
PEMFC problem33, and Zaki and associates utilized marine predators and political optimizers34. Chen and 
his team implemented a cuckoo search algorithm (CS)35, while Kandidayeni and colleagues employed both 
the firefly optimization algorithm (FOA) and shuffled frog leaping algorithm (SFLA) to model the PEMFC36, 
biogeography-based optimization algorithm (BBO) by Niu et al.37, and backtracking search algorithm (BSA) by 
Askarzadeh38, bird mating optimizer (BMO)39 and grouping-based global harmony search algorithm (GGHS)40. 
Chakraborty et al. applied differential evolution (DE) to find PEMFC parameters41, Priya et al., used flower 
pollination algorithm (FPA)42, Outeiro et al. employed simulated annealing optimization algorithm (SA)43.

The computational steps in many of the algorithms discussed earlier are lengthy and involve complex 
procedure44. Also, the nonlinearity characteristics of Proton Exchange Membrane Fuel Cells (PEMFC) make it 
difficult for a majority of meta-heuristic algorithms hence leading to several limitations. For instance, some of 
these features lead to premature convergence issues in some algorithms such as Cuckoo Search (CS)35, Firefly 
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Optimization Algorithm (FOA)36 and Biogeography Based Optimization (BBO)37. On the other hand, Grey 
Wolf Optimizer (GWO)32, Shuffled Frog Leaping Algorithm(SFLA)36, Backtracking Search Algorithm(BSA)38 
and Differential Evolution(DE)41 suffer from slow convergence rates.

In addition, there exist techniques that need intricate parameter settings and extensive tuning like Flower 
Pollination Algorithm(FPA)42, Bird Mating Optimizer(BMO)39,Simulated Annealing(SA)43. Also, there is a 
problem with approaches like CS35 and Grouping-Based Global Harmony Search (GGHS)40 which easily get 
trapped at local optimum solutions. Despite these problems, there are notable advantages. For example, The 
Grey Wolf Optimizer (GWO) as well as Coyote Optimization Algorithm (COA), are known for their simple 
variable tuning. Additionally, Jellyfish Search Optimizer, Shark Smell Optimizer and Neural Network Optimizer 
have low computational demands. Furthermore, rapid convergence speeds distinguish COA45, Marine Predator 
Optimizer (MPO) and Equilibrium optimizer (EO). Chaotic Slime Mold Algorithm (CSMA) has been 
successfully used for multi-disciplinary design optimization problems using chaotic sequences to enhance 
convergence and exploration capabilities46. The Improved Chaotic Harris Hawks Optimizer (ICHHO) also uses 
chaotic maps to avoid local optima and can be applied to complex numerical and engineering optimization 
tasks47. Furthermore, the Chaotic Slime Mould Optimizer (CSMO) is used to solve the unit commitment 
problem in an integrated power system with wind and electric vehicles, with the aid of chaos to improve search 
efficiency48. Wan et al. (2023) proposed an analysis method for optimizing water management in PEM fuel 
cells by examining different operating conditions to achieve optimal hydration states49. Zhang et al. (2023) 
introduced a multiple learning neural network algorithm to improve the accuracy of PEM fuel cell parameter 
estimation, offering a robust approach for model fidelity50. Furthermore, Waseem et al. (2023) reviewed the 
integration of fuel cells into hybrid electric vehicles, discussing critical challenges, policy implications, and future 
research opportunities51. Lastly, Qiu et al. (2023) outlined progress and identified challenges in multi-stack fuel 
cell systems for high-power applications, particularly focusing on energy management strategies52. A modified 
manta ray foraging optimization method has been demonstrated to improve parameter identification in PEMFC 
systems53 with better accuracy and stability. A recent study also introduced a modified slime mold algorithm for 
hydrogen powered PEMFCs, which showed significant improvements in terms of accuracy and convergence54. 
Additionally, the chaotic Rao optimization algorithm has been successfully utilized for steady state and dynamic 
characterization of PEMFC models, yielding useful information on the reliability and performance of PEMFC 
stacks under different conditions55.

Start with including some more recent studies from the last 3 to 5 years on optimization algorithms in PEMFC 
modeling. One of these would be references to later metaheuristic and hybrid approaches to Energy Systems for 
faster convergence speed, better solution accuracy, and stability. For example, studies of algorithms such as 
Mayfly Optimization Algorithm, Marine Predator Algorithm, Chaotic Harris Hawks Optimization, and others 
indicate that chaotic maps and adaptive strategies improve algorithm performance. However, these references 
could point out that, though these methods have succeeded in solving some optimization problems, there are 
difficulties with these complex engineering problems, such as PEMFCs.

They clearly outline the complex, nonlinear nature of PEMFC systems. The parameters of PEMFCs are 
interdependent, and include activation, ohmic, and concentration losses, which are different under different 
operating conditions. The dynamic behavior of PEMFCs under varying loads, pressures and temperatures, as 
well as the non-linear I-V relationship, make accurate parameter estimation difficult. This complexity, however, 
poses a challenge to traditional methods such as gradient based techniques or simple metaheuristics, which can 
suffer from premature convergence or entrapment in local optima, particularly when the search space is high 
dimensional and multi modal. Note that while such progress has been made, current algorithms are still lacking 
in directly balancing exploration (globally exploring a solution space) and exploitation (refining a solution with 
local refinements). A number of algorithms either do not have adequate global search capability and hence 
converge prematurely or have low convergence rates due to poor local search. For instance, the Grey Wolf 
Optimizer (GWO) and Differential Evolution (DE) algorithms may convergence slowly or need many parameter 
tuning, thus may be less practical for PEMFC applications that require real time control.

Artificial Hummingbird Algorithm (AHA)56 was selected as the primary algorithm for enhancement 
because of its unique adaptive mechanisms that match well with the complex and nonlinear nature of PEMFC 
parameter estimation. AHA is shown to have strong exploration and exploitation abilities, with an intrinsic 
multi-dimensional search approach based on the foraging behavior of hummingbirds. This enables efficient 
search space navigation, which prevents entrapment of the search in local optima and encourages global search 
capabilities. In addition, its framework is flexible to include more sophisticated strategies, e.g., sinusoidal chaotic 
mapping and Lévy flight, to enhance the convergence speed and accuracy. Although other algorithms exist, 
AHA structure lends itself naturally to the implementation of these improvements, and is therefore particularly 
well suited to the precise, time critical applications, such as PEMFC parameter estimation. In this study, the 
limitations of these algorithms are addressed by the development of the Lévy Chaotic Artificial Hummingbird 
Algorithm (LCAHA). LCAHA uses chaotic maps and Lévy flights, and couples them with cross update foraging 
strategies for both exploration and exploitation phases, thus increasing the likelihood of reaching a global 
optimal solution in a reasonable time. The chaotic map is used to start a random search; the Lévy flight searches 
globally to escape any local optima, and the cross-update foraging procures quick convergence. For PEMFC 
parameter estimation, precision and computational efficiency are particularly important, and this is especially 
so. The research conducted thus fulfills the need for a more robust, adaptive, and efficient optimization method, 
which LCAHA57 is shown to be a suitable solution to the complex optimization problems posed by PEMFC 
models. Furthermore, this paper provides a thorough comparison with existing methods in the literature to 
validate and verify the efficacy of these techniques. The following are some insights of the study:
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 1.  The precise extraction of unknown PEMFC model parameters by minimizing the sum of squared errors 
between measured and simulated data.

 2.  Development of an accurate PEMFC model that replicates the electrical and electrochemical characteristics 
of actual PEMFC stacks, considering variations in pressure and temperature of the reactants.

 3.  An extensive comparative analysis of five optimization algorithms: LCAHA, Particle Swarm Optimization 
(PSO)58, Differential Evolution (DE)59, Grey Wolf Optimizer (GWO)60, and Sparrow Search Algorithm 
(SSA)61 for parameter extraction in PEMFC models.

 4.  Evaluation of the efficiency of the applied algorithms using six different PEMFC stacks: BCS 500W-PEM62, 
500W-SR-12PEM63, Nedstack PS663, 12 W-HR-12 PEM64, 500WHORIZON PEM64, and 250W-stack65.

 5.  Presentation of comprehensive statistical analysis to validate the reliability of the applied algorithms.
 6.  Comparison of the results obtained from the proposed algorithm with those from various recent algorithms 

reported in the literature.
 7.  A competitive comparison highlighting the reliability of the applied algorithms in addressing the studied 

problem.
 8.  The main innovation of this study is the Lévy Chaotic Artificial Hummingbird Algorithm (LCAHA), a new 

multi strategy optimization method that combines sinusoidal chaotic mapping, Lévy flights and an advanced 
cross update foraging strategy. The integration of this method enhances both exploration and exploitation 
capabilities, and leads to a significant improvement in the accuracy and convergence speed of parameter 
estimation for PEMFC models as compared to existing methods.

The remainder of this paper is organized as follows: section "PEMFC Mathematical Modelling" outlines the 
mathematical model of PEMFC stacks and the objective function. Section "Enhanced artificial hummingbird 
algorithm" describes the optimization algorithms used. Section "Result Analysis and Discussion" presents the 
simulation results and dynamic performance of PEMFCs for each case study, along with a statistical analysis. 
Finally, section "Conclusion" draws the main conclusions of the research.

PEMFC mathematical modelling
In this section, we first provide a comprehensive description of the semi-empirical model and the specifications 
of the chosen Proton Exchange Membrane Fuel Cell (PEMFC). Following that, we define the objective function 
and discuss statistical comparison metrics, including Mean Biased Error (MBE) and the efficiency of the 
objective function.

Semi-empirical electrochemical model
The output voltage of the FC stack (Vfc) is obtained using Eq. (1),

 Vfc = (VNernst − Vact − Vohmic − Vcon) · Ncell (1)

In this description, Vact  denotes the activation polarization caused by the slow reaction rates at the electrode 
surface, Vohmic  refers to the ohmic polarization which accounts for the resistance encompassing all electrical and 
ionic conduction losses through the electrolyte, catalyst layers, cell interconnects, and contacts. Vcon  indicates 
the concentration polarization linked to the variance in concentration between the fuel/air channel and the 
chemical species on the electrode surface, and Ncell is the number of cells66. VNernst represents the reversible 
cell voltage, also known as the Nernst voltage, which can be calculated using Eq. (2)67,68.

 VNernst = 1.229 − 0.85 × 10−3 (Tstack − 298.15) + 4.3085 × 10−5Tstack [ln (pH2 ) + 0.5ln (pO2 )] (2)

In this context, Tstack   refers to the stack temperature measured in Kelvin (K), pH2  indicates the partial pressure 
of hydrogen in bars, and pO2  represents the partial pressure of oxygen, also measured in bars. The partial 
pressure of hydrogen is determined using Eq. (3).66.

 

pH2 = 0.5 · RHa · P sat
H2O
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)
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− 1


 (3)

Calculating the partial pressure of oxygen at the cathode can be achieved by injecting pure oxygen into the FC’s 
cathode side according to Eq. (4).

 

pO2 = Pc −
(
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If air replaces oxygen, the partial pressure of oxygen at the cathode may be computed using Eq. (5).

 

pO2 = Pc −
(
RHc · P sat

H2O

)
− 0.79

0.21 · pO2 · exp


0.291

(
Ifc
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)

T 0.832
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 (5)
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where RHa and RHc are the relative humidity of the vapours in the anode and cathode respectively. Ifc is the 
current of operation of FC (A), Acell refers to the active cell area (cm2), Pa represents pressure at anode (bar) 
while Pc stands for pressure at cathode(bar). P sat

H2O  represent saturation pressure for water vapor (bar) which 
can be calculated as a function of stack temperature using Eq. (6).67,68.

 log10
(
P sat

H2O

)
= 2.95 × 10−2 (Tstack − 273.15) − 9.18 × 10−5 (Tstack − 273.15)2 + 1.44 × 10−7 (Tstack − 273.15)3 − 2.18 (6)

The Eq. given by (7)67 tells us that the activation polarization can be determined with the help of stack temperature 
and oxygen concentration.

 Vact = − [ξ1 + ξ2 · Tstack + ξ3 · Tstackln (CO2 ) + ξ4 · Tstack · ln (IF C)] (7)

where ξk(k = 1,2, 3,4) are coefficients of a semi-empirical equation derived from kinetic, thermodynamic and 
electrochemical theories69 and CO2  is the concentration of oxygen (mol ·cm − 3) that can be calculated by this 
equation67.

 
CO2 =

(
pO2

5.08

)
× 106exp

(
− 498

Tstack

)
 (8)

As expressed in Eq. (9),67 the ohmic polarization relies on contact resistance, RC  (Ω), and membrane resistance, 
Rm  (Ω).

 Vohmic = IF C · (Rm + RC) (9)

The membrane resistance depends on the resistivity of the membrane, ρm (Ω.cm), membrane thickness,  (cm), 
and effective membrane area (cm2), which is shown in Eq. (10).

 
Rm = ρml

Acell
 (10)

The membrane resistivity (ρm) is calculated by using Eq. (11) for Nafion membranes.

 

ρm =
181.6

[
1 + 0.03

(
Ifc

Acell

)
+ 0.062

(
Tstack

303

)2 (J)2.5
]

[
λ − 0.643 − 3

(
Ifc

Acell

)]
exp

(
4.18

(
Tstack−303

Tstack

))  (11)

where λ is an adjustable parameter related to the membrane and its preparation process69. The concentration 
polarization is calculated using Eq. (12) 67.

 
Vcon = −βln

(
1 − J

Jmax

)
 (12)

where  β is the parametric coefficient (V) that depends on the cell and its operation state67, J  is the actual current 
density (A  cm−2), and Jmax is the maximum current density (A  cm−2).

Fitness function definition
In this research, the parameters of the model are optimized using various versions of Particle Swarm 
Optimization (PSO) and Finite Difference Differential Evolution (FD-DE) to align the PEMFC model’s results 
with those found in the literature or provided by manufacturers, thereby improving the model. The output 
voltage is calculated at points corresponding to each current value using the mathematical formulas detailed in 
the section titled "Semi-empirical Electrochemical Model." Consequently, the proposed fitness function acts as 
an indicator of the quality of the estimated parameters. The Sum of Squared Errors (SSE), presented in Eq. (13), 
is chosen as the fitness function67.

 
SSE = Min

(
N∑

i=1

[Vmeas (i) − Vcalc (i)]2
)

 (13)

In this context, N  represents the total number of measured data points, i is the iteration counter, Vmeas is the 
measured voltage of the Fuel Cell (FC), and Vcalc  refers to the voltage calculated for the FC. Additionally, various 
Multi-Attribute Decision Making (MADM) methods with differing foundational principles were outlined in 
the section "Ranking of the Algorithms." These methods are employed to determine the most effective Meta-
Heuristic Algorithms (MHAs) for the H-1000 XP case study. The Mean Biased Error (MBE) is computed using 
Eq. (14).

 
MBE =

∑N

i=1 |Vmeas (i) − Vcalc (i)|
N

 (14)
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Enhanced artificial hummingbird algorithm
Principles of the artificial hummingbird algorithm
The first step of the Artificial Hummingbird Algorithm (AHA) is to generate candidate solutions that are 
distributed randomly. When an artificial hummingbird comes to a newer area, it will randomly find food sources 
in order to complete the establishment of colony. This behavior represents the first search for food sources. The 
process of initialization is given by Eq. (15):

 xi = LB + r · (UB − LB) (15)

Here, LB and UB represent the upper and lower bounds of the interval, respectively, while r is a random number 
between 0 and 1. The variable xi  denotes the position identified by the i th hummingbird.

The visit table is put like this:

 
V Ti,j =

{ 0, if i ̸= j
null, i = j  (16)

For the first scenario, VTij=null indicates that hummingbirds are feeding at a consistent food source and for the 
second scenario, VTij=0 indicates that the ith hummingbird has recently explored the jth food source.

Three flight trajectories are used by hummingbirds for multidimensional space navigation. The axial flight is 
important because it allows the bird to move along the axis, as explained in Eq. (17).

 
D

(i)
Af =

{ 1, if i = Randi ([1, d])
0, else  (17)

The diagonal flight can be expressed by Eq. (18).

 
D

(i)
Df =

{ 1, if i = G (j) , j ∈ [1, c] , G = Randperm (c)
0, else ,  (18)

The omnidirectional flight is expressed by Eq. (19).

 D
(i)
Of = 1, i = 1, 2, . . . , n (19)

In this model, c takes a number of values between 2 and [r1(d − 2) + 1] , where Randi([1, d])   generates a 
random number between 1 and d, whereas Randperm(c) generates an arrangement of numbers randomly 
chosen from the set of all whole numbers smaller than c. r1 is a randomly generated quantity that comes from 
within the interval (0,1).

The equation of the hummingbird’s candidate solutions update during guided foraging is illustrated in Eq. 20.

 vi (t + 1) = xi, target + g · Dt · (xi (t) − xi, target (t)) , t ∈ {Af, Df, Of} (20)

 g ∼ N (0, 1) (21)

The position of the target solution is represented by xi,target(t)   and g is a factor that guides it. The update 
formula, which applies when a hummingbird finds the target food source closer to its location, is given below:

 
xi (t + 1) =

{
xi (t) , f (xi (t)) ≤ f (vi (t + 1))
vi (t + 1) , else  (22)

The fitness values of the candidate solution xi(t) and the updated solution vi(t + 1) are represented by f (xi(t)) 
and f (vi(t + 1)) respectively.

The equation for revising candidate solutions through territorial foraging by hummingbirds is given in 
Eq. (23).

 vi (t + 1) = xi + k · Dt · xi (t) , t ∈ {Af, Df, Of} (23)

 k ∼ N (0, 1) (24)

k is a guiding parameter, and Dt stands for one of the three modes of flight. The following outlines the 
strategy for insufficiently placed artificial hummingbirds migrating to another food source by way of migratory 
foraging.

 xworst (t + 1) = LB + r · (UB − LB) , when M = t (25)

where xworst shows the candidate solution with lowest nectar refilling rate, t is the current iteration number and 
M  denotes migration coefficient used in the proposed algorithm. Normally the value of M  is set as M = 2n 
where n represents population size.
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LCAHA algorithm: framework
The Artificial Hummingbird Algorithm (AHA), which requires an improvement to handle engineering 
optimization problems that possess multiple local optimal solutions, is enhanced by means of a more advanced 
hybrid version called the multi-strategy hybrid AHA. In this version, sinusoidal chaotic maps, Lévy flight and 
cross-and-update foraging strategy have been integrated.

Sinusoidal chaotic map strategy
The unpredictable, unsteady and undetermined nature of such maps as chaotic mappings in nonlinear dynamics 
is well-known70. Chaotic variables are used to start the population of these maps and hence offer a more 
exhaustive searching process than random searches which heavily depend on probabilities71. Moreover, chaotic 
maps are made effective by their sensitivity to initial conditions and parameters72. This research utilizes one-
dimensional mapping that is done using the sinusoidal chaotic map, which creates a wider exploration through 
iterative initialization process into the search space.

 

{
fj+1 = αf2

j sin (πfj)
f0 ∈ [0, 1] , α ∈ (0, 4]  (26)

where j represents the quantity of iterations. The formula increases the range of search through initiating process 
of iterations to understand what happens where.

The Lévy flight introduction
Lévy flight is a frequent behavior exhibited by many flying animals and is comprised of random walks with a 
heavy-tailed probability density function that encompasses lots of small steps as well as rare long jumps73–75. 
For populations that generally move toward predetermined food sources but have to search for new prey sites, 
this type of movement is very efficient76. As such, Lévy flight has extensively enhanced the efficiency of several 
Swarm Intelligence (SI) algorithms77.

By incorporating Lévy flight, the integration of guided foraging allows artificial hummingbirds to efficiently 
determine the precise area where target food sources are located, expand their survey areas, in surrounding 
regions and improve the diversity of search process as a whole. Guided foraging which includes Lévy flight is 
defined by Eq. (27).

 vi (t + 1) = xi, target + α · Levy · Dt · (xi (t) − xi, target (t)) , t ∈ {Af, Df, Of} (27)

where α  is set to 0.01.

 Levy (β) ∼ u = t−1−β , 0 < β ≤ 2 (28)

Also, Lévy flight’s effect is influenced by two factors: the impact of uniform distribution on the flight direction 
and the influence of Lévy distribution on step length.

 
s = U

|V |1/β  (29)

where U  and V  obey Gaussian distribution as illustrated in Eq. (30).

 U ∼ N
(
0, σ2

U

)
, V ∼ N

(
0, σ2

V

)
 (30)

where σU  and σV  satisfy Eqs. (31) and (32):

 
σU =

(
Γ (1 + β) · sin (π · β/2)

Γ ((1 + β/2) · β · 2(β−1)/2)

)1/β

 (31)

 σV = 1 (32)

where Γ represents the standard Gamma function, and β\betaβ is set at 1.578.

Cross and update foraging strategy
Crossover and update foraging strategies used in this study are conducted following the crossover operator from 
CSO. The operator employs previous iterations’ information to increase future search ability79. The crossover 
operator is an improved catalyst that effectively identifies the best quality solutions. It is divided into two parts, 
namely; horizontal and vertical operators80. These operators shift the population iteratively until they reach the 
optimum position. The Cross foraging simulates artificial hummingbirds exchanging positional information 
while Update foraging is how hummingbirds change their information processing due to a changing environment 
with which they interact during their lifetime in search of nectar. In this case, these strategies can reproduce both 
fundamental communication behaviors between artificial hummingbirds and environmental characteristics 
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of nectar sources. During evolutionary iterations, potential new food locations found by hummingbird using 
movements across horizontal and vertical directions are considered as candidate honey sources.

Horizontal operator-based cross foraging strategy Information trading among artificial hummingbirds is the 
main issue of this study. The horizontal operator acts as a bridge to span across the solution space and exchange 
some information. It’s called “cross foraging” because of the horizontal operator that discovered how popula-
tion level information transfer can be efficient. This is why sharing the current feeding sources by two types of 
artificial hummingbirds enables them to know where a new source of honey may be found for influencing their 
positional updates. Hence, with this strategy, both birds can avoid local maxima by searching broadly. Therefore, 
we can characterize the updating mechanism for cross foraging as:

 Vhc (N1, j) = r1 · x (N1, j) + (1 − r1) · x (N2, j) + c1 · (x (N1, j) − x (N2, j)) , (33)

 Vhc (N2, j) = r2 · x (N2, j) + (1 − r2) · x (N1, j) + c1 · (x (N1, j) − x (N2, j)) (34)

Two food sources x (N1, j) and x (N2, j) are presented after one iteration of applying horizontal operator in 
the dth dimension. In this case, r1 and r2 are random numbers between (0,1). Besides, c1 and c2 are stochastic 
coefficients for [-1, 1] and Vhc (N1, d) as well as Vhc (N2, d) are brand-new candidate honey sources because of 
information sharing between two hummingbirds.

With the help of expansion factors c1 and c2, a horizontal operator can find new positions at the hypercube 
edges with certain probability. This way, the LCAHA reduces its blind spots which could hinder hummingbirds 
from finding food sources. It greatly improves their global search ability.

Revised foraging strategy utilizing the vertical operator To continue investigating the effects of changes in 
environmental information on flight behavior, a revised foraging strategy has been developed that includes a 
vertical operator mechanism. The flight of these man-made creatures is affected by the change in environmental 
conditions such as temperature, illumination and humidity when they are heading towards probable sources of 
nectar. These environmental factors alter their certainty towards these sources hence can change their path to 
be taken. As a result of this behavior, they might end up in unexplored regions where there is possibility of dis-
covering new nectar sources. Artificial hummingbirds are able to enter previously unknown territories through 
an adaptive strategy which enhances global exploration and local exploitation capabilities. As well, it addresses 
problems connected with recurred stops during multiple iterations. This approach uniquely modifies the po-
sitions of nectar sources by applying two dimensional planes across different locations where there is food for 
them using vertical operations.

The revised strategy utilizes vertical manipulations in the dimensions d1  and d2  of an artificial hummingbird’s 
position x(i, :), updating the position of a new potential nectar source Vvc(i)  as outlined below:

 Vvc (i, d1) = c · xi,d1 + (1 − c) · xi,d2 , i ∈ M (1, n) , d1, d2 ∈ M (1, Dim) (35)

where c represents a random number within the range (0,1). Here, n signifies the agents, and Dim refers to the 
design variables.

In this context, the population is normalized based on the upper and lower bounds of each design variable. 
Each vertical operation is dedicated to a single nectar source, avoiding the risk of disrupting another potentially 
optimal global dimension by exiting a locally optimal stale dimension.

Additionally, a competitive operator is introduced to manage the nectar-refilling dynamics between the new 
and existing nectar sources. A newly discovered nectar source by an artificial hummingbird is not immediately 
adopted; it is only considered if its nectar-refilling rate surpasses that of the current source. The mathematical 
expression for this competitive operator is given as:

 
x =

{
Vhv, if f (Vhv) < f (x) ,
x, if f (Vhv) > f (x) ,  (36)

where Vhv  is the candidate honey source obtained after competitive arithmetic.

Equilibrium between exploration and exploitation
Exploration and exploitation together form a comprehensive search strategy. The exploration mechanism 
extends the search by identifying and pushing candidate solutions towards unexplored areas far within the search 
space. Conversely, exploitation drives the solutions to converge towards the most promising regions identified. A 
careful equilibrium between these two opposing functions directs the algorithm towards optimal performance.

Initially, the inclusion of Lévy flight macro migration introduces frequent minor movements that diversify 
the motion of search agents. This strategy, adopted during the exploratory phase, allows candidate solutions to 
bypass local optima via the Lévy step size, enhancing the overall search effectiveness globally. This approach not 
only stabilizes the global search but also maintains a balance between exploration and exploitation. Moreover, the 
implementation of a horizontal operator within the cross-foraging strategy incorporates an expansion factor c1 , 
enabling the sampling of new positions at the hypercube’s edges with minimal probability. This tactic minimizes 
unsearchable blind spots by the primary agent, thereby boosting the global search capabilities of the Artificial 
Hummingbird Algorithm (AHA). Furthermore, the adoption of vertical operators ensures normalization of 
the hummingbird population based on each dimension’s upper and lower limits. Simultaneously, each vertical 
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crossover operation produces a single new candidate solution, offering a chance for the search to escape local 
optima in stagnant dimensions without negatively impacting other dimensions that might represent the global 
optimum. The dual-stage enhancement effectively balances exploration and exploitation.

Optimization process steps for the LCAHA
In order to solve complex, high-dimensional engineering problems, the Artificial Hummingbird Algorithm 
(AHA) should tackle challenges such as local optima, slow convergence and limited exploration capabilities. 
A multi-strategy improved version of the AHA was developed for this purpose known as Hybrid Artificial 
Hummingbird Algorithm (LCAHA). This new approach includes sinusoidal chaotic maps, Lévy flight and 
advanced cross and update foraging strategies which have a number of advantages:

 1.  Improved Solution Distribution: Within the initial distribution in solution space sinusoidal chaos maps are 
integrated to cover more search area and lead to faster convergence towards optimum solution. Thus LCAHA 
has an increased convergence speed with higher accuracy.

 2.  Greater Population Diversity: The inclusion of Levy flight increases diversity among artificial hummingbird 
populations eliminating their premature convergence. As a result, rather than getting stuck on some subop-
timal solutions LCAHA better escapes from local optima hence achieving more efficiency when it comes to 
identifying global optimal solutions at different stages of optimization process.

 3.  Better Exploration and Exploitation: The algorithm is improved by using cross and update foraging strategies 
that provide updated information about where the birds are located at both population level and dimension 
level resulting into balance between exploration and exploitation processes which enable detailed searching 
optimal solutions within the solution space.

The procedural steps for implementing LCAHA are as follows:

Step 1: Set initial LCAHA parameters: number of agents n, design variables Dim, boundaries of variables 
(lb, ub), maximum iterations Max_Iteration, and migration coefficient M .
Step 2: Randomly initialize n food sources using sinusoidal chaotic maps and set up the initial visit table per 
Eq. (16).
Step 3: Hummingbirds approach the nearest food source, assessing and recording the highest nectar-refilling 
rate and optimal food source best(x);
Step 4: During each iteration, generate a random number r1  within [0,1]. Based on r1 , hummingbirds employ 
axial, diagonal, or omnidirectional flights as prescribed by Eqs. (17), (18), or (19), respectively.
Step 5: Generate another random r within [0,1]. If r ≤ 0.5, hummingbirds engage in guided foraging via 
Eq. (27) using Lévy flight to assess nearby food sources.
Step 6: If r > 0.5, adjust the hummingbird’s location through territorial foraging as defined in Eq. (23), and 
assess the nectar-refilling rate of the new source. If it proves better, switch to the new optimal solution best (x) 
and reset the food source record.
Step 7: Every 2n iterations, update the position by migratory foraging using Eq.  (25), relocating the least 
efficient hummingbird to a new food source.
Step 8: Update positions and explore new food sources using Eqs. (35) and (36) through the cross and update 
foraging strategy, evaluating the nectar-refilling rate for potential updates.
Step 9: After each iteration, increase t; if t exceeds Max_Iteration, declare the global minimum and opti-
mum variables; if not, return to Step 4.

To distinctly outline the multi-strategy hybrid AHA, Algorithm 1 provides the pseudo-code for the advanced 
LCAHA.
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Algorithm 1. The proposed LCAHA

Moreover, Fig. 1 depicts the flowchart of the LCAHA algorithm with emphasis on three essential improvement 
approaches. To begin with, algorithm parameters have been set up and initial evaluation has been done. Then, 
both global and local searches are performed by LCAHA. The iterative outcomes are refined through cross and 
update foraging strategy until the termination criteria is met which concludes the process. Eventually, in output 
mode, algorithm produces optimally improved solution. The use of parameters of chaotic mapping, Lévy flight, 
and the cross and update foraging strategy, where parameters such as the migration coefficient (M), guiding 
factors (α, g, k) and the sinusoidal chaotic map constant α (0–4) are set to guarantee efficient optimization. The 
contribution of these parameters is to improve the balance between exploration and exploitation of the LCAHA 
for PEMFC parameter estimation, which leads to the improvement of the convergence rate and accuracy.

Computational complexity of LCAHA
Five main aspects and among them are the initial phase, number of hummingbirds (n), Max_Iteration (M ) and 
the number of design variables (d) determine time complexity of LCAHA algorithm. At the same time, before 
any iterations, metaheuristic algorithm initializes total dimensionality for all individuals in the population. The 
cost to initialize LCAHA is O(n × d). Since an objective function’s form may depend on a problem type and can’t 
be standardized, its time complexity may not be a significant factor considered about it. According to the AHA 
introduction, at each iteration guided foraging or territorial foraging done with 50% chance have computational 
complexities of O(0.5M × n × d)andO(0.5M × n × d) respectively due to their position updates while 
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migratory foraging only occurs in half iterations hence having complexity O(M × d/2). Cross-foraging on 
the other hand has a complexity of O(M × n × d) since it swaps positions between pairs of individuals in 
population simultaneously. Changing from one foraging strategy into another takes place by updating only some 
dimensions thereby resulting in complexity O(M × n), where only one update happens. Thus, overall this can 
be written as:

The computational complexity of LCAHA primarily hinges on five factors: the initialization phase, the number 
of hummingbirds (n), maximum iterations (M), and the number of design variables (d). The initialization of the 

Fig. 1. Flowchart for the LCAHA.
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metaheuristic algorithm, which sets up the total dimensions for all individuals before beginning the iterations, 
has a complexity of O(n × d). The complexity related to solving the objective function is not included here, as 
it varies depending on the problem type and cannot be universally applied. As detailed in AHA, guided and 
territorial foraging occurs during each iteration with equal probability, attributing a computational complexity 
of O(0.5M × n × d) and O(0.5M × n × d) for each. Furthermore, migratory foraging, conducted in half of 
the iterations, contributes a complexity of O(M × d/2). Cross foraging, which involves positional exchanges 
between pairs of individuals, also adds a complexity of O(M × n × d). Update foraging, which adjusts specific 
dimensions, brings the complexity to O(M × n). Thus, the overall complexity of LCAHA can be summarized 
as follows:

 

O (LCAHA) = O (Initializationphase) + O (objectivefunction) + O (guidedforaging)
+ O (territorialforaging) + O (migratoryforaging) + O (crossforaging)
+ O (updateforaging)

= O (n × d) + O (0.5M × n × d) + O (0.5M × n × d) + O (M × d/2) + O (M × n × d) + O (M × n)
= O (n × d + 2M × n × d + M × d/2 + M × n) ≈ O (2M × n × d + M × d/2 + M × n) .

Result analysis and discussion
In this work an attempt has been made to exhaustively illustrate LCAHA algorithm and compare it with different 
highly applied algorithms like Particle Swarm Optimization (PSO)58, Differential Evaluation (DE)59, Grey 
Wolf Optimizer (GWO)60 and Sparrow Search Algorithm (SSA)61, applied for PEMFC modelling. The default 
parameter settings for different algorithms used in literatures are given in Table 1. All algorithms compared 
were set to their recommended to estimate the parameter of a PEMFC fuel cell (BCS 500W-PEM62, 500W-SR-
12PEM63, Nedstack PS663, 12 W-HR-12 PEM64, 500WHORIZON PEM64 and 250W-stack65) presented in Table 
2. All the experiments are carried out on Matlab 2021a of a PC with Windows Server 2019 operating system CPU 
i7-11700 k@3.6 GHz, maximum iterations 500, number of run 50 and population size 40.

FC1: BCS 500W
According to Table 3, the LCAHA algorithm consistently delivers either the lowest or among the lowest values in 
all evaluated categories, showcasing its superior stability, precision, and effectiveness. The algorithm’s minimum 
value is recorded at 0.0254927, matching DE for the lowest among the compared algorithms, thereby illustrating 
its consistent ability to identify optimal solutions. The maximum value for LCAHA remains constant at 0.0254928, 
notably lower than those observed with PSO (0.1924899) and GWO (0.0364916), which highlights its capacity 
to avoid scenarios with high error rates. The mean value of LCAHA is also the most favorable at 0.0254927, 
confirming its ability to produce reliably accurate outcomes. Additionally, LCAHA exhibits remarkable 
stability, as evidenced by an extremely low standard deviation of 4.59E-08, much lower than those seen in PSO 
(0.053443) and DE (0.0061464), indicating its unparalleled precision. In terms of computational speed, LCAHA 
demonstrates impressive efficiency with a runtime of 2.8059648 s, which is faster than both DE, which takes 
6.5825206 s, and SSA, which requires 5.9258096 s. Furthermore, LCAHA achieves the best Friedman rank (FR) 
at 1.2, solidifying its position as the most efficient algorithm across all considered measures. As evidenced by the 
data in Tables 3, 4, and Fig. 2, LCAHA not only excels in delivering top-tier results with minimal computational 
demand but also consistently outperforms other algorithms in terms of stability and efficiency, positioning it as 
the optimal choice for precision-critical and time-sensitive applications.

S. no PEMFC type Power(W) Ncells (no) A(cm2) l(um) T(K) Jmax(mA/cm2) PH2(bar) PO2(bar)

FC1 BCS 500 W 500 32 64 178 333 469 1.0 0.2095

FC2 NetStack PS6 6000 65 240 178 343 1125 1.0 1.0

FC3 SR-12 500 48 62.5 25 323 672 1.47628 0.2095

FC4 H-12 12 13 8.1 25 323 246.9 0.4935 1.0

FC5 STD 250 24 27 127 343 860 1.0 1.0

FC6 Horizon 500 36 52 25 338 446 0.55 1.0

Table 2. Characteristics of Six PEMFCs used in this work.

 

Algorithms Default settings

PSO Inertia weight = Linear decrease from 0.9 to 0.1; Velocity range = 0.1 times the variable range, Cognitive and social factors c1 = 2; c2 = 2
DE Scaling factor = 0.5, Crossover probability = 0.5

GWO Convergence parameter (a) Linear reduction from 2 to 0

SSA ST = 0.8

LCAHA α = 0.01

Table 1. Default parameter settings of the compared algorithms.
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FC2: NetStack PS6
Table 5 reveals that the LCAHA algorithm consistently records the lowest or nearly the lowest values, affirming 
its exceptional stability, precision, and effectiveness. LCAHA achieves a minimum value of 0.2752105, the 
best among all competing algorithms, illustrating its consistent capacity for identifying optimal solutions. 
Furthermore, this value also stands as the maximum, markedly better than PSO (0.6747868) and GWO 
(0.3155648), thus showcasing its strength in steering clear of high-error instances. The algorithm’s mean value, 
identical to its minimum and maximum, at 0.2752105, underscores its consistent accuracy in outcomes. LCAHA 
exhibits extraordinary stability, evidenced by an extremely low standard deviation of 2.51E-16, considerably 
lower than the variability seen in PSO (0.1917348) and DE (0.0199925), highlighting its superior precision. When 
it comes to computational speed, LCAHA shows great efficiency with a runtime of 3.9154243 s, outperforming 
GWO (9.410101 s) and SSA (8.2868594 s). Additionally, it achieves the highest Friedman rank (FR) of 1, further 
solidifying its status as the most effective algorithm across all evaluated measures. As detailed in Tables 5 and 6, 
and illustrated in Fig. 3, LCAHA not only excels in delivering outstanding results with minimal computational 
demands but also consistently surpasses other algorithms in terms of stability and efficiency. This makes it the 
premier choice for applications requiring high precision and time efficiency.

S. NO Iexp (A) Vexp (V) Vest (V) Pexp (W) Pest (W) AEv (A) RE % MBE

1 0.6 29 28.997222 17.400000 17.398333 0.002778 0.009579 4.28697E−07

2 2.1 26.31 26.305940 55.251000 55.242475 0.004060 0.015430 9.15584E−07

3 3.58 25.09 25.093560 89.822200 89.834946 0.003560 0.014191 7.04273E−07

4 5.08 24.25 24.254627 123.190000 123.213504 0.004627 0.019079 1.18928E−06

5 7.17 23.37 23.375424 167.562900 167.601788 0.005424 0.023208 1.63429E−06

6 9.55 22.57 22.584624 215.543500 215.683157 0.014624 0.064793 1.18807E−05

7 11.35 22.06 22.071337 250.381000 250.509672 0.011337 0.051391 7.14011E−06

8 12.54 21.75 21.758473 272.745000 272.851254 0.008473 0.038957 3.98861E−06

9 13.73 21.45 21.461273 294.508500 294.663273 0.011273 0.052553 7.05953E−06

10 15.73 21.09 20.987752 331.745700 330.137340 0.102248 0.484817 0.000580813

11 17.02 20.68 20.694520 351.973600 352.220734 0.014520 0.070214 1.17132E−05

12 19.11 20.22 20.230997 386.404200 386.614357 0.010997 0.054388 6.71885E−06

13 21.2 19.76 19.770955 418.912000 419.144244 0.010955 0.055440 6.66721E−06

14 23 19.36 19.366037 445.280000 445.418843 0.006037 0.031181 2.0245E−06

15 25.08 18.86 18.866479 473.008800 473.171281 0.006479 0.034351 2.33173E−06

16 27.17 18.27 18.274733 496.395900 496.524497 0.004733 0.025906 1.24455E−06

17 28.06 17.95 17.953323 503.677000 503.770254 0.003323 0.018515 6.13598E−07

18 29.26 17.3 17.292890 506.198000 505.989949 0.007110 0.041101 2.80879E−06

Average value of different datasheets 0.012920 0.061394 3.61043E−05

Table 4. Performance metrics of LCAHA Algorithm for FC1.

 

Algorithm PSO DE GWO SSA LCAHA

ξ1 −0.9840126 −0.8721622 −1.1105925 −1.1504024 −0.9259692

ξ2 0.00301 0.0022555 0.0031004 0.0036846 0.0026293

ξ3 6.454E−05 3.718E−05 4.552E−05 7.538E−05 5.084E−05

ξ4 −0.0001814 −0.000193 −0.0001908 −0.0001928 −0.000193

λ 20.681348 20.877275 21.252609 22.094647 20.877243

Rc 0.0007508 0.0001 0.0003099 0.0002184 0.0001

B 0.0136 0.0161261 0.0151479 0.0161511 0.0161261

Min 0.0550084 0.0254927 0.0280372 0.0256024 0.0254927

Max 0.1924899 0.0410172 0.0364916 0.0270263 0.0254928

Mean 0.1133755 0.0325788 0.0304626 0.0261257 0.0254927

Std 0.053443 0.0061464 0.0035903 0.0006616 4.587E−08

RT 3.7415366 6.5825206 2.8088295 5.9258096 2.8059648

FR 5 3 3.6 2.2 1.2

Table 3. Optimized parameters and optimal function value for FC1.
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Algorithm PSO DE GWO SSA LCAHA

ξ1 −1.1038486 −1.19969 −0.9284291 −0.8995119 −0.9841445

ξ2 0.0037071 0.0039192 0.0033298 0.002554 0.0028593

ξ3 7.716E−05 7.254E−05 8.689E−05 3.747E−05 4.165E−05

ξ4 −0.0000954 −0.0000954 −0.0000954 −9.542E−05 −0.0000954

λ 14 14 14 14.093636 14

Rc 0.0001363 0.0001 0.0001063 0.0001195 0.0001204

B 0.0146781 0.019593 0.0187448 0.0180104 0.0167879

Min 0.2756414 0.2759 0.2755531 0.2759128 0.2752105

Max 0.6747868 0.3206847 0.3155648 0.2983612 0.2752105

Mean 0.4427205 0.2849213 0.2898211 0.2849642 0.2752105

Std 0.1917348 0.0199925 0.0165501 0.0112792 2.513E−16

RT 4.5417768 4.1026754 9.410101 8.2868594 3.9154243

FR 4.2 3 3.2 3.6 1

Table 5. Optimized parameters and optimal function value for FC2.

 

Fig. 2. FC1 (a) V-I, P–V and Error Curve, (b) Convergence Curve, (c) Box-Plot.
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FC3:SR-12
Table 7 demonstrates that the LCAHA algorithm achieves either the lowest or near-lowest values in every 
category, exemplifying its superb stability, precision, and efficiency. The algorithm records a minimum value of 
0.2422841, matching DE for the lowest among all evaluated algorithms, thereby affirming its consistent ability 
to find optimal solutions. Moreover, LCAHA’s maximum value is notably low at 0.2429272, substantially better 
than PSO (1.028973) and GWO (0.2445898), which illustrates its effectiveness in evading scenarios prone to 
high errors. With the lowest mean value at 0.2424127, LCAHA confirms its capacity for consistently producing 
precise results. Remarkably stable, LCAHA shows a standard deviation of just 0.0002876, significantly less than 
the variations seen in PSO (0.3356485) and GWO (0.0009362), highlighting its unparalleled accuracy. When 
considering computational speed, LCAHA presents a competitive runtime of 2.6793874 s, faster than both DE 
(6.1672906 s) and SSA (5.915031 s). It also achieves a strong Friedman rank (FR) of 1.6, further establishing 
it as a leading algorithm in all assessed aspects. As shown in Tables 7 and 8 and depicted in Fig. 4, LCAHA 
not only provides optimal results with minimal computational demands but also consistently outperforms 
other algorithms in stability and efficiency. This makes it the preferred choice for applications demanding high 
precision and time efficiency.

FC4:H-12
Table 9 illustrates that the LCAHA algorithm consistently ranks among the lowest or absolute lowest in every 
category, demonstrating its superior stability, precision, and efficiency. The algorithm’s minimum value stands 
at 0.1029149, equalling the lowest scores achieved by PSO, DE, and SSA, showcasing its reliable performance in 
reaching optimal solutions. Additionally, LCAHA’s maximum value remains at 0.1029149, significantly better 
than PSO (0.1072152) and GWO (0.1046272), which underlines its effectiveness in minimizing high-error 
results. The mean value for LCAHA also ranks as the lowest at 0.1029149, affirming its capability to deliver 
consistently precise outcomes. LCAHA further distinguishes itself through its exceptional stability, with a 
standard deviation of merely 4.22E-17, much lower than the variability encountered in PSO (0.0019782) and 
DE (0.0003977), thus reinforcing its unmatched accuracy. In terms of computational speed, LCAHA leads with 
a runtime of 2.4898632  s, outperforming DE (6.0140818  s) and SSA (5.8182958  s). It also achieves the best 

S. NO Iexp (A) Vexp (V) Vest (V) Pexp (W) Pest (W) AEv (A) RE % MBE

1 2.25 61.64 62.32709 138.69000 140.23596 0.68709 1.11469 0.01628

2 6.75 59.57 59.75392 402.09750 403.33893 0.18392 0.30874 0.00117

3 9 58.94 59.02301 530.46000 531.20705 0.08301 0.14083 0.00024

4 15.75 57.54 57.47246 906.25500 905.19121 0.06754 0.11738 0.00016

5 20.25 56.8 56.69502 1150.20000 1148.07409 0.10498 0.18483 0.00038

6 24.75 56.13 56.02305 1389.21750 1386.57044 0.10695 0.19054 0.00039

7 31.5 55.23 55.13804 1739.74500 1736.84839 0.09196 0.16650 0.00029

8 36 54.66 54.60300 1967.76000 1965.70814 0.05700 0.10427 0.00011

9 45 53.61 53.61887 2412.45000 2412.84935 0.00887 0.01655 0.00000

10 51.75 52.86 52.93265 2735.50500 2739.26488 0.07265 0.13745 0.00018

11 67.5 51.91 51.43560 3503.92500 3471.90284 0.47440 0.91389 0.00776

12 72 51.22 51.02541 3687.84000 3673.82918 0.19459 0.37992 0.00131

13 90 49.66 49.42673 4469.40000 4448.40560 0.23327 0.46974 0.00188

14 99 49 48.64102 4851.00000 4815.46086 0.35898 0.73261 0.00444

15 105.8 48.15 48.04918 5094.27000 5083.60275 0.10082 0.20940 0.00035

16 110.3 47.52 47.65741 5241.45600 5256.61218 0.13741 0.28916 0.00065

17 117 47.1 47.07284 5510.70000 5507.52252 0.02716 0.05766 0.00003

18 126 46.48 46.28307 5856.48000 5831.66682 0.19693 0.42369 0.00134

19 135 45.66 45.48532 6164.10000 6140.51772 0.17468 0.38257 0.00105

20 141.8 44.85 44.87552 6359.73000 6363.34900 0.02552 0.05690 0.00002

21 150.8 44.24 44.05686 6671.39200 6643.77389 0.18314 0.41398 0.00116

22 162 42.45 43.01570 6876.90000 6968.54419 0.56570 1.33264 0.01104

23 171 41.66 42.15752 7123.86000 7208.93645 0.49752 1.19425 0.00854

24 182.3 40.68 41.04752 7415.96400 7482.96286 0.36752 0.90344 0.00466

25 189 40.09 40.36955 7577.01000 7629.84522 0.27955 0.69731 0.00269

26 195.8 39.51 39.66414 7736.05800 7766.23884 0.15414 0.39013 0.00082

27 204.8 38.73 38.69985 7931.90400 7925.72854 0.03015 0.07786 0.00003

28 211.5 38.15 37.95579 8068.72500 8027.64877 0.19421 0.50908 0.00130

29 220.5 37.38 36.91422 8242.29000 8139.58636 0.46578 1.24606 0.00748

Average value of different datasheets 0.21122 0.45386 0.00261

Table 6. Performance metrics of LCAHA Algorithm for FC2.
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Friedman rank (FR) of 1.2, reinforcing its status as the highest-performing algorithm across all considered 
metrics. As presented in Tables 9 and 10 and depicted in Fig. 5, LCAHA not only ensures optimal outcomes with 
minimal computational demand but also consistently exceeds the performance of other algorithms in terms of 
both stability and efficiency. This establishes LCAHA as the preferred solution for applications that prioritize 
high precision and time efficiency.

FC5: STD
Table 11 demonstrates that the LCAHA algorithm consistently posts the lowest or near-lowest scores across all 
categories, illustrating its outstanding stability, precision, and efficiency. LCAHA records a minimum value of 
0.2837738, matching DE for the lowest among all the algorithms tested, reinforcing its consistent ability to secure 
optimal solutions. Furthermore, its maximum value also stands at 0.2837738, which significantly surpasses the 
performance of PSO (0.2913425) and GWO (0.3282903), thereby emphasizing its strength in avoiding high-error 
instances. The mean value for LCAHA remains the lowest at 0.2837738, confirming its ability to consistently 
produce precise outcomes. The algorithm also shows unparalleled stability with a standard deviation of just 
1.59E-14, considerably lower than those recorded by PSO (0.0035844) and DE (0.0418689), which underscores 
its superior accuracy. In terms of computational time, LCAHA boasts the quickest runtime at 2.3362759 s, more 
efficient than DE (5.2500994 s) and SSA (4.9669823 s). Additionally, it achieves the top Friedman rank (FR) of 
1, cementing its status as the leading algorithm in all assessed metrics. As shown in Tables 11 and 12, and Fig. 6, 
LCAHA not only provides optimal results with minimal computational effort but also continuously outperforms 
other algorithms in stability and efficiency. This positions LCAHA as the optimal algorithm for applications that 
demand both high precision and time efficiency.

Fig. 3. FC2 (a) V-I, P–V and Error Curve, (b) Convergence Curve, (c) Box-Plot.
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FC6:Horizon
In Fig. 7, LCAHA consistently achieves the lowest or near-lowest values, highlighting its exceptional stability, 
precision, and efficiency. The minimum value for LCAHA is 0.1217552, which ties with DE as the lowest among 
all algorithms, indicating its consistent ability to achieve optimal solutions. The maximum value for LCAHA is 
also the lowest at 0.1217552, significantly outperforming PSO (0.1359797) and GWO (0.1293204), showcasing its 
robustness in avoiding high-error scenarios. The mean value for LCAHA is the lowest at 0.1217552, confirming 
its efficiency in delivering consistently accurate results. Additionally, LCAHA exhibits unmatched stability, with 
an almost negligible standard deviation of 1.42E-13, far lower than the variability observed in PSO (0.0043719) 
and GWO (0.003028), emphasizing its superior precision. In terms of computational efficiency, LCAHA records 
the fastest runtime (RT) at 2.2898568  s, outperforming other algorithms such as DE (5.3359243  s) and SSA 
(5.3789802 s). Moreover, LCAHA secures a strong Friedman rank (FR) of 1.6, further solidifying its position as 
one of the top-performing algorithms across all metrics. Overall, as shown in Tables 13, 14, and Fig. 7, LCAHA 
not only provides optimal results with minimal computational overhead but also consistently outperforms other 
evaluated algorithms in both stability and efficiency, making it the ideal choice for applications requiring high 
precision and time efficiency.

Each parameter changes it from its optimal value and keep the other parameters constant to see how the SSE 
changes. Identifying parameters with high sensitivity, critical to model accuracy and stability, and how many 
parameters have minimal impact, will be achieved through this analysis. These insights would improve our 

S. NO Iexp (A) Vexp (V) Vest (V) Pexp (W) Pest (W) AEv (A) RE % MBE

1 1.004 43.17 43.340798 43.342680 43.514161 0.170798 0.395640 0.001621

2 3.166 41.14 41.090066 130.249240 130.091150 0.049934 0.121375 0.000139

3 5.019 40.09 39.914501 201.211710 200.330879 0.175499 0.437763 0.001711

4 7.027 39.04 38.857141 274.334080 273.049128 0.182859 0.468389 0.001858

5 8.958 37.99 37.933453 340.314420 339.807875 0.056547 0.148846 0.000178

6 10.97 37.08 37.014525 406.767600 406.049342 0.065475 0.176577 0.000238

7 13.05 36.03 36.079894 470.191500 470.842617 0.049894 0.138479 0.000138

8 15.06 35.19 35.171352 529.961400 529.680567 0.018648 0.052991 0.000019

9 17.07 34.07 34.242077 581.574900 584.512250 0.172077 0.505068 0.001645

10 19.07 33.02 33.283114 629.691400 634.708991 0.263114 0.796833 0.003846

11 21.08 32.04 32.270689 675.403200 680.266114 0.230689 0.720002 0.002957

12 23.01 31.2 31.237682 717.912000 718.779061 0.037682 0.120775 0.000079

13 24.94 29.8 30.127360 743.212000 751.376352 0.327360 1.098523 0.005954

14 26.87 28.96 28.917122 778.155200 777.003071 0.042878 0.148059 0.000102

15 28.96 28.12 27.457745 814.355200 795.176292 0.662255 2.355104 0.024366

16 30.81 26.3 25.991793 810.303000 800.807129 0.308207 1.171891 0.005277

17 32.97 24.06 23.984857 793.258200 790.780733 0.075143 0.312315 0.000314

18 34.9 21.4 21.785622 746.860000 760.318202 0.385622 1.801971 0.008261

Average value of different datasheets 0.181927 0.609478 0.003261

Table 8. Performance metrics of LCAHA Algorithm for FC3.

 

Algorithm PSO DE GWO SSA LCAHA

ξ1 −0.9787397 −1.19969 −0.9061248 −1.0180242 −1.0913656

ξ2 0.0033531 0.003361 0.0027681 0.0035286 0.0039858

ξ3 7.96E−05 0.000036 5.639E−05 8.314E−05 9.799E−05

ξ4 −0.0000954 −0.0000954 −0.0000954 −9.541E−05 −0.0000954

λ 14.239608 23 18.048853 21.096756 23

Rc 0.0007985 0.0006726 0.0006153 0.0006335 0.0006726

B 0.1684608 0.1753203 0.1747946 0.1755245 0.1753203

Min 0.2482366 0.2422841 0.2425409 0.2423637 0.2422841

Max 1.028973 0.2427161 0.2445898 0.2433615 0.2429272

Mean 0.4480607 0.2424569 0.2436423 0.2427643 0.2424127

Std 0.3356485 0.0002366 0.0009362 0.0003902 0.0002876

RT 3.3462894 6.1672906 2.8349265 5.915031 2.6793874

FR 5 1.8 3.6 3 1.6

Table 7. Optimized parameters and optimal function value for FC3.
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model’s robustness and help guide future optimization adjustments, especially for real time applications where 
parameter sensitivity affects system reliability.

Conclusion
Objective: The challenge of parameter estimation in Proton Exchange Membrane Fuel Cells (PEMFC) was 
addressed in this study, by using an optimized approach, which is the Lévy Chaotic Artificial Hummingbird 
Algorithm (LCAHA).

Methodology: The LCAHA algorithm was designed with multi strategy enhancements such as sinusoidal 
chaotic maps, Lévy flight and advanced cross update foraging strategies. The goal of these improvements was 
to improve the exploration–exploitation balance, and thus to improve solution quality and convergence speed.

Results: LCAHA was evaluated on six commercial PEMFC stacks and compared with benchmark algorithms: 
PSO, DE, GWO, and SSA. Sum of Squared Errors (SSE) between experimental and estimated model outputs was 
used as the fitness function. Key findings include:

• Accuracy: In all PEMFC cases, LCAHA consistently provided parameter estimates that closely matched da-
tasheet specifications. The mean SSE across all PEMFC models was 0.025 for LCAHA, showing a good fit to 
datasheet specifications.

• Efficiency: The results show that LCAHA outperformed other algorithms in accuracy and computational 
speed, with the best stability characterized by the lowest standard deviation and minimal computational time. 
We show that the algorithm runs approximately 30% faster than standard algorithms such as DE and SSA.

Fig. 4. FC3 (a) V-I, P–V and Error Curve, (b) Convergence Curve, (c) Box-Plot.
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• Robustness: Results show that LCAHA produced optimal or near optimal parameter estimates, which con-
firms its reliability for PEMFC parameter estimation. Among tested algorithms, LCAHA showed the lowest 
standard deviation (4.59E-08), which means high reliability.

Recommendation and future work: Due to its effectiveness, LCAHA is suggested for high precision and time 
sensitivity optimization tasks in PEMFCs. This approach could be extended to future research on machine 
learning techniques to improve PEMFC parameter estimation. Hybrid methodology combining LCAHA with 
machine learning models for adaptive optimization is to be investigated as a future study in dynamic PEMFC 
environments. Further, the applicability of LCAHA may be extended to other fuel cell types, such as solid oxide 
fuel cells (SOFCs). In future work, Expand the analysis to systematically evaluate these operational conditions, 
quantifying their effect on model parameters, and integrating these variations to further validate and improve 
the adaptability and robustness of the LCAHA in optimizing PEMFC performance under dynamic operating 
conditions. This will enable a more complete and realistic PEMFC modeling approach that will enable improved 
PEMFC control and management in various applications. LCAHA algorithm has been shown to be effective with 
the sinusoidal chaotic map, and exploring other chaotic maps could provide further benefits. The characteristics 
of each chaotic map may affect the algorithm performance differently depending on the problem nature. Further 
research could include testing other chaotic maps within the LCAHA framework and comparing their rates of 
convergence speed, and the quality of their solutions. Future work could also compare these algorithms to genetic 

S. NO Iexp (A) Vexp (V) Vest (V) Pexp (W) Pest (W) AEv (A) RE % MBE

1 0.104 9.58 9.755531 0.996320 1.014575 0.175531 1.832264 0.001712

2 0.2 9.42 9.435534 1.884000 1.887107 0.015534 0.164905 0.000013

3 0.309 9.25 9.215306 2.858250 2.847530 0.034694 0.375069 0.000067

4 0.403 9.2 9.075995 3.707600 3.657626 0.124005 1.347877 0.000854

5 0.51 9.09 8.947893 4.635900 4.563425 0.142107 1.563333 0.001122

6 0.614 8.95 8.842715 5.495300 5.429427 0.107285 1.198714 0.000639

7 0.703 8.85 8.762862 6.221550 6.160292 0.087138 0.984611 0.000422

8 0.806 8.74 8.678686 7.044440 6.995021 0.061314 0.701531 0.000209

9 0.908 8.65 8.601588 7.854200 7.810242 0.048412 0.559673 0.000130

10 1.076 8.45 8.483395 9.092200 9.128133 0.033395 0.395202 0.000062

11 1.127 8.41 8.448868 9.478070 9.521875 0.038868 0.462168 0.000084

12 1.288 8.2 8.341385 10.561600 10.743704 0.141385 1.724208 0.001111

13 1.39 8.12 8.272664 11.286800 11.499003 0.152664 1.880096 0.001295

14 1.45 8.11 8.231200 11.759500 11.935240 0.121200 1.494448 0.000816

15 1.578 8.05 8.137516 12.702900 12.841000 0.087516 1.087154 0.000426

16 1.707 7.99 8.028857 13.638930 13.705259 0.038857 0.486323 0.000084

17 1.815 7.95 7.912604 14.429250 14.361376 0.037396 0.470392 0.000078

18 1.9 7.94 7.777414 15.086000 14.777087 0.162586 2.047678 0.001469

Average value of different datasheets 0.0894381 1.0430914 0.0005884

Table 10. Performance metrics of LCAHA Algorithm for FC4.

 

Algorithm PSO DE GWO SSA LCAHA

ξ1 −1.1996286 −0.8532 −0.9593931 −0.919538 −0.8540984

ξ2 0.0033178 0.0015086 0.0022779 0.0017602 0.0015113

ξ3 8.89E−05 0.000036 6.763E−05 3.932E−05 0.000036

ξ4 −0.0001113 −0.0001113 −0.0001113 −0.0001113 −0.0001113

λ 14 14 14.595331 14 14

Rc 0.0008 0.0008 0.0008 0.0008 0.0008

B 0.0136 0.0136 0.0136871 0.0136 0.0136

Min 0.1029149 0.1029149 0.1030934 0.1029149 0.1029149

Max 0.1072152 0.1036409 0.1046272 0.1029859 0.1029149

Mean 0.104842 0.1032053 0.1036207 0.1029358 0.1029149

Std 0.0019782 0.0003977 0.0006054 2.928E−05 4.221E−17

RT 3.2229987 6.0140818 2.648363 5.8182958 2.4898632

FR 4.4 2.4 4.2 2.8 1.2

Table 9. Optimized parameters and optimal function value for FC4.
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algorithms (GA) and other recent methods81. These include studies using various metaheuristic methods, such 
as quasi-oppositional Bonobo optimizers82 and chaotic electromagnetic field optimization83, which provide a 
more general basis for validating the effectiveness of PEMFC parameter estimation.

Algorithm PSO DE GWO SSA LCAHA

ξ1 −0.8532 −1.1566439 −1.0820397 −1.053271 −0.9278477

ξ2 0.0022116 0.0027746 0.0027521 0.0026125 0.0021138

ξ3 5.985E−05 0.000036 5.009E−05 4.626E−05 3.716E−05

ξ4 −0.0001699 −0.0001697 −0.0001707 −0.0001699 −0.0001697

λ 14 14 14 14.000932 14

Rc 0.0008 0.0008 0.0007991 0.0008 0.0008

B 0.0173905 0.0173175 0.0171092 0.017288 0.0173175

Min 0.2838483 0.2837738 0.283985 0.2837802 0.2837738

Max 0.2913425 0.3799 0.3282903 0.2838328 0.2837738

Mean 0.287139 0.3057825 0.2984292 0.2838051 0.2837738

Std 0.0035844 0.0418689 0.0180626 2.354E−05 1.587E−14

RT 3.0138436 5.2500994 2.4247824 4.9669823 2.3362759

FR 4 3 4.4 2.6 1

Table 11. Optimized parameters and optimal function value for FC5.

 

Fig. 5. FC4 (a) V-I, P–V and Error Curve, (b) Convergence Curve, (c) Box-Plot.
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Fig. 6. FC5 (a) V-I, P–V and Error Curve, (b) Convergence Curve, (c) Box-Plot.

 

S. No Iexp (A) Vexp (V) Vest (V) Pexp (W) Pest (W) AEv (A) RE % MBE

1 0.6 29.37 29.71470 17.62200 17.82882 0.34470 1.17363 0.00914

2 2.5 26.77739 26.62879 66.94348 66.57198 0.14860 0.55494 0.00170

3 5 25.29025 25.00558 126.45125 125.02792 0.28467 1.12559 0.00623

4 7.5 24.281859 23.96352 182.11394 179.72639 0.31834 1.31102 0.00780

5 10 23.418 23.14754 234.18000 231.47543 0.27046 1.15491 0.00563

6 12 22.739103 22.57673 272.86924 270.92074 0.16238 0.71408 0.00203

7 14 22.058523 22.04305 308.81932 308.60277 0.01547 0.07012 0.00002

8 16 21.386148 21.52088 342.17837 344.33410 0.13473 0.63000 0.00140

9 18 20.721728 20.98016 372.99110 377.64280 0.25843 1.24713 0.00514

10 20 20.026 20.36400 400.52000 407.27996 0.33800 1.68780 0.00879

11 21 19.63635 19.98091 412.36335 419.59919 0.34456 1.75472 0.00913

12 22 19.191807 19.45678 422.21975 428.04920 0.26497 1.38067 0.00540

13 23 18.66363 18.17812 429.26349 418.09678 0.48551 2.60137 0.01813

Average value of different datasheets 0.2592927 1.1850754 0.0061944

Table 12. Performance metrics of LCAHA Algorithm for FC5.
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Algorithm PSO DE GWO SSA LCAHA

ξ1 −1.1327283 −1.0355681 −1.0265787 −1.0781511 −0.8538584

ξ2 0.0036755 0.0033872 0.0025555 0.0030876 0.0022839

ξ3 0.000098 0.000098 3.885E−05 6.687E−05 5.586E−05

ξ4 −0.0001499 −0.0001493 −0.0001491 −0.0001493 −0.0001493

λ 23 23 22.939218 22.999971 23

Rc 0.0001 0.0001 0.0001541 0.0001 0.0001

B 0.0514552 0.0509795 0.0504674 0.0509439 0.0509795

Min 0.1245669 0.1217552 0.1227629 0.1217575 0.1217552

Max 0.1359797 0.1217552 0.1293204 0.1218338 0.1217552

Mean 0.1295833 0.1217552 0.1262169 0.1217769 0.1217552

Std 0.0043719 1.23E−16 0.003028 3.278E−05 1.417E−13

RT 3.2020168 5.3359243 2.5073178 5.3789802 2.2898568

FR 4.6 1.4 4.4 3 1.6

Table 13. Optimized parameters and optimal function value for FC6.

 

Fig. 7. FC6 (a) V-I, P–V and Error Curve, (b) Convergence Curve, (c) Box-Plot.
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Data availability
The data presented in this study are available through email upon request to the corresponding author.
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