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Variability of functional and biodiversity
responses to perturbations is predictable
and informative

James A. Orr 1,2 , Jeremy J. Piggott 3, Andrew L. Jackson 3,
Michelle C. Jackson 1 & Jean-François Arnoldi 4

Perturbations such as climate change, invasive species and pollution, impact
the functioning and diversity of ecosystems. However diversity has many
meanings, and ecosystems provide a plethora of functions. Thus, on top of the
various perturbations that global change represents, there are alsomany ways
to measure a perturbation’s ecological impact. This leads to an overwhelming
response variability, which undermines hopes of prediction. Here, we show
that this variability can instead provide insights into hidden features of func-
tions and of species responses to perturbations. By analysing a dataset of
global change experiments in microbial soil systems we first show that the
variability of functional and diversity responses to perturbations is not ran-
dom; functions that are mechanistically similar tend to respond coherently.
Furthermore, diversity metrics and broad functions (e.g. total biomass) sys-
tematically respond in oppositeways.We then formalise these observations to
demonstrate, using geometrical arguments, simulations, and a theory-driven
analysis of the empirical data, that the response variability of ecosystems is not
only predictable, but can also be used to access useful information about
species contributions to functions and population-level responses to pertur-
bations. Our research offers a powerful framework for understanding the
complexity of ecological responses to global change.

Describing aggregate properties of ecosystems and predicting their
behaviour in the face of perturbations is amajor goal of contemporary
ecology. If consistent patterns emerged when considering aggregate-
level responses, ecologists could aim for data-based predictions and
provide clear, practical recommendations1,2. However, there are many
relevant aggregate properties to consider, from diversity metrics to
ecosystem functions, that may all respond in different ways to
perturbations3,4. As there is no obvious way to organize this variability,
the hopes for general predictions of community-level responses to
perturbations can seem slim.

The importance and origin of species diversity was a central
theme of late 20th century ecology5–8, which led to a proliferation of
metrics to define and measure diversity based on the richness, even-
ness and rarity of species9–13. Since then, understanding how species
collectively perform a function has become a prominent area of
research14–17, with clear implications for our understanding of concrete
issues regarding productivity, carbon sequestration, pollination, or
nutrient cycling of natural or engineered ecosystems. In light of rapid
anthropogenic global change, there is currently increased focus on
understanding how aggregate ecological properties will respond to
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perturbations such as land-use change, invasive species, climate
change and pollution4,18–20.

Ecologists are very aware that different aggregate properties, such
as diversity metrics or ecosystem functions, describe very different
aspects of communities and may thus respond in completely different
ways to a given environmental perturbation3,4,21. For instance, themany
different diversity metrics employed by ecologists describe different
facets of community structure22,23. If a perturbation caused the extinc-
tion of rare species while making the overall abundance distribution of
the community more even, species richness would decrease, but a
measure of evenness (e.g. Simpson’s index) would increase.

Similarly, ecosystem functioning takes many forms, and can be
measured in a myriad of ways. Some functions, such as biomass pro-
duction or respiration, are broad functions: they are performed by
most or all species in a community. Other functions, such as the
breakdown of specific chemicals or the production of specific
enzymes, are narrow in the sense that they require the presence of
particular species, or combinations of species, to be performed24,25.
The great variety of ecosystem functions—in what they do, how broad
or narrow they are, how species contribute to them, and how they
respond to perturbations—has motivated the rapid development of
multifunctional ecology where multiple functions are considered at
once to more accurately characterize the state of an ecosystem26–28.

In the face of this inherent ecological complexity, what can be
learned from the variability of functional and biodiversity responses to
perturbations? Here we claim that this variability can be used to
explore hidden features of ecosystems and of perturbations.

To make this point we analyse data from global change experi-
ments conducted in microbial soil systems (Box 1 and Fig. 1).
Focusing on three diversity metrics, two broad ecosystem functions,
and eight narrow ecosystem functions, we explore patterns of mis-
matches between functional and diversity responses to global
change factors (such as pollution, environmental events or land-use
change, all seen here as perturbations). Concretely, we look at the
proportion of cases where one aggregate property responds nega-
tively to a perturbation while the other responds positively to it. As
expected, we find a great degree of variability in responses to per-
turbations. This variability, however, is not random, but instead
shows a recognizable degree of structure. Aggregate properties that
are thought to describe ecosystems in similar ways (e.g. production
of beta-xylosidase and production of cellobiohydrolase, enzymes
that contribute to carbon cycling) have a lower proportion of mis-
matches than would be expected by chance (modules of blue
squares, Fig. 1A). On the other hand, diversity metrics and ecosystem
functions tend to systematically differ in how they respond to per-
turbations (dominance of red squares between diversity and

BOX 1

Initial analysis of empirical data

To quantify the variability of functional and biodiversity responses to perturbations we analysed a dataset of global change experiments
conducted in microbial soil systems20. This dataset contained 1235 perturbations from 341 publications. Perturbations included warming,
elevated carbon dioxide levels, altered precipitation, nutrient enrichment, land-use change, or combinations of these factors. The effect of each
perturbation in a given experiment was quantified using the natural logarithm-transformed response ratio:

RR= ln
Xt

Xc

� �
(Box 1 Eq 1)

where Xt and Xc are the means of the treatment and control groups for a given aggregate property. The variances of these effect sizes are also
available in the dataset, but we do not require them for this initial analysis as we do not exclude points based on some statistical cutoff. Indeed,
following our geometric approach, there is no reason to expect that the proportion of mismatches between two aggregate properties would be
different for data points with or without statistically significant results.

Each individual perturbationwas quantified usingmultiple aggregate properties covering awide range of ecosystem functions andmeasures
of diversity.We focused on aggregate propertieswhere all pairs had at least ten observations in the dataset so that the proportion ofmismatches
between them could be estimated with some robustness. This arbitrary number of observations was chosen to strike a balance between having
enough observations to estimate proportions of mismatches reliably and having enough pairs of aggregate properties to see general patterns
across broad functions, narrow functions, and diversitymetrics. Choosing other cut-offs does not qualitatively change the results (demonstrated
in the Rmarkdownat https://doi.org/10.5281/zenodo.13985015). This filtering of the data returned 1015 perturbations thatweremeasuredwith at
least twoof thirteen aggregate properties including threemeasures of diversity (richness, Shannon index, andChao index), twobroad ecosystem
functions (biomass and respiration), and eight narrowecosystem functions subdivided intoP-cycling enzymes (phosphatase), N-cycling enzymes
(N-acetyl-beta-glucosaminidase), hydrolytic C-cycling enzymes (beta-xylosidase, cellobiodydrolase, beta-glucosidase, and alpha-glucosidase),
and oxidative C-cycling enzymes (peroxidase, phenol oxidase). Details of how the functions were measured (e.g. whether respiration was
calculated in the laboratory or the field, or whether enzymes were measured using colourimetric or microplate assays) can be found in
Zhou et al. (2020).

This list of aggregate properties was sorted a priori based on intuitions about their underlying mechanisms (grouped by diversity metrics,
broad functions and narrow functions based on Zhou et al. (2020)) and a heatmap wasmade to visualize the proportion of mismatches between
each pair (Fig. 1A). If the variability between aggregate properties was just random (i.e. if the heatmap was all white or just showed random
distributions of red and blue) theremight not bemuchmore to say, but if the heatmap showed some structure there could be useful information
to gain from the variability. Indeed, themodularity of the heatmap shows that aggregate properties that are thought to be similar tend to respond
to perturbations similarly (e.g. relatively low proportion of mismatches—ranging from0.16 to 0.28—betweenmeasures of diversity). Conversely,
groups of aggregate properties that describe different aspects of a community can systematically differ in their responses to perturbations (e.g.
an abundance of red between diversity metrics and ecosystem functions, with the proportion of mismatches going as high as 0.73).

We will return to these empirical results after we have outlined our geometrical approach for quantifying the notion of similarity between
aggregate properties. In fact, we can use our framework to reinterpret these empirical data to gain useful insights into how the perturbations in
these experiments impacted these communities and also into how the species in these communities contribute to the different ecosystem
functions.
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ecosystem functions, Fig. 1A). Our intuitions about how mechan-
istically similar aggregate properties are (i.e. how we ordered the
observations Fig. 1A) thus provide a useful starting point for under-
standing ecosystem’s response variability, andwe also find that there
exist generic diversity-function response patterns.

Motivated by the findings of this empirical synthesis, we propose
a framework that helps us glean useful, hidden information from the
variability of functional and diversity responses to perturbations. To
do so, we convert the ecological problem into a simpler geometrical
one by representing perturbations as displacement vectors and com-
munity aggregate properties as directions in community state-space
(the high-dimensional space whose axis reports the biomass of all
constituent species). The central ingredient of our framework is a
geometrical definition of collinearity between two aggregate proper-
ties which quantifies their similarity and predicts whether they will
respond to a perturbation in the same way (Fig. 2). This prediction

assumes a high response diversity at the species level, and depends on
how species’ responses to perturbations scale with their biomass.
Here, coarse-grained assumptions about population-level responses
are used to better understand ecosystem functions. Conversely, we
show that with some knowledge of the aggregate properties used to
observe the ecological impacts of perturbations, the variability of
these observations can be leveraged to gain information about species
response diversity and how species’ responses scale with their bio-
mass. Armed with our geometrical framework we then reanalyse the
empirical data frommicrobial soil systems to gain new insights on soil
microbial ecosystem functions and how they are being impacted by
anthropogenic global change. As well as proposing novel methods
for validating and applying our framework to ecological data (outlined
in an online tutorial at https://jamesaorr.github.io/community-
properties-tutorial), we more broadly aim to inspire new approaches
to studying complex ecological systems that embrace the variability of
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Fig. 1 | Variability of functional and biodiversity responses to global change
factors in experimental microbial soil systems. A The proportion of qualitative
mismatches (one responds positively and the other negatively) between thirteen
aggregate properties including three measures of diversity (richness, Shannon
index, and Chao index), two broad ecosystem functions (biomass and respiration),
and eight narrow ecosystem functions subdivided into P-cycling enzymes (phos-
phatase), N-cycling enzymes (N-acetyl-beta-glucosaminidase), hydrolytic C-cycling
enzymes (beta-xylosidase, cellobiodydrolase, beta-glucosidase, and alpha-

glucosidase), and oxidative C-cycling enzymes (peroxidase and phenol oxidase).
B Correlations between the responses of three specific pairs of aggregate proper-
ties: (1) biomass and respiration, (2) biomass and richness, and (3) Chao index and
phosphatase. Points that fall in the blue areas of the plots were cases when the two
metrics responded in the same way to a perturbation in a given experiment, while
points that fall in the red areas were cases when there were qualitative mismatches
between observations. The proportion of points that are red in these figures cor-
responds to the proportion of mismatches reported in (A).
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community-level responses to perturbations, using perturbations as
probes to reveal hidden features of ecosystem dynamics and
functioning.

Results
Our geometrical arguments—outlined in theMethods and in Fig. 2—are
well supported by our simulation results and can be used to refine the
analysis of the empirical data. By simulating perturbation experiments
on species-rich communities, we show how mismatches in the obser-
vations of two functions can be used to quantify the similarity of those
functions and can be used to estimate a notion of response diversity
(Fig. 3). We also found that mismatches in the observations of a
function and a diversity metric can be used to quantify the scaling of
perturbations by species biomass (Fig. 4). Returning to the empirical
data, we applied a validation test (formally described in Supplemen-
tary Note 2) to show that the data, when grouped by biome, meet the

assumptions of our geometrical arguments. We could then quantify
(i) the similarity and broadness of empiricallymeasured functions, and
(ii) the response diversity and biomass scaling of key global change
factors (Fig. 5).

Mismatches between functions
In theory, the proportion of qualitative responsemismatches between
two linear ecosystem functions directly depends on their collinearity
(Eq. (1)); that is, the angle between their respective directions in phase-
space (the high-dimensional space whose axis reports the biomass of
all constituent species). This is confirmed by our simulations, whose
outcomes are represented in Fig. 2E. This basic result, however, hinges
upon the assumption that perturbations are unbiased at the popula-
tion level; meaning that approximately half the species show positive
responses and half the species show negative responses to any given
perturbation. If population-level responses arebiased towards positive

Fig. 2 | Geometrical approach for relating the collinearity of functions to
mismatches in their observations of perturbations. A Perturbations can be
viewed as displacement vectors in community state space. Here a hypothetical
community of a bacterial species and a fungal species is independently impactedby
two perturbations, represented by the black arrows from the initial state of the
community (I) to the points A and B. B Measures of ecosystem function can be
represented aspositive directions in this state-space.C Perturbed states are plotted
in a space where the initial state of the community is at the origin and each axis
describes the response of each species to a perturbation. Here the displacement
vectors associated with the independent perturbations A and B from (A) are pro-
jected onto the directions representing total biomass and plastic decomposition.
For A, both functions observe negative responses. However, for B there is a mis-
match in the observations of the functions: total biomass responds positively while
plastic decomposition responds negatively. D For two functions, the zones of
mismatches in their observations can be found by drawing lines perpendicular to

the functions that go through the origin. Aggregate properties will observe dif-
ferent responses for perturbations that fall between these lines (i.e. in the red
zones). The angle between the two functions determines the size of the zones of
mismatches. The three pairs of functions include (i) a broad and a narrow function,
(ii) two broad functions, and (iii) two narrow functions. E Over many in silico
perturbation experiments, the proportion ofmismatches between functions canbe
predicted by the angle between them in radians (θ) divided by the number π. Two
broad functions (ii) would have high collinearity and a low proportion of mis-
matches, one broad and one narrow function, (i) would have moderate collinearity
and a moderate proportion of mismatches, while two narrow functions, and (iii)
would have low collinearity and a high proportion ofmismatches (unless theywere
performed by the same species). The inset shows that the proportion of mis-
matches between a function and total biomass is a very good predictor of the
broadness of that function.
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or negative, the geometrical prediction overestimates the proportion
of mismatches (Fig. 3). This effect occurs because when perturbation
effects on species aremostly negative (ormostly positive), they tend to
fall in the areasof phase spacewhere functionswill necessarily observe
the same responses (top right and bottom left quadrants in Fig. 2D).
Because this systematic overestimation indicates that a key

assumption is violated, it informs us about population-level effects of
perturbations. We can therefore deduce a link betweenmismatches in
observations at the community level and information on population-
level response diversity (Fig. 3B). Deviations from our predictions
reveal a degree of population-level response diversity to the pertur-
bation considered.
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Fig. 3 | Mismatches between functions in their responses to perturbations can
be related to the response diversity of the underlying community. A The pro-
portion of mismatches between functions can be predicted by the angle between
them in radians (θ) divided by the number π only when perturbations are unbiased
at the population level. If, however, there is population-level consistency in
responses to the perturbations then there are fewer mismatches than predicted as

perturbations tend to fall in the mostly positive or mostly negative areas of state
space, which happen to overlapwith the zones of consistent observations for linear
functions.BA notion of the response diversity of a perturbation, the consistency of
population-level responses, can be estimated from the relative deviation from our
baseline expectation Eq. (1).

Fig. 4 | Mismatches between functions and diversity in their responses to
perturbations can be related to the biomass scaling of those perturbations.
AThe angle between total biomass and the gradient of a diversity index (here q = 2)
predicts the proportion of mismatches between them. Specifically, the relevant
angle is between total biomass and the gradient of diversity after they have been
scaled by the biomass of each species (θ*). When perturbations are scaled by

species biomass (scaling exponent α >0) total biomass and diversity can effectively
become opposite functions. Points above the dashed red line showcase where
there is a systematic mismatch in the observations of total biomass and diversity.
B How much a perturbation is scaled by biomass can be estimated from the pro-
portion of mismatches between function and diversity.
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Mismatches between functions and diversity metrics
The probability of mismatches between ecosystem functions and
diversity metrics can be predicted by considering the angle between
the function and the gradient of the diversity metric (Fig. 4A). Again,
consistency of responses at the population level causes the prediction
to overestimate the actual proportion of mismatches. We note, how-
ever, that the angle between the direction associated with a positive
function and a diversity metric can exceed 90° leading to a systematic
bias towards qualitative responsemismatches. This intriguing result is
connected to a second piece of population-level information: the
scaling of perturbations by species biomass (Box 2 Eq 7). When the
effect of perturbations is larger for more abundant species, function
and diversity show qualitatively different responses (only the larger
points are above the red line in Fig. 4A). If a perturbation causes the
biomass of abundant species to decrease, total biomass will decrease
but a diversity measure related to evenness will increase. If on the
other hand, a perturbation causes the biomass of abundant species to
increase, total biomass will increase but evenness will decrease. This
means that the degree of scaling of species responses to perturbations
by their biomass can be predicted based on the observed proportion
ofmismatches between total biomass and diversitymeasures (Fig. 4B).

Empirical results
The validation test of the geometrical framework (outlined in Sup-
plementary Note 2) with the entire Zhou et al.20 datasets (1235 per-
turbations tested across a huge diversity of biomes including
agricultural systems, tundra, desert, and wetlands) was negative. We
found no correlation between actual mismatches between two given
functions and predicted mismatches based on the mismatches with
other functions, if the latter could be seen as vectors in a given phase
space. However, validation tests with data from either grassland sys-
tems (n = 367) or forest systems (n = 435) provided very conclusive
support (strong correlation between predicted and realized mis-
matches) for the use of our geometrical framework (Fig. 5A). The fact
that the test was inconclusive when pooling all data together should
not be surprising, since the notion of unique phase space to position
the different systems does not make sense. Only when grouping by
biome can this fundamental assumption stand a chance of being a
useful approximation (but it could very well have failed as the systems
remain very different: unlike simulation experiments, the data does
not represent repeated perturbations of the same system).

A network depicting the similarity of functions using the grass-
lands dataset further reinforced thatmismatch data coincideswith our
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Fig. 5 | Reanalysis of the empirical data. A Results of the validation test, formally
described in Supplementary Note 2, for the entire dataset (top) and for the grass-
lands data in orange and forest data in green (bottom). B Force-directed network
constructed with the Kamada–Kawai path-length cost-function using the matrix of
mismatches from the grasslands dataset as the adjacencymatrix. The colour of the
edges corresponds to the proportion of mismatches. The functions are microbial
respiration (“RES”'), microbial biomass (“BIO”), phenol oxidase (“PO”), α-1,4-glu-
cosidase (“AG”), β-1,4-glucosidase (“BG”), cellobiohydrolase (“CEL”), β-1,4-xylosi-
dase (“XYL”), N-acetyl-β-glucosaminidase (“NAG”), and phosphatase (“AP”).
C Estimates for the broadness based onmismatches between total biomass for five
functions: microbial respiration, net N mineralization rate, phenol oxidase (“PO”),
β-1,4-xylosidase (“XYL”), and phosphatase (“AP”). The size of the points

corresponds to the number of observations that the proportion of mismatches is
based on. D Estimates for the response diversity of perturbations based on the
mismatches between total biomass and respiration (two functions with many
shared observations).E Estimates for thebiomass scaling of perturbationsbasedon
the mismatches between total biomass and Shannon diversity (the function and
diversity metric with most shared observations). For parts (D, E) the size of the
points corresponds to the number of observations and the perturbations are: ele-
vated carbon dioxide (“eCO2”), nitrogen addition (“N”), phosphorus addition (“P”),
warming (“W”), elevated precipitation (“PPT”), and the conversion of native eco-
systems to secondary ecosystems (“NEtoSec”), to pasture (“NEtoPas”), to planta-
tions (“NEtoPlant”), or to agriculture (“NEtoAgr”).
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mechanistic understanding of these ecosystem functions (Fig. 5B). The
only two broad functions in the network, biomass and respiration, are
beside each other in the network and the seven narrow functions
(production of different enzymes) grouped together as would have
been expected a priori20. Of the ecosystem functions with enough
observations tomake estimates of their broadness, respiration was the
broadest, followed by net nitrogen mineralization rate, and then by
three specific enzymes related either to carbon cycling (phenol oxi-
dase and beta-1,4-glucosidase) or to phosphorus cycling (phospha-
tase). These quantitative estimates support our basic biological
intuitions about these systems: a few species contribute to the pro-
duction of a specific enzyme, more species are involved in the
mineralization of nitrogen, and more species still contribute to whole
ecosystem respiration. The estimates of broadness for beta-1,4-glu-
cosidase and phosphatase were almost identical for forests and
grasslands but respiration was estimated to be more broad in grass-
lands than in forests (Fig. 5C). In Supplementary Note 3 we further
show that the estimated broadness of functions based on their mis-
matches with total biomass can even be used to predict their actual
proportion of mismatches.

The perturbations in the dataset that had enough observations
for us to examine their response diversity and/or biomass scaling
were warming, carbon dioxide enrichment, phosphorous addition,
nitrogen addition, phosphorus and nitrogen addition combined,
nitrogen addition and increased precipitation combined, and four
types of land-use change: conversion from native ecosystems to
agriculture, to pasture, to plantation or to secondary ecosystems. For
grasslands, conversion to secondary ecosystems or the addition of
nitrogen or carbon dioxide had relatively low response diversity
while warming had relatively high response diversity. For forests,
land-use change (particularly conversion to pastures) had relatively
low response diversity while warming and the addition of nitrogen
had relatively high response diversity (Fig. 5D). For grasslands, land-
use change typically showed strong biomass scaling while nutrient
enrichment and warming showed relatively weak biomass scaling.
For forests, conversion to pasture had relatively low biomass scaling
while conversion to secondary ecosystems had relatively high bio-
mass scaling with the other perturbation types falling in between the
two (Fig. 5E). In general, land-use change perturbations had low
response diversity and high biomass scaling indicating that species
respond in the same way (presumably negatively) and have absolute
changes relative to their biomass (e.g. consistent with a perturbation
decreasing 50% of all species). Perturbations like warming and
nutrient enrichment, on the other hand, typically had high response
diversity and low biomass scaling indicating that some species
responded negatively while some responded positively to these
perturbations and that absolute responses were not completely
proportional to initial biomass.

Discussion
Variability of results, or “context-dependency”, is pervasive in
ecology29. While this is partly what makes ecosystems so fascinating
to study—indeed there is great interest in the mechanistic under-
pinning of contrasting responses of diversity and function to
perturbations30—it could also be viewed as an obstacle to the synth-
esis of previous results and to the prediction of future impacts. Our
research has focused on some of this variability (the variability
between the responses of community aggregate properties to a given
perturbation) and found that it is predictable and also a rich source of
information. Mismatches between the responses of different aggre-
gate properties to a class of perturbations (e.g. land-use change) can
give us previously hidden information about the aggregate proper-
ties themselves (i.e. similarity and broadness of ecosystem functions)
and about how such perturbations impact the species that constitute
the community (i.e. response diversity and biomass scaling).

Ecological research is typically reductionist, using information about
individuals and populations to understand communities and
ecosystems31. Our work demonstrates the reverse approach by using
information about communities to understand population-level
responses.

In this paper we have reported two analyses of themicrobial soil
system dataset: (i) an initial, naive synthesis that we used tomotivate
our work (Fig. 1), and (ii) a more detailed analysis informed by our
geometrical framework (Fig. 5). Our geometrical approach helped to
explain some of the interesting patterns in the initial analysis—such
as the relatively high levels ofmismatches between broad and narrow
functions and between functions and diversity—but more impor-
tantly, it allowed us to take our biological interpretations further and
to extract new information from the data using a novel type of ana-
lysis. For instance, we found that perturbations associated with glo-
bal change vary greatly in their response diversity (Fig. 5D). Land-use
change typically had relatively low response diversity (i.e. most
species responded in the same direction), while warming showed
relatively high response diversity (i.e. some species increased in
abundance while others decreased in abundance). Furthermore, we
found that biomass scaling is a prominent feature of anthropogenic
perturbations of these ecosystems. The proportion of mismatches
between total biomass and Shannon diversity—positively correlated
with the biomass scaling exponent (Fig. 4B)—ranged from ∼0.3 for
warming in grassland systems all the way up to ∼0.8 for some land-
use change perturbations. In other words, species that initially
represent a large proportion of the overall biomass in thesemicrobial
systems also represent a large proportion of the variation in biomass
caused by global change factors. In the next two sections, we will first
outline in more detail the general empirical applications of our pro-
posed framework and we will then discuss the future research
directions that our geometrical perspective of aggregate properties
could lead to.

Empirical applications
Althoughwe have shown that variability of community-level responses
to perturbations can be predicted, our geometrical framework does
not attempt to predict how specific aggregate properties will respond
to specific perturbations. Instead, based on the assumption that
functions can be seen as directions (which amounts to assuming that
per-capita contributions of species to functions are fixed), it can be
used to generate null expectations for when aggregate properties
should and shouldn’t respond in the sameway to a perturbation. From
a practical perspective, our framework therefore offers a novel set of
methods (demonstrated in the tutorial available at: https://jamesaorr.
github.io/community-properties-tutorial/) that ecologists can use to
study species’ contributions to ecosystem functions and the
population-level effects of perturbations. As the central ingredient of
our framework is the proportion of mismatches in the observations of
different aggregate properties, increasing the volume of data will lead
to more robust estimates. Indeed, the size of the points in Fig. 5C–E
indicates the confidence of those estimates. However, there is a trade-
off between the volume of data used to quantify proportions of mis-
matches and the consistency of the underlying systems; the validation
test was inconclusive when we pooled data from all biomes but gave
very convincing results when we focused on either the grasslands or
forests systems. Given the requirements formoderate to high volumes
of data, our framework is probably best suited for use in research
synthesis, where it can be used to complement traditional tools like
meta-analyses.

The geometrical view of aggregate properties allows us to use
perturbations as probes to better understand how species influence
the functioning of ecosystems. We found that the proportion of
mismatches between functions can be used to quantify their simi-
larity in terms of which species contribute to them. This was
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demonstrated by themodularity of the heat map in Fig. 1A and of the
network in Fig. 5B. This observation is certainly reassuring, as it
confirms that mechanistic understandings at the chemical level of
microbial functions are consistent with ecosystem-level observa-
tions. Furthermore, given that total biomass is by definition the
broadest function, we can now use mismatches between a function
of interest and total biomass to quantify the broadness of that
function (demonstrated by numerical evidence in Fig. 2E inset
and empirical evidence in Fig. 5C). If an ecologist was interested in a
new ecosystem function they could quickly compare it to other
functions based on how it responds to perturbations to estimate how
broad it was and to identify which species were contributing to it
(based on it’s similarity to functions with more information about
their species’ contributions). Understanding the links between
community composition and functioning has far-reaching implica-
tions for many sectors including ecosystem management, agri-
culture, forestry and medicine32–34 and our approach contributes to
recent efforts to study ecosystem functions in their natural context,
in contrast to the traditional reductionist approach of using con-
trolled experiments where populations or even organisms are stu-
died in isolation35,36.

Our framework can also be used to study population-level
responses to perturbations from the top down by comparing the
observations of different functions. Response diversity—the variation
between species responses to a perturbation—can be measured in
different ways and is a key mechanism underlying ecological stability
and the biological insurance hypothesis37–39. Although the information
we can gain using our geometrical approach (i.e. the proportion of
species responding positively or negatively—see Fig. 2) is a coarse
measure of response diversity, it can be accessed by just comparing
the observations of different functions (e.g. total biomass and
respiration) rather than actually measuring each species’ response.
The easiest approach is to take two functions and compare their pro-
portion of mismatches over different perturbations (or different sys-
tems or different contexts) to gain a relative measure of response
diversity (as we did in Fig. 5D). However if the collinearity between two
functions is known (for well-studied functions, or by using our
approximations based on the estimated broadness of the functions),
then we can use the deviations from our null expectation to quantify
the population-level response diversity (Fig. 3B).

Another useful piece of information that can be gained with our
top-down approach is the biomass scaling of a perturbation (i.e.
whether the direct effect of a perturbation is proportional to the bio-
mass of each species). This feature of perturbations controls the
relative importance of rare or common species in determining the
community’s temporal variability (“environmental perturbations”
sensu Arnoldi et al.,40). Using mismatches between any function and
any diversity metric can be used to rank perturbations based on their
biomass scaling (Fig. 5E). Furthermore, the proportion of mismatches
between diversity and total biomass is actually a very good proxy for
the biomass scaling exponent itself Fig. 4B). If the responses of each
species to the perturbations is available then biomass scaling (and
response diversity) canbe extracted from thedata directly. However, it
is very common for measures of diversity to be estimated from data
withoutmeasuring species-level responses (there are 221 observations
in the Zhou et al.,20 dataset where OTU richness is the only measure of
diversity). In these cases, biomass scaling cannot be measured
directly from the data, but it can be estimated using our framework.
Comparing multiple community-level observations—measuring
responses of more functions allows for more pairwise comparisons
and therefore more detailed insights—allows us to describe these
features of perturbations without ever having to collect information
directly at the population level, which could therefore be an efficient
and cost-effective tool for research synthesis or the analysis of
biomonitoring data.

Future directions
Ourwork has so far overlooked the temporal dynamics of responses to
perturbations. As we only needed to consider the initial and perturbed
states of ecosystems for our geometrical approach (perturbations as
displacement vectors in Fig. 2A), we haven’t made the distinction
between press and pulse perturbations andwe also haven’t considered
non-linear responses. However, to consider a community’s trajectory
during and after a perturbation, our framework could be applied in
future studies to test if response diversity and biomass scaling of
perturbations change over time. Practically this would involve com-
paring the responses of two (or more) aggregate properties to a per-
turbation over time and checking if there was a change in the
proportion of mismatches (e.g. over-replicates in an experimental
treatment). For example, if the proportion of mismatches between a
set of ecosystem functions was initially very low following a pertur-
bation but then increased over time, this would be consistent with a
scenario where most species initially responded negatively to that
perturbation but then some species increased in abundance (e.g. due
to competitive release). Changes in the proportion of mismatches
between diversity and function over time would likewise imply chan-
ges in the biomass scaling of a perturbation. It seems likely that this
new geometrical perspective could be combined with tools in the
ecological stability literature30 to study dynamic ecological responses
to perturbations.

In our work, we did not explicitly consider biotic interactions, yet
they nonetheless play a role. The state that an ecosystem reaches after
a perturbation undoubtedly depends on species interactions, espe-
cially if the time scale considered is long enough to allow community
dynamics to play out. The classic example is the trophic cascade41. If a
perturbation directly impacts the top of a food chain (e.g. species
invasion), it will in time also affect its base, following the alternating
sign pattern characteristic of a cascade. Put in the context of our work,
biotic interactions play a role in what we call “features of perturba-
tions” like biomass scaling and response diversity. An exciting future
direction would therefore be to seek for recognizable signatures of
species interactions42 in the variations through time of those pertur-
bation features. For instance, we can hypothesise that strong mutua-
listic interactions would generate increasingly coherent responses as
time grows (corresponding to a reduction of response diversity).
Furthermore, our framework makes the simplifying assumption that
species per capita contributions to functions are fixed, but in reality
how a species contributes to a function may be dependent on its
interactions with other species (although the fact that our validation
test was conclusive implies that this assumption is not a bad approx-
imation). We propose to see our work as a first step of a more general
program: using perturbations as “probes”, where ecosystem functions
are macroscopic “observables”, to better understand the dynamics of
natural ecosystems.

Given the generality of our framework, our work touches many
areas of contemporary ecology. Formultifunctional ecologists, it helps
to explain how different functions can respond in different ways to
global change28. For ecologists interested in multiple perturbations,
our work can be used to understand variability in how community-
level properties observe the interactions (antagonistic or synergistic)
between perturbations43. For biodiversity-ecosystem functioning
research, the opposing responses of diversity and function to pertur-
bations (which we explained) should be considered when under-
standing how perturbations influence biodiversity-ecosystem
functioning relationships44. Our work can be used in disturbance
ecology to link studies acrossdisparate systems45 andmayevenhelp to
interpret trade-offs between biodiversity and crop yield under differ-
ent farming practices46. When studying complex systems such as
ecosystems, it is important to have baseline expectations for their
behaviour. We have found that the variability between community-
level responses to perturbations does not just limit synthesis and
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BOX 2

Formalizing the variability of observed responses to a perturbation

We formalize the process of observing the ecosystem-level impact of a given perturbation, based on aggregate features of functioning or
diversity. Our goal is to explainwhat controls the probability that two scalar observations of the sameperturbed ecosystemgive opposite results.
Here bold symbols denote S—dimensional vectors, where S is the species richness of the community. Let Nc be the initial (or control) state of a
community: the vector of species biomass prior to the perturbation. LetNpbe the perturbedcommunity state. Theobserved response, quantified
via an ecosystem function f(N), is

Δf = fðNpÞ � fðNcÞ: (Box 2 Eq 1)

For a linear function, there exists a constant f0 (because we will consider changes in functioning, and not absolute levels of functioning, this
constant will play no role in what follows) and a vector φ—the gradient—such that

fðNÞ= f0 + φ,N
� �

(Box 2 Eq 2)

with �, �h i the scalar product of vectors. The elements of the gradient vectorφ encode the per capita contribution of species to the function. For us
it will notmatter what those exact contributions are. Only relative species contributions, which determine the direction spanned by the vectorφ,
are required for our framework. Apositive function is such that the elementsof thegradient arepositive. If we rewrite the responseof the function
to the perturbation, we get that

Δf = φ,ΔN
� �

(Box 2 Eq 3)

where ΔN = Np −Nc is the vector of population-level responses. For non-linear aggregate properties, such as diversity metrics, the (state

dependent) gradient vector can be computed asφiðNcÞ= ∂f
∂Ni

jNc . In this case, expression (Box 2 Eq 3) will be an approximation, accurate for weak

perturbations for which the state-dependent gradient vector is still relevant. Now, for two functions, f, g associated with two directions spanned
by the two gradient vectors φ and ϕ, we define their collinearity as the angle 0 ≤ θ < 2π whose cosine is

cosθ=
φ,ϕ
� �
φ
�� �� ϕ

�� �� (Box 2 Eq 4)

where �k k denotes the Euclidian norm of vectors. A graphical argument (Fig. 2D) tells us that the fraction of perturbation vectorsΔN that will lead
to a mismatch between the observations of f and g is

Pð signðΔfÞ≠ sign ðΔgÞÞ= θ
π

(Box 2 Eq 5)

In such cases, one of the functionswill observe a positive response, while the other functionwill observe a negative response. Generically, we
can evaluate the cosine of the angle based on a notion of functional broadness. Indeed, given a random choice of positive functions

φ,ϕ
� �
kφkkϕk � 1

S

P
φi
P

ϕiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
φ2

i

P
ϕ2

i

q =
1
S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1P φiP

φi

� �2

1P ϕiP
ϕi

� �2

vuuut =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Df

S

2Dg

S

s
(Box 2 Eq 6)

where qDdenotesHill’sdiversity index.Wewill call the fraction
2Df
S thebroadnessof the function f, which ismaximal (andequal toone) if all species

contribute equally to the function (i.e. total biomass).
We can modify the above theory to account for an additional piece of population-level information in the form of a biomass scaling of

population-level responses. It is indeed reasonable to expect thatmore abundant specieswill, in absolute terms, show a larger response to some
types of perturbations (e.g. habitat loss of 50%may decrease biomass of all species by 50%, so the most abundant species will experience the
greatest absolute losses). For some scaling exponent α ≥0, if we denote Λ the diagonal matrix whose elements are the species biomass prior to
the perturbation, we may assume that the perturbation displacement vector takes the form ΔN =ΛαΔ. We then have that

Δf = Λαφ,Δ
� �

(Box 2 Eq 7)

the relevant angle to consider then becomes

cosθα =
φ,Λ2αϕ
D E
Λαφ
�� �� Λαϕ

�� �� (Box 2 Eq 8)

giving the fraction of rescaled vectors Δ that would lead to a qualitative mismatch.
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prediction in ecology. Instead, this variability is predictable and can be
leveraged to gain useful information about species’ responses to per-
turbations and species’ contributions to ecosystem functioning. Our
work provides a solid platform from which the complexity of
community-level responses to anthropogenic global change can be
better understood.

Methods
Geometrical approach
To understand what can be learned from the variability of aggregate
properties’ responses to perturbations, we transpose the ecological
problem to a more abstract, but simpler, geometrical setting (descri-
bed more formally in Box 2).

First, we consider the effects of perturbations on populations as
displacement vectors in the ecosystem’s state-space, where axes
report the biomassof all constituent species (Fig. 2A). This vector is the
difference between initial and perturbed states. It encodes the
response to theperturbation at thepopulation level at a given timeand
canbe applied to both press perturbations (where the communitymay
be expected to stay at the perturbed state for some time) and pulse
perturbations (where the communitymaybe expected to return to the
initial state from the perturbed state). We then see ecosystem func-
tions as positive directions in this same state space (Fig. 2B). Total
biomass for example is the sum of all the species’ biomass and its
direction lies exactly between all the axes, giving equal weight to all
species. Other functions may not be influenced by the biomass of all
species equally. In the hypothetical example shown in Fig. 2B, general
decomposition is slightly more sensitive to the biomass of fungi than
to the biomass of bacteria, plastic decomposition is primarily carried
out by bacteria, and chemical production is primarily carried out by
fungi. In general, a positive direction is spanned by a vector of positive
values representing the per-capita contribution of each species to the
function of interest. Our approach therefore aligns with Grime’s “bio-
mass-ratio hypothesis” where species contributions to ecosystem
functions increase with increasing biomass47. The “broadest” function,
total biomass, is made up entirely of ones. The “narrowest” functions,
aremade up entirely of zeroes, except on the entry associatedwith the
only contributing species24.

Next, we combine these two levels of abstraction to model how
functions “observe” perturbations. We recenter the state space so that
the axes now represent the response of each species, with the origin
consequently being the initial state of the community (Fig. 2C). Pro-
jecting the displacement vector (multi-dimensional vector describing
species responses to a perturbation) onto the direction of an ecosys-
tem function (one dimensional vector made up of species contribu-
tions to the function) gives the “observation” of that function (see blue
and red lines coming from perturbed states A and B in Fig. 2C). For
each function, drawing a line through the origin and perpendicular to
the direction of the function delineates two zones. One where the
projection is negative, and thus the function observes a negative
response and the other where the projection is positive and thus the
function observes a positive response. If the two directions associated
to the two functions are not perfectly collinear, there will be zones of
state-space where responses to perturbations will be qualitatively
different when observed by one function or the other. These zones are
the two symmetrical cones centred on the origin, formed by the deli-
neation lines of the functions, perpendicular to their respective
directions (red zones in Fig. 2D). The larger the angle between two
functions, the larger the zones of mismatches. Consequently, if spe-
cies’ responses were random and unbiased, the probability of finding a
qualitative mismatch between two functions is:

PðMismatchÞ= θ
π

(1)

where θ is the angle between the two functions measured in radians.
This collinearity of functions allows us to quantify their similarity. The
similarity between functions, defined in this way, is related to their
respective broadness, which quantifies the evenness of species per-
capita functional contributions (Box 2 Eq 6). Indeed, in a community of
S species and functions f and g:

cos θ � cosθdiv =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
Dðf Þ=S ×

2
DðgÞ=S

r
(2)

where 1/S ≤ 2D( f)/S ≤ 1 is the broadness of the function f (same for
function g), defined here as the Gini–Simpson diversity index12 of the
vector of species contributions to the function, and normalized by
species richness S. Expression (2) quantifies the intuitive expectation
that two broad functions ought to be highly collinear, whereas two
narrow functions can be independent (i.e. orthogonal to one another)
if they are not performed by the same set of species.

There is a straightforward, yet very useful application to this
reasoning that wewill use in our data analysis: because total biomass is
the broadest function by definition (corresponding to a value of 1), we
can use the proportion ofmismatches Pf,bio between total biomass and
a given function f to estimate the latter’s broadness. Indeed, if per-
turbations are random, we have, for any positive function:

cos ðPf ,bio ×πÞ2 = 2Dðf Þ=S (3)

We illustrate this relationship between broadness and mismatches
with total biomass in Fig. 2E (inset).

Our final level of abstraction is the realization that measures of
diversity, which are highly non-linear functions of species biomass (in
the mathematical sense of a function of variables, not in the sense of
ecological functioning), can still beplaced into this geometrical setting
by considering their (state-dependent) gradients (outlined in more
detail in Box 2). The gradient of a diversity metric is a state-dependent
vector encoding how small variations in each species’ biomass change
that diversity metric. The collinearity between diversity metrics and
ecosystem functions can therefore be quantified by measuring the
angle between the gradient of a diversitymetric and the direction of an
ecosystem function. Importantly, gradients of diversity metrics span
non-positive directions in state space because increasing the biomass
of some species (the more abundant ones) decreases diversity. This
allows for the angle between diversity metrics and ecosystem func-
tions to exceed 90°.

Simulation model for perturbation experiments
To test, explore and illustrate the geometrical ideas outlined above, we
conducted numerical experiments where ecological communities
were perturbed and their responses were observed using different
aggregate properties.Wedid not ask our simulations to have complex,
realistic underpinnings. We simply defined a protocol to generate a
wide range of initial and perturbed states, and a wide range of aggre-
gate properties (representing ecosystem functions or diversity mea-
sures) thatwe then used to quantify the ecosystem-level impacts of the
perturbations.

Initial states were vectors N of length S (chosen uniformly
between S = 20 and S = 100) whose elements Ni are the initial species
abundance or biomass. Those were drawn from log-normal distribu-
tions with zero mean and standard deviation (uniformly chosen
between 1/2 and 2), thus generating awide range of communities while
also mimicking empirical abundance distribution patterns. For each
initial state, 500 perturbations were generated as vectorsΔN of length
S (perturbed states are N +ΔN) whose elements ΔNi were generated in
the following way. First, for each species, we drew a value xi from a
normal distribution with unit standard deviation and mean μ. For a
given initial state, μ is a fixed value uniformly chosen between −0.3 and
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0.3. It determines the qualitative consistency of population-level
responses (more on this below). We then normalized the set of values
xi by ð1S

P
x2
j Þ

1=2
, which gave us a set of values yi that we used to define

the actual response of species as

ΔNi = intensity × yi ×N
α
i (4)

For a given perturbation, its intensity was drawn uniformly between 0
and 0.1. We also allowed the impacts of perturbations to scale with the
initial abundance (or biomass, in this toymodel there is no difference)
of species. For each perturbation, the biomass scaling exponent (α)
was uniformly chosen between 0 and 1. When α = 1, the population
response to the perturbation is, on average over the community,
proportional to the species initial biomass. The other basic population-
level feature that we considered is a notion of response diversity (i.e.
whether the perturbation impacted most species positively or
negatively). As mentioned above, this feature is set by the parameter
μ. Indeed, if we define the population-level response consistency as

bias = j 1
2
� #fi,ΔNi<0g

S
j (5)

(# denotes the number of elements in a discrete set, here the set of
species whose abundances are reduced by the perturbation); then, the
expected fraction of negative population responses in the above
expression is Φ(−μ) where Φ(x) is the cumulative function of a stan-
dard normal distribution.

Ecosystem functions, which we used to “observe” the ecosystem-
level response to perturbations, were represented by positive direc-
tions in an S-dimensional space, spanned by vectorsφwhose elements
φi represent species’ per-capita functional contributions. For a given
stateN, its level of functioning is then f(N) =∑φiNi (see Box 2). The per-
capita contributionsφiweredrawn froma log-normaldistributionwith
a standard deviation uniformly chosen between 0 and 1.3. When the
standard deviation was small, the functions were broad as the per-
capita contributions of each species were similar. When the standard
deviation was large, however, the functions were more narrow, with a
large variation in the per-capita contributions of each species to the
function.

Diversity metrics were taken from the family of Hill diversity that
define the effective number of species as:

qDðNÞ=
XS
i= 1

pq
i

 !1=ð1�qÞ
(6)

where S is richness, pi is the relative abundance (or biomass) of species
i and q is the hill number that determines the sensitivity of the diversity
index to rare or to abundant species. This general equation encom-
passes species richness (q = 0), the Shannon index (q = 1) and the
Gini–Simpson index (q = 2)9,10,12,22. To apply our geometrical framework
to diversity observations we considered the directions spanned by
their gradients (the vector of partial derivatives ∂qD

∂Ni
), evaluated at the

initial state, which take the form qφ = (qφi) with

qφi =
q

1� q
pq�1
i �

XS
j = 1

pq
j

 !
(7)

For each perturbation experiment and each pair of aggregate
properties f, g—either two positive linear functions, or a diversity
metric and a function (for two diversity metrics see Supplementary
Note 1)—we checked the consistency of their responses. That is, we
looked at the sign of f(N +ΔN) − f(N) and compared it to the sign of
g(N +ΔN) − g(N). If they do not coincide, there is a qualitative mis-
match between the twoways of observing the ecosystem’s response to

the perturbation. For the simulations, 1000 communities (i.e. initial
states) were generated and each one experienced 500 different per-
turbations. For Figs. 2E and 3, two ecosystem functions of varying
broadness were generated for each community and used to observe
the community-level responses to the perturbations. The angle
between the directions defined by the functions was calculated, divi-
ded by π (Eq. (1)), and plotted against the realised proportion of mis-
matches over the 500 perturbations, while recording the relative
deviation from the prediction. For Fig. 2E all perturbations were
unbiased at the population level, but for Fig. 3 perturbations could
vary in their population-level consistency. The angle between eachpair
of functions was also estimated using only the knowledge of their
broadness based on their mismatches with biomass. For Fig. 4A, total
biomass (positive direction whose elements are all 1) and Hill-Simpson
(2D) were used to observe the ecosystem-level responses to the per-
turbations. The effective angle between total biomass and the state-
dependent gradient of the diversity index, based on (Box 2 Eq 8), was
calculated, divided by π, and plotted against the actual proportion of
mismatches.

Detailed analysis of empirical data
Equipped with our geometrical framework for understanding the
variability of functional andbiodiversity responses toperturbationswe
can return to the empirical data from Box 1 to uncover novel insights.
However, before we can use our framework to learn more about spe-
cies contributions to ecosystem functions and about the structure of
perturbations, we can first confirm that viewing functions as directions
and equating their mismatches to their collinearity is a valid approach
for a given dataset. To do this we can perform a validation test, for-
mally described in Supplementary Note 2, where we try to predict the
mismatches between two functions (i.e. their collinearity) basedon the
mismatches between all other pairs of functions. Indeed, if we know
the respective angles that two chosen directions make with the
remaining set of directions, we should be able to estimate, in a specific
way, the angle between the chosen pair. This test involves matrix
operations that can introduce artefacts into the results, meaning that
an inconclusive test does not necessarily invalidate the application of
our framework to a given dataset. However, a conclusive test—mis-
matches between two functions being well predicted by mismatches
between all other pairs of functions—is very strong support for the
view of aggregate properties as directions in state space and gives a
green light for further exploration of the data using our geometrical
arguments.

To better understand species’ contributions to ecosystem func-
tions we can use the mismatch data (i.e. matrix in Fig. 1) to examine
both the similarity of functions and their relative broadness. Firstly, the
matrixofmismatches canbe used as an adjacencymatrix for a network
that groups functions based on their similarity. A force-directed layout
algorithm, such as the Kamada–Kawai path length cost-function48, will
generate networks where distance corresponds to the similarity of
functions. Secondly, we can use total biomass (the broadest ecosystem
function by definition) as a baseline to quantify the broadness of other
functions. The angle between total biomass and other broad functions
will be small so, over many perturbations with unbiased population-
level effects, the proportion of mismatches will therefore be low.
Narrower functions will have larger angles with biomass, which will
result in higher proportions ofmismatches (Fig. 2).Working in reverse,
we can use the proportion of mismatches between some function and
total biomass (directly available from the data) to predict the broad-
ness of that function. For a fair estimate of broadness, the proportion
ofmismatches between the function andbiomass should be quantified
over a large pool of perturbations that collectively have random
effects. Here, we therefore do not consider perturbations of nutrients
for ecosystem functions related to that nutrient—these perturbations
have systematic effects rather than random effects—and we only
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consider cases where the proportion of mismatches between a func-
tion and biomass is based on at least twenty perturbations including at
least five types of global change factors.

So far we have used perturbations to gain insights into species
contributions to ecosystem functions. However, we can also use the
mismatches between functions to gain useful information about the
population-level effects of the perturbations themselves. We can
compare the proportion of mismatches between two ecosystem
functions (e.g. total biomass and respiration) across different pertur-
bations to quantify the relative response diversity of those perturba-
tions. If perturbations have low response diversity (i.e. most species
respond in the same direction), then perturbations will be biased in
their directions in state-space towards the fully negative or fully
positive areas of state-space (bottom left quadrant or top right quad-
rant of Fig. 2D, respectively), andwould avoid the cones ofmismatches
for functions with positive directions. We can therefore use the pro-
portion of mismatches for a given pair of functions to rank perturba-
tions based on their responsediversity.We can also usemismatch data
to ask if a perturbation’s population-level effects are independent of
biomass or if more abundant species have larger absolute changes in
biomass (i.e. biomass scaling of a perturbation). If a perturbation
causes the biomass of abundant species to decrease, total biomass will
decrease but diversity will increase. If on the other hand, a perturba-
tion causes the biomass of abundant species to increase, total biomass
will increase but diversity will decrease. As such, when perturbations
are scaled by biomass, there will be a higher proportion ofmismatches
between functions and diversity. As a result, we can use the proportion
of mismatches between a function and a diversity metric to rank per-
turbations based on their biomass scaling. Here, we only made esti-
mates for the response diversity or biomass scaling of perturbations if
there were at least five shared observations of those perturbations for
the relevant pair of aggregate properties in the dataset.

A detailed tutorial, aimed at empirical ecologists interested in
applying this geometrical framework to their data, is available at
https://jamesaorr.github.io/community-properties-tutorial/. The tutor-
ial contains useful snippets of code and detailed descriptions of all
stages of the analysis from (i) data preparation, (ii) validation test, (iii)
exploring species contributions to functions, and (iv) exploring the
population-level effects of perturbations.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used and generated in this study are available at https://doi.
org/10.5281/zenodo.1398501549.

Code availability
The code used in this study is available at https://doi.org/10.5281/
zenodo.13985015. A detailed tutorial with example code is available at
https://jamesaorr.github.io/community-properties-tutorial/.
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