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Various spike patterns from sensory/motor neurons provide information about the dynamic sensory 
stimuli. Based on the information theory, neuroscientists have revealed the influence of spike 
variables on information transmission. Among diverse spike variables, inter-trial heterogeneity, 
known as jitter, has been observed in physiological neuron activity and responses to artificial stimuli, 
and it is recognized to contribute to information transmission. However, the relationship between 
inter-trial heterogeneity and information remains unexplored. Therefore, understanding how jitter 
impacts the heterogeneity of spiking activities and information encoding is crucial, as it offers insights 
into stimulus conditions and the efficiency of neural systems. Here, we systematically explored 
how neural information is altered by number of neurons as well as by each of three fundamental 
spiking characteristics: mean firing rate (MFR), duration, and cross-correlation (spike time tiling 
coefficient; STTC). First, we generated groups of spike trains to have specific average values for 
those characteristics. Second, we quantified the transmitted information rate as a function of each 
parameter. As population size, MFR, and duration increased, the information rate was enhanced 
but gradually saturated with further increments in number of cells and MFR. Regarding the cross-
correlation level, homogeneous and heterogeneous spike trains (STTCAVG = 0.9 and 0.1) showed the 
lowest and highest information transmission, respectively. Interestingly however, when jitters were 
added to mimic physiological noisy environment, the information was reduced by ~ 46% for the spike 
trains with STTCAVG = 0.1 but rather substantially increased by ~ 63% for the spike trains with STTCAVG 
= 0.9. Our study suggests that optimizing various spiking characteristics may enhance the robustness 
and amount of neural information transmitted.

Keywords  Neural information, Population responses, Spiking heterogeneity, Neural prosthesis, Retinal 
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Information theory serves as a crucial tool for quantifying the information encoded by cells regarding stimuli1 
and elucidating the intricate relationships among spike variables2. Neuroscience researchers have focused on 
both efficient ‘reading’ and accurate ‘decoding’ of complex neural signals to understand how the brain deciphers 
information. In addition to these endeavors, neuroscientists have attempted to control neural activities using 
various stimulation modalities such as electric, magnetic, ultrasound, and optogenetic approaches3–7. These 
efforts include neural prosthetic research aimed at ‘encoding’ sensory information and ‘writing’ artificial neural 
activities.

The early generation of prosthetic systems has paved the way for upcoming new generations of neural 
prostheses, which may cure various psychiatric diseases and/or restore sensory/motor functions. However, the 
best performance of state-of-the-art neural prostheses still falls short of completely overcoming diseases and 
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enabling daily activities8. For sophisticated physiological functions, various aspects of spiking activities need to 
be considered for the development of advanced neural prosthetic systems that facilitate elaborate modulation 
of neural activities. Developing these advanced systems requires understanding under what conditions different 
spiking patterns compress an enormous amount of information and communicate with downstream neurons in 
the brain9. Thus, for successful neuromodulation implementation, it seems critical to examine the relationship 
between the amount of neural information and population spiking response patterns.

Many neuroscientists have suggested various neural coding schemes that describe what aspects of sensory/
motor features are encoded by neurons and how neurons precisely encode these features via spike trains1. 
Representative examples of encoding schemes include rate coding1, temporal coding10, population coding11, and 
correlation coding12,13. Although these encoding schemes examined the effect of four major resource constraints 
on information transmission: number of cells, mean firing rates, spiking duration, and cross-correlation 
level, it has not been well quantified to what extent these four resources affect information transmission. In 
particular, the intrinsic diversity (cell-to-cell variation/heterogeneity) of neurons is a system developed for 
efficient information transmission, stemming from differences in morphological features or distributions of ion 
channels14–16. For instance, heterogeneous cell groups can transmit twice as much information as homogeneous 
ones14, exhibiting robust properties against noise and contributing to a role in reducing redundancy among 
populations of neurons14.

While some studies in the past decades have shown the relationship between cell-to-cell heterogeneity and 
information transfer14,17–20, the variability between trials has remained largely unexplored. This inter-trial 
variance is known as jitter and represents the spike timing precision and reliability. The occurrence of jitter 
arises from the multi-layered architecture of the brain and sensory organs21. Noteworthy is the observation 
of jitter not only in physiological neuron activities but also in responses to artificial stimuli22,23. For example, 
jitters of several milliseconds have been observed in diverse neuromodulation approaches which have stimulated 
cortical neurons24, motor neurons25, and retinal neurons26,27; those jitters are known to be influenced by disease 
conditions28. It is suggested that jitters in spiking activities also affect information about stimulus conditions29, 
and low-jitter spiking activities boost information transmission30,31. Therefore, it is essential to systematically 
understand how jitter affects the information encoded in the population neural code.

In this paper, we separately quantified the influence of basic spike variables such as the number of cells, mean 
firing rate, spiking duration, and intracellular spiking correlation on the amount of information. The primary 
goal of our study was to offer a comprehensive view of how neural information transmission is altered by the 
aforementioned variables. To systematically explore the dependency of information on each parameter, we 
generated spike trains in a controlled manner for populational spiking activities to have desired characteristics, 
and then we calculated how much information may be transmitted by the corresponding spike trains to the 
downstream neurons. Since it is difficult to collect all spiking neurons that satisfy various specific conditions, it is 
more efficient to use an artificial neuron model which is highly reproducible and allows more focus on analysis32. 
Specifically, we employed the ‘Brian2’ model in this study, which has been well-established to computationally 
represent biologically realistic spiking neuron activity33–35. This model is widely recognized for its ability to 
capture the intricacies of neural activity with high biological fidelity, allowing researchers to mimic realistic 
neuronal dynamics in a controlled environment. Additionally, it provides the computational efficiency needed to 
analyze large-scale networks or explore complex neural processes with varying conditions. Furthermore, we also 
added jitters to those sets of the generated spiking activities to maximize the heterogeneity and examined the 
transition of information amount as a function of noise levels. Our present work suggests that optimizing neural 
responses to maximize the amount of information transmitted in response to stimuli could ultimately enhance 
the performance of neural prostheses, as more effective information allows the patients to better interact with 
the prosthesis, leading to more natural and functional outcomes.

Methods
Generating spike trains in a controlled manner
We created spike trains using a modified version of ‘Brian 2’36, a Python open-source library for simulation of 
spiking neural networks. Input parameters for generating a pool of spike trains (neurons or cells) were (1) size of 
neurons for initial pool, (2) final number of neurons, (3) spiking duration (d), (4) average pairwise correlation 
value (C), (5) mean firing rate (MFR), and (6) peak firing rate (PFR) (Fig. 1). First, we generated 5 different 
groups of correlated 2,000 spike trains that have 0.2, 0.4, 0.6, 0.8, and 1-sec-long spiking duration, respectively. 
Subsequently, the generated spike trains were filtered according to the target spiking magnitudes (20, 40, 60, 80, 
and 100 ± 10 Hz for MFR; 200 ± 50 Hz for PFR), which were in the range of physiological spiking magnitudes 
of retinal ganglion cells37–40. The firing rates were calculated for every 20-msec-long bin with a step size of 5 
msec. This step was terminated if the number of surviving spike trains became above 1.5 times of the desired 
final number of neurons for each condition. Then, from the surviving spike trains, our customized MATLAB 
code randomly chose 50 spike trains until the average correlations between those spike trains reached within 
the range of specific values (i.e., 0.1, 0.3, 0.5, 0.7, and 0.9 ± 0.01). The neuron size of the initial pool of 2,000 and 
the final number of neurons of 50 were selected to maximize computational efficiency while obtaining reliable 
results within a range that allows for reduced computation time and memory use based on our trials and errors.

To quantify the correlation level across the generated spike trains, we computed the spike time tiling 
coefficient (STTC) which is defined as the equation shown below41:

	
STTC = 1

2

(
PA − TB

1 − PATB
+ PB − TA

1 − PBTA

)
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where PA (or PB) is defined as the proportion of spikes in spike trains A (or B) which lie within the time window 
(±Δt) of each spike in spike trains B (or A). TA (or TB) is defined as the proportion of ± Δt for each spike in spike 
train A (or B) of total recording time. STTC determines whether one spike train co-occurs with a higher or 
lower proportion within a given time window (±Δt) of another spike train42. In the present study, we computed 
all STTCs between every pair of the 50 selected spike trains in each group using Δt of 4 msec to compare with 
the results of previous work43. The characteristics of the selected spike trains were represented in forms of raster 
plots, bar graphs of MFR, and distribution histograms of STTC values (Fig. 2). In raster plots, each dot indicates 
a single action potential (the first rows of Fig. 2A, 2B, and 2C). Also, in bar graphs, each bar indicates the MFR 
of a selected cell (the second rows of Fig. 2A, 2B, and 2C). Rolling histograms of STTCs visualize how STTC 
values distribute (the third rows of Fig. 2A, 2B, and 2C); the number of STTCs in every 0.01 bin with a moving 
step of 0.002. The average STTC (STTCAVG) was used to represent the populational cross-correlation levels of 
the given set of spike trains.

Assuming that the 50 spike trains were created from different 50 cells, “ten trials” were generated by adding 
jitters to initial spike trains (i.e., trial-to-trial variability). In detail, the original spike timings of individual spikes 
were altered based on the standard normal distribution (see red vertical dotted line and black vertical solid 
lines at top of Fig. 4A for original spike timing and changed spike timing, respectively). The mean and standard 
deviation of Gaussian distribution were fixed 0 and 1, respectively (see histogram of jitter distribution at bottom 
of Fig. 4A). In other words, the red vertical dotted line which means original spike timing can be moved to one 
of black vertical solid lines (i.e., changed spike timing; at top of Fig. 4A) based on the possibility which was 
shown in the histogram at bottom of Fig. 4A. Next, the level of distribution was also varied by multiplying αjitter 
ranging from 1 to 5 (compare left and right of Fig. 4A for αjitter = 1 and 5, respectively). At positive jitter side, the 
calculated average values of jitter were 0.87 and 4.11 msec with αjitter of 1 and 5, respectively. As a result, when 
there is no jitter (αjitter = 0), variability was not observed across all trials, however, after adding jitter (αjitter = 5) 
the spike timing in all trials changed (compare upper and lower raster plots of Fig. 5B).

Computation of the amount of neural information
To quantify the average information transmitted by certain groups of spikes trains, we used the direct method 
which computes information by the difference between total entropy and noise entropy1,43–45, which is more 
generally known as mutual information1,2,46. For the entropy calculation, each spike train was first changed into 
a binary code array43–45,47: spikes were allocated into 4-msec-long time bins43. Then, if one or more spikes exist 
in a given time bin, 1 was assigned; while if there is no spike, 0 was assigned. Second, we initially generated 50 
cells by randomly selecting them from a pool of 2000 spike trains, created based on pre-determined populational 
spiking conditions such as duration, MFR, and STTCAVG (Fig. 1). Then, to investigate how much information 
is transmitted by a subset of cells, we randomly selected n cells from the 50 generated cells and made 50 

Fig. 1.  Model schematic for generating spiking trains under the controlled manners. First, a pool of spike 
trains was created based on modified version of ‘Brian2’, open-source Python code with input parameters such 
as size of neurons pool, final number of neurons, duration (d = 0.2, 0.4, 0.6, 0.8, and 1 s), pairwise correlation 
value (C = 0.1, 0.3, 0.5, 0.7, and 0.9). Second, the generated artificial neurons were filtered by mean firing rate 
(20, 40, 60, 80 and 100 ± 10 Hz), and peak firing rate (200 ± 50 Hz). Third, the surviving (filtered) spike trains 
were transmitted to customized MATLAB codes to find 50 population combination which satisfy target spike 
time tiling coefficient (STTC) values (0.1, 0.3, 0.5, 0.7, and 0.9 ± 0.01).
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Fig. 2.  (A) Result of generated spike trains with different mean firing rates (20, 40, 60, 80, and 100 ± 10 Hz 
while duration and spike time tiling coefficient (STTC) were maintained 1 s and 0.5 ± 0.01, respectively. First, 
second, and third rows show raster plot, firing rate, and histogram of STTC values of each cell, respectively. (B) 
Same as A but for different spiking durations (0.2, 0.4, 0.6, 0.8, and 1 s) while MFR and STTC were maintained 
60 ± 10 Hz and 0.5 ± 0.01, respectively. (C) Same as A but for different STTC values while MFR and duration 
were maintained 60 ± 10 Hz and 1 s, respectively. STTC histograms are shown in different colors depending 
on their average STTCs (STTCAVG), i.e., blue, green, yellow, orange, and red for 0.1, 0.3, 0.5, 0.7, and 0.9, 
respectively.
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combinations of these n cells. For each combination of n cells, there were 10 trials for each cell. From these trials, 
we randomly selected one trial per cell and created 2,000 different combinations of trials across all combinations 
of cells. Both the total entropy and noise entropy were calculated over these 2,000 combinations for each of the 
50 combinations of cells. Total entropy was calculated by the equation shown below:

	
Total Entropy = −

N∑
i

P (i)log2P (i)

where P(i) represents the probability of a particular “word” in one of 50 combinations for the entire time period 
of 1 s. Here, when binary code of each spike train is in sequence, the “word” i refers to a column vector of 0s 
and 1s and N indicates to the total number of possible words (i.e., 2n). Similarly, noise entropy can be calculated 
using the equation below:

	
Noise Entropy = −

N∑
i

P (t)
∑

t

P (i|t)log2P (i|t)

where P(i|t) represents the conditional probability of a particular word i at a specific time, t. Finally, average 
information transmitted by n cells is obtained by averaging the value obtained by subtracting the noise entropy 
from the total entropy for 50 combinations.

Results
Controlled generation of spike trains
To more systematically investigate neural information changes as a function of the MFR, spiking duration, and 
STTC, we generated various groups of 50 spike trains that have different average values for each parameter while 
fixing other parameters (see METHODS). First, we created five groups of 1-sec-long spike trains which have 
different MFRs (Fig. 2A). As the MFR increased (20, 40, 60, 80, and 100 ± 10 Hz from Fig. 2Ai to Fig. 2Av), the 
raster plots became denser (the first row of Fig. 2A) and the heights of MFR bar graphs increased (the second 
row of Fig. 2A). The STTCsAVG of all five groups were well controlled to be 0.5 ± 0.01, respectively (the third row 
of Fig. 2A).

Second, we generated the other five groups of spike trains which had durations of 0.2, 0.4, 0.6, 0.8, and 1.0 s, 
respectively; but, the MFR and the STTCAVG were fixed at 60 ± 10 Hz and 0.5 ± 0.01, respectively (Fig. 2B). As 
designed, the raster plots (the first row of Fig. 2B) show longer spiking durations while the density of spikes was 
maintained, resulting in similar heights across the MFR bar graphs (the second row of Fig. 2B). As shown in the 
STTC histograms (the last row of Fig. 2B), the pairwise cell-to-cell spiking heterogeneities were similar to have 
the average STTC around 0.5 for all groups.

Lastly, we also created the last five groups of spike trains for different STTCAVG values (i.e., 0.1, 0.3, 0.5, 0.7, 
and 0.9 ± 0.01) but the same MFR (60 ± 10 Hz) and spiking duration (1 s) (Fig. 2C). The raster plots became 
systematically more homogeneous spiking activities as the STTCAVG increased (the first row of Fig.  2C). 
Accordingly, the peak of STTC distribution plots gradually shifted from the left to the right (the last row of 
Fig. 2C). Taken all together, the abovementioned results indicate our spike generation methods created diverse 
sets of 50 spike trains in controlled manners.

Information rates increase with all control variables but STTC
From the spike trains we generated in the earlier section, we next examined how the neural information 
transmission is altered by each of spiking parameters. First, we plotted the amount of information as a function 
of the number of cell (n) ranging from 1 to 15 when only one of the three parameters (i.e., MFR, duration, and 
STTCAVG) was varied (Fig. 3Ai-3Aiii which are corresponding to Fig. 2A-2C). It is well-known that multiple 
cells conveyed more information than a single (Fig. 3Ai-3Aiii). Interestingly however, when the values of each 
parameter were changed (i.e., MFR, duration, and STTCAVG), the increasing rate of information was greater 
with the large population (n = 15) than the small population (n = 1). For example, a single cell and a group 
of 15 cells transmitted 0.46 and 3.43 bits more of information when the MFR increased from 20 to 100 Hz, 
respectively (Fig. 3Ai). Similar to MFR, both spiking duration and STTCAVG also showed the smallest and largest 
information changes at a single cell and 15 cells, respectively (Fig. 3Aii and 3Aiii).

It is noteworthy that the information rate enhanced as more cells were involved in the transmission; however, 
the increasing speed appeared to be getting slower. For example, when the MFR was 60 Hz, as the number of cells 
tripled from 3 to 9, the amount of information increased by 2.14 times (a purple curve in Fig. 3Ai). However, 
when the number of cells increased 5 times from 3 to 15, information increased by only 2.88 times. Since the 
transmission of neural information is not done by only one single neuron, but by large populations of neurons, 
it must be important to find ways to allow large populations of neurons to efficiently transmit information21. 
Regarding this matter, it is intriguing that the absolute amount of information seems smaller but the speed of 
information saturation appears slower for higher than lower STTCAVG (i.e., homogeneous vs. heterogeneous 
responses across cells; the bottom red and the top blue curves in Fig. 3Aiii, respectively).

Because neural information is modulated by various elements (i.e., MFR, duration, and STTCAVG), it is also 
important to examine how the information rates change when two parameters are altered together (Fig. 3B, 3C, 
and 3D). For the fixed number of cells (n = 15; the largest population size we tested), we plotted the amount 
of information as a function of one single parameter while the other parameter is altered. For example, the 
information was plotted as a function of MFR for several spiking durations or STTCAVG (Fig. 3Bi or 3Bii). Note 
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that purple and sky blue curves marked with red arrowheads of Fig. 3Bi-3Bii, 3Ci-3Cii, and 3Di-3Dii were from 
two different identical sets of population responses.

We first estimated the amounts of neural information as a function of MFR for the group of spike trains that 
all have 1-sec-long spike trains and STTCAVG of 0.5 (the sky blue curve marked with the red arrow in Fig. 3Bi). 
As the MFR increased from 20 to 100 Hz, the neural information also increased from 2.95 ± 0.11 to 6.38 ± 0.13 
bits (mean ± stdev). This trend is consistent with previous studies48–50, which confirmed that more information 
was transferred as the MFR increased. However, it is worth to note the slopes were different between information 
changes at low and high MFRs. For example, as shown in Fig. 3Bi, when the duration was 1.0 s, the information 
change between 80 and 100 Hz (from 5.96 ± 0.16 to 6.38 ± 0.13 bits; ~7% increment) was not as steep as that 
between 20 and 40 Hz (from 2.95 ± 0.11 to 4.32 ± 0.15 bits; ~46% increment). This slow-down of information 
enrichment indicates that an additional MFR increase may not be effective for further information enhancement 
above a certain MFR level. It might be tempting to think that the amount of neural information would be 

Fig. 3.  Amount of transmitted information rises with increasing mean firing rate (MFR), spiking duration, 
but not with average spike time tiling coefficient (STTCAVG). (A) Information rate as a function of number of 
cells for different (Ai) MFRs, (Aii) durations and (Aiii) STTCsAVG. (B) Information rate as a function of MFR 
for different (Bi) durations and (Bii) STTCsAVG. (C) Information rate as a function of duration for different 
(Ci) MFRs and (Cii) STTCsAVG. (D) Information rate as a function of STTCsAVG for different (Di) MFRs, and 
(Dii) durations. Color-coded line marked with red arrowheads in Bi-Di indicate basic conditions which are 
shown in Fig. 2A–2C, respectively. All pairs of neighboring data points in Bi-Di showed statistical significance 
(p < 0.05) in one-way ANOVA tests.
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almost tripled if MFRs of a given set of spike trains were tripled when the other parameters were unchanged. 
However, our results indicate that the neural information is increased much less than being tripled when MFR 
was increased from 20 to 60  Hz. Also, given the fact that pump consumes 9 × 106 molecules of adenosine 
triphosphate (ATP) per spike51, neural information transmission with much higher MFR seems less energy-
efficient as the rate is expected to be saturated at some point. When the MFR increased from 20 to 100 Hz, the 
information increments were 3.36 and 1.73 bits for the two groups of spike trains with the STTCsAVG of 0.1 and 
0.9, respectively (Fig. 3Bii). It appears that, when the change of MFR was the same, the amount of information 
more increased at heterogeneous spike trains.

Second, we also observed the increase in the amount of neural information as the duration increased 
(Fig. 3C). This is quite straightforward because more information would be conveyed the longer the spiking 
activities occur. However, since it is hard to create heterogeneous responses within a limited spiking period, the 
spike trains which have STTC values of 0.1 and 0.3 were not generated (i.e., one and two data points were shown 
for blue and green curves in Fig. 3Cii). This result also indicates that if the spiking duration is short, then the cells 
are unable to respond heterogeneously.

Lastly, we plotted the neural information vs. STTCAVG (Fig. 3D). For spike trains with the MFR of 60 Hz 
(see a purple curve marked with a red arrowhead in Fig. 3Di), information was transmitted at the highest rate 
of 7.09 ± 0.08 bits when the STTCAVG was 0.1. On the other hand, when the STTCAVG was 0.9, information 
was tremendously reduced to 2.05 ± 0.12 bits. This contrast indicates that remarkably dissimilar spiking 
patterns across cells showed the biggest transmission rate compared to similar spiking patterns across cells. 
Although earlier studies suggested that heterogeneous populational responses convey more information than 
homogeneous ones14,43,52 it has not been well quantified how the levels of population heterogeneity alter the 
amount of neural information. In our simulation, the increment of STTCAVG from 0.1 to 0.9 (i.e., the decreased 
heterogeneity across spiking activities) resulted in ~ 71% loss of the information transmitted by 15 cells which 
lasted their spiking for 1 s in 60 Hz of MFR.

The effects of MFR and spiking duration were more prominent in heterogeneous spike trains than 
homogeneous ones (Fig. 3D). For example, when the MFR decreased from 60 to 20 Hz for 1-sec-long spike 
trains, the information decreased by 2.65 and 1.16 bits with the STTCsAVG value of 0.1 and 0.9, respectively 
(Fig. 3Di). Also, when the spiking duration increased from 0.2 to 1.0 s, the cells transmitted 3.65 and 1.49 bits of 
more information with the STTCsAVG value of 0.5 and 0.9, respectively (Fig. 3Dii).

Jitters reduce the neural information in heterogeneous but not in homogeneous population 
responses
When an identical stimulus is given to neurons for multiple times, they often elicit slightly different spiking 
patterns across those repeats due to the stochastic nature of spiking activities53 as well as internal/external 
noises54, resulting in trial-to-trial variabilities (i.e., jitters)10,47. Accordingly, we also studied the changes in neural 
information rates when random jitters were added to spike trains (see METHODS). We altered each original 
spike timing (see red dotted line at 0 msec of Fig. 4A) based on the Gaussian distribution. The changed spike 
timing (i.e., jitters; black vertical lines at top of Fig. 4A) was most likely located close to the initial spike timing 
(see histogram of jitters at the bottom of Fig. 4A), but the distribution of jitters changed depending on the value 
of αjitter ranging from 1 to 5 (compare left and right of Fig. 4A for αjitter = 1 and 5, respectively). For all MFRs, 
durations, and the number of cells, the amount of transmitted information decreased as jitters were added to 
various sets of spike trains that had the STTCAVG of 0.5 (Fig.  4B–4D). In detail, the spike trains of 100  Hz 
in the MFR transferred 2.14 bits (~ 33.5%) less information as the αjitter increased from 0 to 5 (top curve of 
Fig. 4B) while the other spike trains of 20 Hz showed an information reduction of 0.53 bits (~ 18.0%) for the 
same jitter increment (bottom curve of Fig. 4B). Koch et al.50 earlier demonstrated that, among brisk-transient, 
brisk-sustained, and local-edge cells, brisk-transient cells transferred the most information due to the highest 
firing rates and the lowest jitter. Taken together, our results suggest that even though the cells with higher MFRs 
transmit a larger amount of information, the information decreases rapidly as more jitters are added.

We also examined how the neural information changed as jitters were added when we varied the spiking 
duration and the number of cells (Fig. 4C and 4D). For those, we fixed the STTCAVG to be at 0.5 and the MFR 
to be at 60 Hz. When the duration of spike trains was 1.0 s, the information was diminished by 1.53 bits as the 
αjitter increased from 0 to 5 (Fig. 4C). For the same αjitter change, the information was reduced by 0.29 bits when 
the duration was 0.2 s (Fig. 4C). For the all numbers of cells we tested, the information was consistently reduced 
as the jitter increased (Fig. 4D). These results are no surprise because additional jitters increase noise (or noise 
entropy). However, it is worth to note that the jitter was more critical to the population responses which carry 
higher amount of information than lower amount.

Interestingly, however, the jitters transformed the neural information quite differently depending on the 
STTCAVG of spike trains (Fig. 4E). There was a remarkable contrast that cells with high vs. low heterogeneity 
transmitted less vs. more information as the jitters were added to their spike trains (blue and red curves in 
Fig. 4E, respectively). In more detail, the spike trains with the STTCAVG of 0.1 or 0.9 transmitted 3.31 bits less or 
1.29 bits more when the αjitter was altered from 0 to 5, respectively (as marked with blue and red arrows in Fig. 4E, 
respectively). In the case of the STTCAVG of 0.7, the information rate stayed pretty similar across various levels 
of jitters (an orange curve of Fig. 4E). All in all, the amount of information transmission decreased as the jitter 
increased for every parameter space (i.e., MFR, duration, and the number of cells) only when spike trains were 
somewhat heterogeneous (note that Fig. 4B–4D were plotted for the STTCAVG of 0.5). On the other hand, the 
information rather increased from homogeneous sets of spike trains (e.g., when the STTCAVG was 0.9).
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Higher jitters transmute homogeneous population responses into heterogeneous ones to 
convey more information
As intuitively expected, the additional jitters did neither substantially change MFR nor response durations. 
Therefore, the unique feature of neural information regarding the heterogeneity (i.e., STTCAVG) of population 
responses (Fig. 4E) is likely because the STTCAVG was considerably altered due to jitters. Hereafter, to clearly 
distinguish the two types of STTCAVG before and after adding jitter, we referred to the target STTCAVG value used 
for generating original spike trains as STTCInput, and the changed STTCAVG with added jitters as STTCOutput. The 
heat matrices of STTCsOutput clearly show that the influence of jitters on STTCs varied depending on the value 
of STTCInput (Fig. 5A). Particularly, for homogeneous spike trains, the STTCsOutput were strongly influenced by 
the level of jitter (dramatic color changes are shown in the first row of heat matrices in Fig. 5A). In detail, we 
displayed the raster plots of STTCInput of 0.9 without/with αjitter of 5 (upper and lower raster plots of Fig. 5B), 
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respectively. In addition to irregular spiking timings across trials (the lower raster of Fig. 5B), the STTCOutput 
was also substantially decreased (top red curve of Fig. 5C). In sharp contrast, however, for heterogeneous spike 
trains, the level of inter-cellular spiking variance (i.e., STTC) was minimally altered by all the levels of jitter 
we tested (i.e., 1–5 of αjitter). For example, with the STTCInput of 0.1, the STTCsOutput were 0.106 and 0.058 for 
the αjitter of 1 and 5, respectively (bottom row of Fig. 5A and bottom blue curve of Fig. 5C). As a whole, the 
discrepancies across STTCsOutput were considerably reduced when the αjitter of 5 were introduced to original 
spike trains with no jitters (compare left-most and right-most data points of each curve in Fig. 5C), resulting in 
much smaller gaps in the amount of information (Fig. 4E).

It is remarkably intriguing that the cells with the most heterogeneous responses were least affected by the 
jitter in terms of STTCAVG, but their information was tremendously reduced (compare blue curves of Fig. 5C vs. 
4E). On the other hand, the cells with the most homogeneous responses were significantly affected by the jitter 
in terms of STTCAVG, but their information was somewhat enhanced (compare red curves of Fig. 5C vs. 4E). To 
further explore these disparities, we also plotted how the neural information rates changed as a function of the 
STTCOutput for different αjitter as well as various network sizes (Fig. 6A). Indeed, for the low STTCInput values 
such as 0.1 and 0.3, the jitters showed moderate STTCAVG changes for every network size but considerable 
drops in information transmission (blue and green curves in Fig. 6A). To more clearly visualize how the inter-
trial jitters alter the information rate, we remained the population responses for n = 15 in the information vs. 
STTCOutput plot (Fig.  6Bi), and plotted information change ratio between αjitter of 5 vs. no jitter (αjitter of 0) 
cases (Fig.  6Bii). For example, the STTCOutput was changed only between 0.100 and 0.058 for the STTCInput 
of 0.1, but the information change was ~ 46% at most (n = 15; blue curve in Fig. 6Bi). It was because the noise 
entropy increased more rapidly (from 0.00 to 7.14 bits) than the total noise (7.09 to 10.92 bits) as jitters were 
added (from 0 to 5 of αjitter) to the spike trains when the STTCInput was 0.1 (see top blue curves in Fig. 6Ci and 
6Cii). However, for the high STTCInput value indicating homogeneous spike trains, the jitters produced a positive 
effect of increasing the information rate. In other words, a higher jitter transforms homogeneous spike trains 
into more heterogeneous ones, thereby lowering the STTCOutput and increasing information. For example, the 
additional jitters demonstrated a wide range of STTCsOutput (from 0.910 to 0.408) for the STTCInput of 0.9, but 
the information rather increased by 2.05 to 3.34 bits (~ 63%) for the network size of 15 (red curve of Fig. 6Bi). 
It was because the total entropy increased more rapidly (from 2.05 to 9.77 bits) for higher STTCsInput with the 
addition of jitters (from 0 to 5 of αjitter) while the noise entropy was increased relatively slowly (from 0.00 to 6.43 
bits) compared to other STTCsInput (see bottom red curves in Fig. 6Ci and 6Cii).

To understand neural information more deeply, it is necessary to examine the relationship between 
intercellular spiking heterogeneity (i.e., STTC) and intertrial spiking jitter (i.e., noise). We examined above how 
the information changed as the noise (i.e., jitter) was added to the spike trains. The higher heterogeneity, the 
more information was transmitted when other factors were fixed and the noise was small. However, in practice, 
it is difficult for the cells to respond with no trial-to-trial variability. In other words, due to the stochastic nature 
of spiking, the neural code cannot be completely identical across repeats of external stimuli. It can be clearly seen 
that the neural information was lost by additional jitters until STTCInput was 0.7, but the transmitted information 
increased when STTCInput was 0.9 (below and above the dashed horizontal line in Fig. 6Bii). Taken all together, 
our results show moderate STTCsAVG make neuronal information transmission most robust to internal/external 
noises. Therefore, our results indicate existence of optimal heterogeneity of spiking activities.

Discussion
Implication of our study in neural prosthetic application
Our results imply that, in neural prosthetic applications, it is highly likely to be important to convey optimal 
amount of information (i.e., similar amount of information that would arise during normal/healthy states) by 
figuring out how much information each cell can transmit in response to electric stimulation (or other forms 
of artificial stimulation). To elaborate on this point further, an artificial retina device can be considered as an 
illustrative example. Although promising clinical outcomes have been reported for these retinal prostheses 
which electrically stimulate the remaining inner retinal neurons55–61, the retinal prostheses still have not yet 
formed artificial visual percepts that allow patients to carry out daily activities55–61. Numerous previous retinal 
prosthetic studies have focused on novel methods to enhance the ability to drive individual retinal ganglion cells 
(RGCs) in a scalable manner to more faithfully mimic various aspects of retinal neural activities that arise during 

Fig. 4.  Inter-trial variability (jitter) reduces the amount of information in somewhat heterogeneous population 
but not in homogenous population. (A) (top) Exemplar distributions of spike timings after adding jitters for 
αjitter = 1 and 5 (left and right, respectively). Red vertical dotted line drawn at 0 msec represents the original 
spike timing without any jitter. Depending on the αjitter value, the initial spike timings were moved by the 
possibility density of Gaussian distribution (see METHODS). Each black vertical solid line indicates a single 
spike; 60 spikes in total are shown drawn at their jitter level. (bottom) Histograms of jitter distributions display 
the number of spikes for each jitter range; jitter bin sizes varied depending on αjitter but the total number of 
bins was fixed to be 30 for the whole range of jitters. The average values for negative and positive jitters (µ− 
and µ+, respectively) were shown in each plot. (B-E) Information rates were plotted as a function of αjitter for 
different (B) MFRs, (C) spiking durations, (D) numbers of cells, and (E) STTCsAVG. For panels A-C, population 
responses with the STTCAVG of 0.5 were used (15 cells for panels A and B). For panel D, 15-cell population 
responses with the spiking duration of 1.0 s and the MFR of 60 Hz were used. Two pairs of gray horizontal 
dashed lines show the difference in the information rates for αjitter of 0 and 5 for STTCsAVG of 0.1 and 0.9 (3.31 
and 1.29 bits with blue and red arrows, respectively).

◂
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the natural viewing: (1) high-spatial resolution stimulation62–65, (2) cell type-specific stimulation26,27,66–68, or (3) 
faithful duplication of physiological-like (i.e., natural) spiking activities39,69.

It is important to note that, compared to natural viewing, electrically-evoked population responses seem to 
have considerably different characteristics in terms of neural information. For example, in previous publication, 

Fig. 5.  Heterogeneous spike trains are less affected by additional jitters than homogenous spike trains. (A) 
Color-coded matrices of spike time tiling coefficients (STTCs) visualize the level of pair-wise cross-correlation 
of spiking trains of 50 cells. STTC matrices were drawn before (αjitter = 0) and after adding jitters for αjitter 
ranging from 1 to 5. (B) Raster plots of spike trains representing ten trials without and with (upper and lower, 
respectively) jitters created by αjitter of 5 to original spike trains with STTCInput of 0.9. With no jitter, STTCOutput 
was 0.910 but STTCOutput became 0.408 by additional jitters. (C) Final STTC values (STTCsOutput) were plotted 
as a function of αjitter ranging from 0 to 5 for several input STTC values (STTCInput). Homogeneous spikes 
trains are more sensitive to the additional jitters in terms of final correlation levels.
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interesting result was reported that OFF types of retinal ganglion cells (RGCs) transmit more information than 
ON types in both brisk transient (BT) and brisk sustained (BS) pathways in responses to light stimulation43. 
Intriguingly, however, in the case of electric stimulation, the OFF cells transfer significantly less amount of 
information than the ON cells regardless of their subtypes (e.g., BT or BS) because the population responses of 
OFF cells became too homogeneous43. Also, a recent sight restoration study reported better animal behavioral 
responses when their retinal ganglion cells evoked more heterogeneous spiking37. Likewise, it may be necessary 
to manipulate jitter or other relevant parameters (e.g., duration, MFR, correlation levels) to ensure whether 
artificially-evoked responses can convey as much information as naturally-evoked responses for efficient 
neuromodulation, not only in retinal prosthetic applications but also in other neural prosthetic applications70. 
Stimulus-induced (or stimulus-locked) spiking events are thought to be a better encoding method because 
of its high temporal precision71. In a given spike train, spike-timing precision seems to enhance information 
transmission21. However, our results indicate that, if a population of neurons is activated by an identical series 
of pulses, their collective spiking activities would be highly homogeneous (i.e., high STTC), resulting in less 
amount of information than more heterogeneous spike trains (see the leftmost data points of red vs. blue colors 
in Fig. 4E). Moreover, collective information of both the homogeneous and the heterogeneous spike trains were 
all altered by additionally introduced jitters (see the rightmost data points of red vs. blue colors in Fig. 4E). 
Therefore, for optimal information transmission using neural prostheses in a jittery environment, it seems crucial 
to use stimuli that induce a moderate level of correlation across spiking activities arising in different neurons. 
Rather than having too high or too low correlation, maintaining an optimal level of correlation allows the neural 
network to optimize the capacity to convey information by effectively balancing precision and variability. Such 
fine-tuning could help neural prostheses better encode and replicate natural neuronal behaviors, ultimately 
leading to improved functional outcomes for prosthetic users by offering more information to be deciphered. 
Thus, the present work offers a new aspect to be considered as a guideline for future research, suggesting that 
adjusting stimulation parameters for optimal information transmission can ultimately enhance the overall 
performance quality of prosthetics.

Variability can be a potential source for heterogeneous neural codes which are robust to 
noise
Both cell-to-cell heterogeneity and trial-to-trial variability in neurons have been reported in the earlier 
studies20,29,72. Also, it has been also well known that diverse morphologies/ion channels of nerve cells create 
remarkably heterogeneous spiking activities14–16,50. Because of these diversities, it appears that each neuron 
could maximize the amount of transmitted information by encoding different characteristics of the stimulus73. 
However, other studies found that some level of redundancy is also essential to encode information efficiently 
since redundancy makes the cell more tolerant to noise and danger, which in turn reduces error20,74,75. Therefore, 
it can be inferred that cells with the moderate levels in terms of both variability and redundancy would transmit 
information maximally. Throughout this study, we also confirmed that the tendency of information transmission 

Fig. 6.  Jitter increases both total and noise entropy and results positive impact to increase information rate 
at relatively homogenous neurons in the analysis population. (A) Population information as a function of 
STTCOutput with different jitter with αjitter ranging from 0 to 5 for STTCsInput of 0.1, 0.3, 0.5, 0.7, and 0.9 (shown 
at top with different colors). For each plot in the same color, different tint levels indicate various network sizes; 
the darkest and the lightest (i.e., top and bottom) curves are for n = 15 and n = 1, respectively. (Bi) Same as A 
but for n = 15 only. (Bii) Change of information after introducing αjitter of 5: 1-[(information rate with jitters)/
(information rate without jitters)] was plotted for STTCsInput. Data points above/below the dashed horizontal 
line indicate gain/loss in information by the added jitter. (Ci) Total and (Cii) noise entropy as a function of 
αjitter ranging from 0 to 5 for STTCsInput of 0.1, 0.3, 0.5, 0.7, and 0.9.
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differed depending on the correlation levels of population responses even with the same changes in jitter (Fig. 6). 
Also, as argued in recent literature70, the present study has shown that the biological/physiological jitter can 
differentially affect the total amount of transmitted neural information depending on the level of populational 
heterogeneity. To be specific, heterogeneous population responses transmitted less information as jitters were 
added while homogenous population responses conveyed more information as the identical jitter was added 
since jitter greatly increased the total entropy (Fig. 6C). However, it is worth to note that, with no jitters, the 
homogeneous responses have lower information than the heterogeneous ones (Fig. 6B). In addition to normal 
physiological conditions, neural degeneration diseases such as retinal degeneration can significantly increase 
jitter in neural responses, reducing spiking reliability. As reported by Yoon et al.28, retinal degeneration reduces 
the consistency of spiking responses arising in retinal ganglion cells, which can lead to lower information 
transmission in heterogeneous spike trains. These findings indicate that optimal response heterogeneity may 
be necessary to compensate for physiological and/or biological noise, allowing for maximal neural information 
transmission in both normal and degenerate retinas.

As observed in our results, the information transmission for highly heterogeneous spike trains appears to 
approach a plateau as the number of cells increases, though it is unlikely to fully plateau. Figure 3Aiii shows the 
information without jitter for the most heterogenous spike trains we tested (STTCAVG = 0.1) is likely to approach 
a plateau at some point, possibly around several tens of cells; however, it is unlikely to be completely plateaued.

Future studies
In this study, we used spiking patterns in-silico rather than using actual neurophysiology data. For instance, we 
created and analyzed subsets of spike trains which have the same spiking duration, it appears that durations 
of both physiological and electrically-evoked spiking activities vary significantly even in an identical neuron 
type39,76. Also, it should be noted that we assumed the situation of a population coding for a single modality 
stimulation, considering that we fixed certain MFRs and filtered out spike trains beyond the criteria of a target 
range of correlation (STTC). Under this assumption, the putative network configuration would be a set of either 
recurrent layer neurons or feedforward layer neurons projected from common or correlated input pathway, 
which is likely to be different from most neural networks.

However, it is highly likely that, in real in-vivo cases, other factors could affect the transmission and/
or interpretation of neural information. For example, it has been known that psychological attention such as 
alertness and spatial attention decreases spiking variability77, thus probably reducing the cell-to-cell heterogeneity. 
Subsequently, the attention is likely to decrease the neural information. Other examples are cortico-thalamic 
feedback in the downstream visual pathway78–80 and dynamic viewing conditions which have much shorter 
spiking duration74,81. Therefore, to gain insights into how population spiking responses should be shaped in 
practice to convey maximal/optimal neural information, it is crucial to massively record natural spiking activities 
in-/ex-vivo in responses to various stimulus types and apply the neural information analysis. Also, in the case of 
in-silico approaches, novel algorithms and computational modeling can be helpful to mimic the spiking patterns 
observed in the real neurophysiological recordings. Implementing more sophisticated models with accurate 
cellular diversities in terms of types or densities of various ion channels/receptors would enable more realistic 
investigation which may lead to the development of high-quality neuromodulation systems.

Data availability
All data are presented in the manuscript and figures.
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