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COVID-19 progression and convalescence in
common variable immunodeficiency
patients show dysregulated adaptive
immune responses and persistent type I
interferon and inflammasome activation

Javier Rodríguez-Ubreva 1,8 , Josep Calafell-Segura 1,8, Celia L. Calvillo1,8,
Baerbel Keller2,3,8, Laura Ciudad1, Louis-François Handfield4,
Carlos de la Calle-Fabregat 1, Gerard Godoy-Tena 1, Eduardo Andrés-León 5,
Regina Hoo4, Tarryn Porter 4, Elena Prigmore 4, Maike Hofmann 6,
Annegrit Decker6, Javier Martín 5, Roser Vento-Tormo 4,9 ,
Klaus Warnatz 2,3,9 & Esteban Ballestar 1,7,9

Common variable immunodeficiency (CVID) is the most prevalent primary
immunodeficiency, marked by hypogammaglobulinemia, poor antibody
responses, and increased infection susceptibility. The COVID-19 pandemic
provided a unique opportunity to study the effects of prolonged viral infec-
tions on the immune responses of CVID patients. Here we use single-cell RNA-
seq and spectral flow cytometry of peripheral blood samples before, during,
and after SARS-CoV-2 infection showing that COVID-19 CVID patients display a
persistent type I interferon signature at convalescence across immune com-
partments. Alterations in adaptive immunity include sustained activation of
naïve B cells, increased CD21low B cells, impaired Th1 polarization, CD4+ T
central memory exhaustion, and increased CD8+ T cell cytotoxicity. NK cell
differentiation is defective, although cytotoxicity remains intact. Monocytes
show persistent activation of inflammasome-related genes. These findings
suggest the involvement of intact humoral immunity in regulating these pro-
cesses and might indicate the need for early intervention to manage viral
infections in CVID patients.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
the causative agent of coronavirus disease 2019 (COVID-19),
constituted a threat to public health worldwide (https://covid19.
who.int/). Although many COVID-19 patients are asymptomatic
or experience mild symptoms, some patients experience

hyperinflammatory responses that lead to severe disease
that can evolve to severe lung dysfunction, multiorgan
system failure, and death1. In addition, persistent and often
debilitating sequelae are increasingly recognized in convalescent
individuals2.
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In relation to the particular immune responses mounted by the
host upon SARS-CoV-2 infection, a fast induction of SARS-CoV-2-
specific CD4+ T cells in acute infection has been associated with a mild
COVID-19 course and a rapid viral clearance3, whereas the lack of these
specific CD4+ T cellswas associatedwith severeCOVID-194,5. Moreover,
SARS-CoV-2-specific CD8+ T cell responses can develop rapidly during
acute COVID-19, and the presence of these specific CD8+ T cells has
been associated with better COVID-19 outcomes5,6. Regarding the
humoral response, B cell memory rapidly evolves during SARS-CoV-2
infection7, and the production of neutralizing antibodies and espe-
cially the effectiveness of the anti-SARS-CoV-2 monoclonal antibodies
demonstrate the effect of the humoral immune response on viral
infection8–11. As part of the innate immune response, HLA-DRhiCD11chi

inflammatory monocytes with an interferon-stimulated gene (ISG)
signature are elevated in mild COVID-19, whereas severe COVID-19 is
marked by the concurrence of neutrophil precursors, dysfunctional
mature neutrophils, and HLA-DRlo monocytes12. Therefore, effective
immune responses against SARS-CoV-2 require that the host’s immune
system provides a balanced and coordinated response involving both
innate and adaptive immune systems13,14.

In this context, patients with inborn errors of immunity (IEI) have
demonstrated the role of type I interferon (IFN) in the control of the
infection15. The prominent role of humoral memory in the antiviral
protection, was underlined by the longer persistence of SARS-CoV-2
virus in patients with primary antibody deficiencies (PADs)16. Common
variable immunodeficiency (CVID), the most common symptomatic
PAD17, is characterized by hypogammaglobulinemia and poorly pro-
tective vaccine titers. Most CVID patients have recurrent severe
infections, and a substantial proportion develop autoimmune and
inflammatory features18,19. Besides, the classic defining antibody defi-
ciency and B cell abnormalities, alterations in other immune com-
partments, including T cells and myeloid cells, have been described in
CVID patients20–23.

The course and outcome of SARS-CoV-2 infection among patients
with CVID in comparison with the general population has been a
matter of debate. Most studies have reported a benign course of this
particular viral infection in most CVID patients16,24–26, whereas one
study found higher mortality rates among IEI patients including CVID
patients27. In addition, it has been described that immunodeficient
individuals, especially those with antibody deficiencies, show a per-
sistent SARS-CoV-2 PCR positivity, as well as increased risks of both
first infection and re-infection with SARS-CoV-2 among CVID
individuals28. This situation provides the unique opportunity to
investigate the effect of a persisting viral infection on the human
immune system in the absence of a specific humoral response on a
single-cell level.

Here, we performed a longitudinal study of peripheral blood
samples from nine CVID patients collected prior, during and after
SARS-CoV-2 infection. Using single-cell RNA-seq and spectral flow
cytometry, we compared alterations of the immune system during
viral infection and recovery of these patients in comparison with non-
CVID cohorts29–31. Our analysis shows an increased type I interferon
signature in almost all compartments, altered homeostasis of the
entire adaptive immune system, and persistent inflammasome activa-
tion in monocytes.

Results
Disturbed homeostasis in both innate and adaptive immune
compartments in COVID-19 CVID patients
Firstly, using single-cell RNA sequencing (scRNA-seq), we analyzed
paired samples of peripheral blood mononuclear cells (PBMCs) from
five CVID patients at three distinct stages of the SARS-CoV-2 infection:
(1) baseline, before viral infection, (2) progression, during infection,
and (3) convalescence, once the viral infection had been resolved and
the patient was PCR negative (Fig. 1a and Supplementary Fig. 1a). All

collected CVID patients were under regular immunoglobulin replace-
ment therapy and displayed only mild symptoms during SARS-CoV-2
infection (for detailed patient description see Supplementary Data 1).
We profiled a total of 70,643 single-cell transcriptomes of PBMCs from
the CVID cohort (Supplementary Data 1).

The single-cell transcriptomes from the CVID cohort were pro-
cessed and integrated with publicly available scRNA-seq datasets of
PBMCs from non-CVID individuals without any known primary or
secondary immunodeficiency (non-CVID 1 cohort), who were either
negative or positive for SARS-CoV-2 (#cells = 142,282)29–31. This non-
CVID 1 cohort included both non-CVID COVID-19 patients with mild
symptoms (similar to patients in the CVID cohort) or severe symptoms
(as a reference of a higher COVID-19-associated immune dysregula-
tion), together with healthy individuals. As in our CVID cohort, non-
CVID samples were classified in three stages: baseline, progression and
convalescence. Samples from the non-CVID 1 cohort were selected to
match our cohort of CVID patients in relation to sex, age and time of
sample collection after symptoms onset (Supplementary Data 1a-1b
and Supplementary Fig. 1a–g). The resulting integration of the CVID
and non-CVID cohort 1 scRNA-seq datasets was used to create a ‘dis-
covery object’. In parallel, to avoid potential biases associated with
non-CVID samples due to technical differences and dataset origins, we
integrated the single-cell transcriptomes from the CVID cohort with
additional public scRNA-seq datasets of PBMCs from a cohort of
individuals without known immunodeficiency (non-CVID 2 cohort)
whowere either negative or positive for SARS-CoV-2 (#cells = 270,448)
(Supplementary Fig. 1h)32–35. The resulting scRNA-seq object (‘valida-
tion object’) was used to ensure that only genes exhibiting similar
behavior across both non-CVID cohorts were selected for downstream
analysis.

Our single-cell transcriptomic analysis identified several immune
cell compartments at high resolution (Fig. 1b, c and Supplementary
Fig. 1h, i). The comparison of cell proportions between CVID patients
and non-CVID individuals (Fig. 1d and Supplementary Data 2), con-
firmed the expected reduction of memory B cells in CVID patients36.
We also observed a significant reduction of regulatory T cells (Treg)
and mucosal-associated invariant T (MAIT) cells at baseline in CVID
patients, as previously described21,37,38. In addition, we detected a lower
percentage of dendritic cells (DCs) in CVID patients compared with
bothmild or severe non-CVID individuals in convalescence (Fig. 1d and
Supplementary Data 2), also previously described in CVID patients39.

Upregulation of BCR-related genes and persistent activation of
naïve B cells with increased differentiation into CD21low B cells in
COVID-19 CVID patients
CVID patients are characterized by profound defects in B-cell-
mediated immune responses. Consistent with this knowledge, none
of the patients produced SARS-CoV-2-specific IgA antibodies and
only one had detectable specific IgG antibodies after SARS-CoV-2
infection (Supplementary Data 1a). None of the CVID patients were
positive for anti-type I IFNs autoantibodies previously described in
patients with life-threatening COVID-1940. Reclustering of the B cell
compartment annotated in Fig. 1b, comprising 2331 cells from CVID
patients and 12,636 cells from non-CVID donors, allowed us to
identify transitional, naïve, unswitched memory (US-memory), swit-
ched memory (S-memory), CD21low B cells subsets, and plasmablasts
(Fig. 2a and b, and Supplementary Fig. 2a). Two additional clusters of
doublets were detected but not used for downstream analysis. Fur-
thermore, we performed a reclustering of the B cell compartment
from the ‘validation object’, comprising 30,691 cells from non-CVID 2
cohort (Supplementary Fig. 2b and c). Because of the severe reduc-
tion of S-memory B cells and plasmablasts (Supplementary Data 2),
we focused on the transcriptional alterations of naïve and US-
memory B cells upon SARS-CoV2 infection. As we did not investigate
SARS-CoV-2 specific responses, the results reflect global alterations
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in B cells during the viral infection and recovery. After excluding the
two CVID patients lacking B cells, we calculated differentially
expressed genes (DEGs) between baseline and progression in the
CVID cohort or in the non-CVID 1 cohort (Supplementary Data 3).
Then, we selected DEGs in the CVID cohort together with those DEGs
in the non-CVID 1 cohort that were validated in the non-CVID 2
cohort. We then clustered these DEGs based on their expression
profile during SARS-CoV-2 infection (Fig. 2c). They were grouped in
three different categories comprising genes that exhibit either
similar (BL equal), upregulated (BL CVID up), or downregulated (BL
CVID down) baseline expression levels in CVID patients compared to
non-CVID individuals (Fig. 2c). Among the different enriched gene
ontology (GO) categories in the different clusters of DEGs (Supple-
mentary Data 4), we focused on those related to immunological
features (see Methods) and B cell biology (Fig. 2d). Thus, we

observed that genes associated with type I IFN response, which play a
role in the immune activity against viruses and other pathogens41–43,
were already upregulated at baseline in the B cell compartment of
CVID compared to non-CVID (Supplementary Fig. 2d) and showed
less upregulation during COVID-19 progression, especially in US-
memory B cells: clusters 1 and 8 (Fig. 2c, d and Supplementary
Fig. 2d). At convalescence, however, the upregulation of type I IFN
response-related genes was still maintained in CVID patients in
contrast to non-CVID individuals (Supplementary Fig. 2d). On the
other hand, we found genes related to B cell differentiation and
regulation of the B cell receptor (BCR) signaling pathway in clusters
of DEGs that were less expressed in CVID compared to non-CVID at
baseline (Supplementary Fig. 2d) and become upregulated during
COVID-19 progression and convalescence in CVID patients compared
to non-CVID individuals: clusters 13 and 15 in naïve B cells, and cluster

Fig. 1 | Multi-stage single-cell analysis of PBMCs from CVID and non-CVID
individuals with or without COVID-19. aOverview of the participants included in
this study, the samples collected and the data generated. Created in BioRender.
Ballestar, E. (2024) https://BioRender.com/o27q186. bUMAP visualization showing
different immune cell populations identified and cell-specific marker gene
expression in the non-CVID 1 cohort (n = 6 for baseline, n = 5 for progression mild,
n = 5 for progression severe, n = 5 for convalescence mild and n = 5 for con-
valescence severe) and in the CVID cohort (n = 5 paired samples at baseline, pro-
gression and convalescence). The number of captured cells in each cohort is
indicated in brackets. The B cell compartment includes naïve B cells, memory B
cells and plasmablasts. The T cell compartment includes CD4+ naïve T cells, CD4+

memory T cells, CD4+ cytotoxic CTL (only in sample P3), regulatory T cells (Treg),
gamma-delta T (γδT) cells, CD8+ naïve T cells, CD8+ memory T cells, CD8+ NKT-like
cells, mucosal-associated invariant T (MAIT) cells, and proliferating T cells. The NK
cell compartment includes NK CD56bright and NK CD56dim cells. The myeloid cell
compartment includes classical and non-classical monocytes, as well as conven-
tional dendritic cells (cDC) and plasmacytoid dendritic cells (pDCs). In addition, we
captured hematopoietic stem cells (HSC) and platelets. c Violin plots showing the
gene expression levels of selected markers. d Stacked barplot showing cell cluster
frequencies in each group. Source data for panels in this figure are provided in the
Source Data Fig. 1 file.
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14 and 15 in US-memory B cells (Fig. 2c, d and Supplementary Fig. 2d).
Hence, we inspected the expression of BCR-related genes along the
viral infection in more detail. We found a higher and more persistent
transcriptional upregulation of several genes encoding members of
the BCR signaling pathway, both activators and repressors, in the
naïve and US-memory B cell compartment of COVID-19 CVID patients

compared to COVID-19 non-CVID individuals (Fig. 2e and Supple-
mentary Fig. 2e). This upregulation included BCR signaling pathway
activator genes such as CD19, CD81, CD79B, BTK and BLNK, and also
BCR inhibitory genes such as PTPN6 (which encodes the tyrosine
phosphatase SHP-1), CD22 and CD72 (Fig. 2e and Supplementary
Fig. 2e). In this line, among the dysregulated pathways identified
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through cell-cell communication inference analysis using CellChat44

(Supplementary Data 6), we observed that the CD22 signaling path-
way, a negative regulator of BCR responses45,46, exhibited higher
activity in naïve B cells from CVID patients compared to non-CVID
individuals during viral infection (Supplementary Fig. 2f).

We performed transcription factor (TF) activity analysis using
decoupleR47, andobserved changes in the activity of several TFs during
SARS-CoV-2 infection in both CVID and non-CVID patients (Supple-
mentary Fig. 2g). Notably, the activity of the B cell master regulator
PAX5,which regulates the expression of genes critical to B cell identity,
including components of the BCR such as CD19, CD79A, CD72 and
BLK48, increased in CVID patients during infection and convalescence,
in contrast to non-CVID individuals where PAX5 activity decreases
(Supplementary Fig. 2h). Additionally, the TFs associated with the
canonical NF-κB signaling pathway (p50, encoded by NFKB1 and p65,
encoded by RELA), exhibited significantly a higher increment of
activity in non-CVID individuals compared to CVID patients during
infection. Of note, the canonical NF-κB signaling pathway displayed a
higher activity in CVID patients compared to non-CVID at baseline
(Supplementary Fig. 2h), possibly due to a chronic inflammatory
background that characterizes many of these patients.

Following the observation of the dysregulated BCR related sig-
nature, we analyzed the BCR repertoires of naïve and US-memory B
cells in our dataset at all stages of SARS-CoV-2 infection. The inspec-
tion of the dynamics of the VDJ usage upon SARS-CoV-2 infection
indicates that the proportion of B cells expressing the IGHV3-53 gene,
which has been described as the most frequently used IGHV gene
among SARS-CoV-2 neutralizing antibodies49,50, was higher in COVID-
19 non-CVID individuals than in COVID-19 CVID patients at both pro-
gression and convalescence stages (Supplementary Fig. 2i). Similar
profiles were observed for the IGHV gene usage of other SARS-CoV-2
spike-targeting antibodies49,51, such as IGHV1-46, IGHV3-23 or IGHV5-51
among others (Supplementary Fig. 2i) suggesting suboptimal B cell
selection in CVID patients.

We conducted further analysis to explore the phenotypic altera-
tions in the B cell compartment using spectral cytometry on PBMCs
(Supplementary Fig. 1j) collected from an additional cohort of CVID
patients (paired samples) and non-CVID individuals, at baseline,
COVID-19 progression and convalescence. This additional cohort was
independent of the cohort analyzed by scRNA-seq (Supplementary
Data 1). Through unsupervised cluster analysis using 33 surface anti-
gens (Supplementary Data 7), we defined 12 main cell clusters within
the B cell compartment (Fig. 2f and Supplementary Fig. 2j). Unsu-
pervised cluster analysis showed that naïve B cells (IgD+CD27-) exhib-
ited significant heterogeneity and were further divided into six main
subclusters (Fig. 2f and Supplementary Fig. 2j). Within the naïve B cell
compartment, we found a higher proportion of cells from cluster
BC#7, corresponding with CD21low naïve B cells (Supplementary
Fig. 2j), in CVID samples compared to non-CVID samples at all stages of
infection (Fig. 2g and h). In addition, although not reaching sig-
nificance due to group heterogeneity, we found a higher proportion of

cells from cluster BC#6 (Fig. 2g and h), corresponding with
CD86highHLA-DRhigh activated naïve B cells (Supplementary Fig. 2j), at
progression and convalescence inCVIDcompared to non-CVID.On the
contrary, we observed a lower percentage of cells from cluster BC#5 in
CVID compared to non-CVID during SARS-CoV-2 infection and con-
valescence (Fig. 2g and h). Interestingly, cluster BC#5 is partly negative
for CD21, and negative for CD27 and may reflect a small subset of
reactive CD21lowCD27neg B cells not fully compatible with the
CD21lowCD11chighT-bethigh B cell phenotype52,53 associated with viral
infection. US-memory (IgD+CD27+) B cells were categorized into two
clusters, with cells fromclustersBC#8andBC#9exhibiting a lower and
higher percentage, respectively, in CVID compared to non-CVID sam-
ples (Figs. 2g andh). As expected inCVIDpatient samples, weobserved
a diminished presence of both S-memory (IgD-CD27+) B cells and
plasmablasts (CD38high CD27+) (Fig. 2f, g and Supplementary Fig. 2k).
Finally, the spectral cytometry dataset allowed us to validate at the
protein level the results from the scRNA-seq analysis regarding the
upregulationof several BCR-related genes in theB cell compartmentof
CVID patients. We detected higher protein levels of CD19, CD22, CD72
andCD81 at progression in the CD21low cluster BC#7 in CVID compared
to non-CVID (Fig. 2i). In this regard, the higher abundance of this
cluster BC#7 in theCVIDgroup (Figs. 2g andh)might partly explain the
higher levels of BCR-related genes and the increased CD22 related cell-
cell communication observed in CVID samples compared to non-CVID
samples in the transcriptomic analysis. In addition, we found that the
entire naïve B cell compartment displayed higher levels of CD95, the
Fas receptor, together with lower levels of CXCR5 in the subsets BC#5
and BC#6 from CVID patients compared to non-CVID (Fig. 2j and
Supplementary Fig. 2l).

Altogether, following SARS-CoV-2 infection, the B cell compart-
ment of CVID patients exhibits an impaired activation of the canonical
NF-κB signaling pathway and a dysregulated expression of several
components of the BCR signaling pathway, possibly mediated by a
higher activity of PAX5. In addition, CVID patients show a sustained
type I IFN response signature at convalescence. Together with the
described phenotypic alterations, these findings suggest a persistent
activation of naïve B cells with increased differentiation into
T-bethighCD21low B cells. However, the specific triggers and pathogen-
esis of these changes in the general B-cell compartment remain to be
identified.

Defective increase of Th1-, but higher frequency of PD-1hiTIGIThi

memory cells during and after SARS-CoV-2 infection in COVID-
19 CVID patients
Next, we analyzed T cells from both CVID patients and non-CVID
individuals at all stages of SARS-CoV-2 infection. After reclustering the
T cell compartment previously annotated in Fig. 1b, we identified 17
clusters which comprised 46,094 cells from CVID patients and 66,194
cells from non-CVID donors (Fig. 3a and Supplementary Fig. 3a). Fur-
thermore,weperformeda reclusteringof theT cell compartment from
the validationobject, comprising 178,483 cells fromnon-CVID 2 cohort

Fig. 2 | Upregulation of BCR-related genes and persistent activation of naïve B
cells with increased differentiation into CD21low B cells in COVID-19 CVID
patients. aUMAPvisualization ofB cell subpopulations,with cell numbers for CVID
and non-CVID1 cohorts indicated. b Dot plot showing gene expression per B cell
subpopulation; circle size denotes the percentage of expressing cells and colors
indicate scaled average expression. (c) Heatmaps showing the fold change (base-
line vs progression) of DEGs in CVID cohort, and non-CVID 1 cohort validated with
non-CVID 2 cohort in selected B cell subsets. Genes are grouped by baseline
expression comparison (equal, upregulated, or downregulated in CVID vs. non-
CVID). Gene clusters are labeled on the left, and cluster sizes are indicated on the
right. d Table of selected significantly enriched GO categories for clusters from (c),
listing selected genes; clusters without significant enrichment are noted as NA.
e Heatmaps showing fold change (baseline vs. progression/convalescence) of

selected DEGs in CVID, non-CVID 1, and non-CVID 2 cohorts, showing only COVID-
19 mild samples; color indicates Log2(Fold-change). f UMAP visualization of B cell
clusters from spectral flow cytometry analysis. g Stacked barplot of B cell cluster
frequency, calculated as cell counts per cluster over total live cells. h Box plots of
selected B cell cluster frequencies. i Histograms and box plots of mean fluores-
cence intensity (MFI) for selected BCR-related proteins in cluster BC#7. (j) Histo-
grams and box plots of CD95 protein levels in naïve B cells. Panels h, i, and j show
biological replicates for CVID (BL: n = 3, PG: n = 4, CV: n = 4) and non-CVID controls
(BL: n = 4, PG: n = 6, CV: n = 4). Two-sided t-tests were used (*p-value < 0.05). Box
plot whiskers denote minimum andmaximum values (excluding outliers), with the
box spanning Q1 to Q3 and a horizontal line for the median. BL baseline, PG pro-
gression, CV convalescence. Source data are provided in Source Data Fig. 2 file.
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(Supplementary Fig. 3b). TheT cell compartment includedCD4+ T cells
(naïve, central memory and effector memory), CD8+ T cells (naïve,
central memory and effector memory), together with γδT cells,
MAIT cells, CD4+ cytotoxic, and proliferating T cells (Fig. 3a and b, and
Supplementary Fig. 3a–d). One cluster of doublets was detected and
excluded, and we focused on naïve, central memory (TCM) and

effector memory (TEM) CD4+ and CD8+ T cells for downstream
analysis.

In these particular T cell subsets, we performed the same analysis
as described above for B cells calculating DEGs between baseline and
progression in each cohort (Supplementary Data 3). Regarding CD4+ T
cells (Fig. 3c and d), among other GO categories (Supplementary
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Data 4), we found that those related to T cell receptor signaling were
significantly enriched in clusters of genes upregulated in CVIDpatients
during SARS-CoV-2 infection, although those genes were less expres-
sed at baseline compared to non-CVID individuals: clusters 15 and 16 in
CD4+ naïve T cells, cluster 15 in CD4+ TCM cells, and cluster 16 in CD4+

TEM cells (Fig. 3d and Supplementary Fig. 3e). Similarly, genes related
to T cell migration were lower at baseline but increased more during
progression in CD4+ TCM cells from CVID patients (cluster 16 in CD4+

TCM cells). Similar to the B cell compartment, type I IFN signature in
the CD4+ T cells is already increased at baseline (Supplementary
Fig. 3e), increases less strongly during infection especially evident in
clusters 2, 3, 7, and 8 inCD4+ naïve T cells, clusters 2 and8 inCD4+ TCM
cells, and clusters 2, 3, and 17 in CD4+ TEM cells, but persists in CVID
patients compared to non-CVID at convalescence (Supplemen-
tary Fig. 3e).

Furthermore, we performed cell-cell communication inference
analysis. Among the identified dysregulated pathways (Supplementary
Data 6), we focused on the CD40L/CD40 pathway due to its relevance
in T cell biology, and we observed that the cell crosstalk between CD4+

TCM and B cells exhibited an impaired CD40L/CD40 signaling in CVID
patients (Supplementary Fig. 3f).

Subsequently, we assessed CD4+ T cell polarization by analyzing
the expression of TBX21 (Tbet), IFNG (IFN-γ), and TNF (TNF-α) for Th1
polarization, GATA3, IL4, and IL5 for Th2 polarization, or RORc (RORγ)
and IL17F for Th17 polarization (Fig. 3e). Naïve CD4+ T cells did not
show a clear increase in the Th1 phenotype during SARS-CoV-2 infec-
tion. In contrast, despite the higher Th1 phenotype observed at base-
line in CVID samples, which is line with our previous observations
reporting a skewed memory CD4+ T cell differentiation toward Th1 in
complicated CVID patients54, both CD4+ TCM and CD4+ TEM of CVID
patients showed a defective increase of Th1 cells at progression and
convalescence stages compared to non-CVID individuals (Fig. 3e).
However, IFNG expression was preserved at higher levels in CVID
compared to non-CVID during SARS-CoV-2 infection, especially in the
CD4+ TEM cell subset (Supplementary Fig. 3g), probably due to the
initial skewed Th1 phenotype that characterizes CVID patients.

To further investigate phenotypic changes in the T cell compart-
ment, we used spectral cytometry on PBMCs (Supplementary Fig. 1j)
from the additional sets of CVID and non-CVID samples. Unsupervised
cluster analysis using 35 surface antigens (Supplementary Data 7),
identified 8main cell clusters of CD4+ T cells, 8 clusters of CD8+ T cells
and 3 clusters of CD4/CD8neg T cells (Fig. 3f and Supplementary
Fig. 3g). In the CD4+ T cell compartment, we observed that the TCM
cluster TC#3 is increased during SARS-CoV-2 infection in non-CVID
individuals compared to CVID patients (Fig. 3g and Supplementary
Fig. 3h). Conversely, the cluster TC#4, corresponding with
CD4+TIGIThighPD1high TCM cells (Supplementary Fig. 3g), is more
abundant across all stages of SARS-CoV-2 infection in CVID patients
compared to non-CVID individuals potentially reflecting an exhausted
phenotype (Fig. 3g and Supplementary Fig. 3h). Additionally, clusters
TC#6, corresponding to theTEMsubset, andTC#7, representing Tregs

(CD25+CD127-), were more prevalent in non-CVID samples at baseline
compared to CVID patients. However, both populations decreased
during SARS-CoV-2 infection and convalescence in non-CVID com-
pared to CVID (Fig. 3g and Supplementary Fig. 3h). In addition, we
observed that cells from clusters TC#3 and TC#4, cluster TC#6, and
cluster TC#7, expressed lower levels of CCR4 and CD25 in CVID
patients compared to non-CVID individuals at all stages (Fig. 3h).
Interestingly, within the TC#3 subset, which exhibited a more evident
difference in the expressionof bothCCR4 andCD25betweenCVID and
non-CVID groups, the proportion of CCR4+CD25+ cells, potentially
possessing a regulatory phenotype,was higher innon-CVID individuals
than in CVID patients at baseline (Fig. 3i). In addition, this proportion
decreased in both groups during SARS-CoV-2 infection and con-
valescence (Fig. 3i).

Taken together, our findings show a persistent type I IFN
signature in CD4+ T cells at convalescence in CVID patients
compared with non-CVID. Furthermore, we observed that during
SARS-CoV-2 infection, the CD4+ T cell compartment of patients
with CVID exhibits a defective increase of Th1 polarization, a
higher abundance of TIGIThi PD-1hi central memory cells, a com-
promised CD40L/CD40 receptor/ligand interaction, and an
impaired expression of CD25 and CCR4 especially on CD4+ TCM
cells within the cluster TC#3.

Strong clonal expansion of cytotoxic CD8+ T effector compart-
ment in COVID-19 CVID patients
In the CD8+ T cell compartment, we also observed distinct patterns of
DEGs between baseline and progression in COVID-19 CVID patients
and non-CVID individuals that were enriched in different GO cate-
gories (Fig. 4a, b and Supplementary Data 4). Naïve CD8+ T cells from
CVID patients showed upregulation of genes related to TCR signaling
(cluster 17), and reduced upregulation of genes related to antiviral
response and type I IFN compared tomildCOVID-19 non-CVID samples
(clusters 6, 7, 8, and 9) during progression (Fig. 4a, b and Supple-
mentary Fig. 4a). These patterns were also visible in CD8+ TCM cells
(clusters 6, 8 and 9), but were clearly distinct in CD8+ TEM cells where
antiviral response, type I IFN response and, remarkably, the cytotoxic
gene signatures were more strongly upregulated in CVID patients
compared to non-CVID individuals (clusters 1, 3, 12, 16, and 17)
(Fig. 4a, b and Supplementary Fig. 4a), possibly due to a lower
expression of cytotoxic-related genes at baseline in CVID patients
compared to non-CVID (Supplementary Fig. 4a). As previously
observed for B cells and CD4+ T cells, CD8+ T cells displayed persistent
type I IFN signature in CVID patients compared to non-CVID at con-
valescence (Supplementary Fig. 4a).

Furthermore, our cell-cell communication analysis indicated that,
among the identified dysregulated pathways (Supplementary Data 6),
prostaglandin and CLEC signaling pathways, which have been descri-
bed as regulators of T cell function and activity55,56, are more active in
CVID patients than non-CVID individuals during viral infection (Sup-
plementary Fig. 4b).

Fig. 3 | Defective increase ofTh1-, but higher frequencyofPD-1hiTIGIThimemory
cells during and after SARS-CoV-2 infection in COVID-19 CVIDpatients. aUMAP
visualization of T cell subsets, with cell numbers for CVID and non-CVID 1 cohorts
indicated. b UMAPs showing expression of selected T cell genes; scale indicates
expression levels. c Heatmaps showing fold change (baseline vs progression) of
DEGs in CVID cohort, and non-CVID 1 cohort validated with non-CVID 2 cohort, for
selectedCD4+ T cell subsets. Genes are groupedbybaseline expression comparison
(equal, upregulated, or downregulated in CVID vs non-CVID). Gene clusters are
labeled on the left, and cluster sizes are indicated on the right. d Table of selected
significant GO categories for each cluster in c. Clusters without significant enrich-
ment are marked as NA. e Scheme of T cell polarization into Th1/Th2/Th17 with
related-gene expression and subset proportions by PID, infection stage, and
COVID-19 severity. Mean and standard error bars reflect biological replicates: CVID

(BL: n = 5, PG: n = 5, CV: n = 5) and the non-CVID control group (BL: n = 6, PG_Mild:
n = 4, CV_Mild: n = 5, PG_Severe: n = 5, CV_Severe: n = 5). f UMAP of T cell clusters
from spectral flow cytometry analysis. g Stacked barplot of T cell cluster fre-
quencies, calculated as cell counts per cluster over total live cells.hHistograms and
boxplots showing levels of selectedproteins inCD4+ T subsets by PID and infection
stage. Dots represent biological replicates from different subjects in the CVID
group (BL: n = 3, PG: n = 4, CV: n = 4) and the non-CVID control group (BL: n = 4, PG:
n = 6, CV: n = 4). Two-sided t-test was used (*p-value < 0.05). iDensity plot of CCR4/
CD25 in cluster TC#3. Box plot whiskers denote minimum and maximum values
(excluding outliers), with the box spanning Q1 to Q3 and a horizontal line for the
median. BL baseline, PG progression, CV convalescence. Source data are provided
in Source Data Fig. 3.
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It has been previously described that severe COVID-19 patients
displayed a higher proportion of activatedCD8+CD16+ (FCGR3A) T cells
with increased cytotoxic functions associated with fatal outcomes of
these patients33. Based on this previous study, our single-cell analysis
allowed us to identify a FCGR3A+ cytotoxic T cell subpopulation (CD38+

MKI67+ FCGR3A+ CM T cells) that was highly expanded during SARS-

CoV-2 infection in severe COVID-19 non-CVID individuals in compar-
ison with mild COVID-19 non-CVID individuals or COVID-19 CVID
patients (Supplementary Fig. 4c). This indicates that the expansion of
this pathogenic cytotoxic T cell population is a feature of severe
COVID-19 patients and not of mild COVID-19 individuals regardless of
their CVID status.

Article https://doi.org/10.1038/s41467-024-54732-x

Nature Communications |        (2024) 15:10344 8

www.nature.com/naturecommunications


Spectral cytometry analysis of the CD8+ T cell compartment
showed that clusters TC#11, belonging to the CD8+ TCM subset, and
TC#12, correspondingwith theCD8+ TEM subset, weremore abundant
in CVID samples than in non-CVID samples (Fig. 3g and Supplementary
Fig. 4d). This TEM cluster TC#12, highly prevalent in CVID patients,
may correspond to a previously described subset of CD8+ TEM cells
with features of exhaustion and activation57. In addition, the highly
cytotoxic CD8+ TEMRA subset TC#16 is especially abundant in some
CVID patients during infection compared to non-CVID individuals
(Fig. 3g and Supplementary Fig. 4d). Furthermore, we performed dif-
ferential protein expression analysis. Among the identified dysregu-
lated proteins (Supplementary Data 7), we focused on some relevant
molecules in CD8+ T cell biology. For instance, we found that the
homing receptor CCR5 displayed lower levels in the CD8+ TEM clusters
TC#11, TC#13, and CD8+ TEMRA clusters TC#14 and TC#16, together
with higher levels of the cytotoxic molecules granzyme B and perforin
in CVID patients compared to non-CVID individuals (Fig. 4d).

Finally, we conducted TCR analysis in CVID patients throughout
SARS-CoV-2 infection. In contrast to the CD4+ T cell compartment,
where no subpopulation exhibited the presence of clones larger than
20 cells at any stage (except for CD4+ CTL), the CD8+ T cell compart-
ment showed the highest level of TCR clonal expansion (Fig. 4e). We
also calculated the Shannonentropy index to assess thediversity of the
TCR repertoire in each T cell cluster (Supplementary Fig. 4e). CD8+

naïve and CD8+ TCM cells did not exhibit an increase in hyper-
expanded clones at progression (Fig. 4e) and showed no changes in
TCR diversity (Supplementary Fig. 4e). In contrast, CD8+ TEM, CD8+

Teff, and CD8+ GZMKhigh cells, which displayed a higher proportion of
hyperexpanded clones at progression (Fig. 4e), also displayed a
decline in TCR diversity during SARS-CoV-2 infection (Supplementary
Fig. 4e), potentially indicating the emergence of expanded clones.
Interestingly, proliferating MKI67+ cells exhibited a higher proportion
of hyperexpanded clones at progression (Fig. 4e) with no clear decline
in TCR diversity (Supplementary Fig. 4e), suggesting a broad, not
clonotype-specific expansion in this particular cell subpopulation.

Overall, these results indicate distinct effects on the different
CD8+ T cell subsets during viral infection and convalescence phase.
Most remarkably, the cytotoxic CD8+ T cell compartment in CVID
patients show a strong and specific clonal expansion upon SARS-CoV-2
infection, together with a general larger CD8+ T effector compartment
compared to non-CVID individuals. In addition, CD8+ T cells fromCVID
patients display lower levels of the receptor CCR5, but increased levels
of the cytotoxicmolecules granzymeB and perforin during SARS-CoV-
2 infection in the entire CD8+ memory T cell compartment, and at
convalescence in the highly cytotoxic CD8+ TEMRA subset TC#16.

Impaired differentiation, preserved cytotoxic and increased
immune checkpoint molecules by NK cells from COVID-19 CVID
patients
We next examined the NK cell compartment, which plays key roles
during SARS-CoV-2 infection58–60. To gain deeper insights, we per-
formed reclustering of the NK cells previously annotated in Fig. 1b

from both the CVID cohort (2,677 cells) and the non-CVID 1 cohort
(16,566 cells) (Fig. 5a). According to existing literature in the field60, we
accurately annotated six NK cell subpopulations, namelyNKCD56bright,
inflamed CD56dim, cytokine CD56dim, HLA-DRhigh CD56dim and CD56dim,
together with an additional population that we annotated as SAP+

CD56dim NK cells (Fig. 5a and b, and Supplementary Fig. 5a and b).
Furthermore, weperformed a reclustering of theNK cell compartment
from the ‘validation object’, comprising 23,615 cells from the non-CVID
2 cohort (Supplementary Fig. 5c), and we successfully identified the
same abovementioned NK cell subpopulations (Supplementary Fig. 5c
and d). Among these cell subsets, onlyNKCD56bright, CD56dim, andHLA-
DRhigh CD56dim clusters were well represented in the CVID cohort (see
Methods), thus becoming the primary focus for downstream analysis.

Subsequently, we performed the same analysis as described
above for B andT cells by classifyingDEGs (SupplementaryData 3) into
three categories (Fig. 5c and d). Among the different enriched GO
categories (Supplementary Data 4), we observed that, similar to B and
T cells, response to type I IFN was upregulated at baseline, less pro-
minently enriched during SARS-CoV-2 infection in the three NK cell
populations analyzed (clusters 1, 5, 9 and 11 in CD56bright NK cells,
clusters 1, 5, 9 and 14 in CD56dim NK cells, and clusters 4, 9 and 11 in
HLA-DRhigh CD56dim NK cells) (Fig. 5c and d), but persisted at con-
valescence especially in the HLA-DRhigh CD56dim NK cell subset from
CVID patients compared to non-CVID (Supplementary Fig. 5e). In this
regard, when we defined cell differentiation trajectories across the
different NK cell subpopulations identified (Fig. 5e) and represented
the scored expression of the regulons controlled by the TFs of the type
I IFN pathway—specifically, STAT1, STAT2, and IRF961— along pseudo-
time (Fig. 5f), we observed that the activation of these TFs appeared to
be less robust in CVID patients compared to non-CVID individuals,
particularly in CD56bright NK cells, being only partially recovered in
CD56dim and HLA-DRhigh CD56dim NK cells (Fig. 5f). On the other hand,
several GO categories related to NK cell mediated cytotoxicity and
degranulation were significantly enriched in clusters containing genes
that become more upregulated in CVID patients than in non-CVID
individuals during progression (clusters 7 and 13 in CD56bright NK cells,
clusters 12 and 13 in CD56dim NK cells, and cluster 13 in HLA-DRhigh

CD56dim NK cells) (Fig. 5c and d). In this regard, the bona fide cytotoxic
genes GZMB and PRF1 showed increased expression during SARS-CoV-
2 infection in CVID patients, which is partially maintained at con-
valescence (Fig. 5g and Supplementary Fig. 5g). This increased upre-
gulationof cytotoxicity-related genes inCVID samples during infection
occurs mostly in lowly expressed genes at baseline in CVID (Supple-
mentary Fig. 5e and f).

Considering the established role of NK cells inmodulating fibrosis
in various tissues62–64, and the dysfunctional antifibrotic activity of NK
cells in severe COVID-19 patients60, we analyzed the expression of a
profibrotic gene set (AREG, DUSP2, ZFP36L2, CXCR4, and TSC22D3) in
the NK compartment during SARS-CoV-2 infection. As previously60, we
observed a tendency toward a higher profibrotic signature in the three
examined NK cell subsets of severe COVID-19 non-CVID individuals
compared to mild COVID-19 non-CVID individuals (Supplementary

Fig. 4 | Strong clonal expansion of cytotoxic CD8+ T effector compartment in
COVID-19 CVID patients. a Heatmaps showing fold-change (baseline vs progres-
sion) of DEGs in CVID cohort, and non-CVID 1 cohort validated with non-CVID 2
cohort, for selected CD8+ T cell subsets. Genes are grouped by baseline expression
comparison (equal, upregulated, or downregulated in CVID vs non-CVID). Gene
clusters are labeled on the left, and cluster sizes are indicated on the right. b Table
of selected significant GO categories for each cluster in (a). Clusters without sig-
nificant enrichment are marked as NA. c Box plots showing ‘cytotoxic response’
score for selectedCD8+ T cell subsets in CVID, non-CVID 1, and non-CVID 2 cohorts.
Dots correspond to biological replicates from different subjects in the CVID group
(BL: n = 5, PG: n = 5, CV: n = 5), the non-CVID 1 control group (BL: n = 6, PG_Mild:
n = 4, CV_Mild: n = 5, PG_Severe: n = 5, CV_Severe: n = 5) and the non-CVID 2 control

group (BL: n = 14, PG_Mild: n = 11, CV_Mild: n = 8, PG_Severe: n = 8, CV_Severe: n = 5).
d Histograms and box plots showing levels of selected proteins in CD8+ T cell
subsets, stratified by PID status and infection stage. Dots correspond to biological
replicates from different subjects in the CVID group (BL: n = 3, PG: n = 4, CV: n = 4)
and thenon-CVID control group (BL: n = 4, PG: n = 6, CV: n = 4). Two-sided t-test was
used (*p-value < 0.05). eUMAP depicting TCR clonal expansion in CVID patients by
SARS-CoV-2 infection stages. Stacked barplot of TCR clonal expansion percentages
across cell types and stages is indicated. Box plot whiskers denote minimum and
maximum values (excluding outliers), with the box spanning Q1 to Q3 and a hor-
izontal line for the median. BL baseline, PG progression, CV convalescence. Source
data for panels are available in Source Data Fig. 4.
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Fig. 5h). Notably, this elevated profibrotic signature was not observed
in CVID patients following SARS-CoV-2 infection (Supplemen-
tary Fig. 5h).

Spectral cytometry analysis of PBMCs (Supplementary Fig. 1j) in
the additional cohort of CVID and non-CVID individuals at different
stages of SARS-CoV-2 infection, and unsupervised cluster analysis

using 35 surface antigens (Supplementary Data 7), identified 1 cell
cluster of CD56bright NK cells and 7 NK clusters of CD56dim (Fig. 5h and
Supplementary Fig. 5i). Moreover, CVID patients exhibited similar
proportions of CD56bright compared to non-CVID, but an overall
reduction in the frequencies of CD56dim NK cells affecting especially
more differentiated subsets, such as NK#6 and NK#7 (Fig. 5i, j and
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Supplementary Fig. 5j). In general, we observed similar levels of the
cytotoxicity-related proteins granzyme B and perforin in the NK cell
compartment of CVID and non-CVID individuals at all stages of SARS-
CoV-2 infection (Fig. 5k). In addition, among the significantly differ-
entially expressed proteins (Supplementary Data 8), we focused on
some of thosewith a previously described role in NK cell biology, such
as CCR565,66, CD3867, TIGIT68 and TIM-369,70. In this regard, we detected
lower levels of CCR5, together with higher levels of CD38, TIGIT and
TIM-3 in CVID compared to non-CVID (Fig. 5k, and Supplementary
Fig. 5k and 5l).

All these data suggest that the differentiation of advanced stages
of CD56dim NK cells is impaired in CVID patients in comparison with
non-CVID donors. However, this is not associated with a decreased
cytotoxicity as NK cells of CVID patients strongly upregulate
cytotoxicity-related gene sets during infection and convalescence
despite reduced expression at baseline. This conclusion is corrobo-
rated by the similar amounts of the cytotoxic molecules granzyme B
and perforin in CVID and non-CVID individuals at the protein level. In
contrast, the homing receptor CCR5 displays lower expression, and
CD38, TIGIT and TIM-3 show higher levels in CVID patients compared
to non-CVID individuals indicating increased expression of immune
checkpoint molecules.

Persistent activation of inflammasome genes in COVID-19 CVID
monocytes
Severe COVID-19 patients display functional and phenotypic altera-
tions in monocytes12,71–73. Hence, after reclustering the myeloid cells
annotated in Fig. 1b, we analyzed the threemain subsets ofmonocytes
within the myeloid compartment (classical, intermediate and non-
classical) during SARS-CoV-2 infection and recovery (Fig. 6a–c and
Supplementary Fig. 6a). Furthermore, we annotated three additional
clusters ofmonocytes, namelyHLA-DRlowCD163high, HLA-DRlowS100Ahigh

and HLA-DRhighCD83high monocytes, to put our analysis in context with
existing literature12 (Fig. 6a–c, and Supplementary Fig. 6a and b).
Reclustering of the myeloid cell compartment from the validation
object, comprising 25,740 cells from non-CVID 2 cohort (Supplemen-
tary Fig. 6c), rendered the same abovementioned myeloid cell sub-
populations (Supplementary Fig. 6c and d). Similarly to other cell
compartments, we calculated DEGs and grouped them based on their
expression profiles during SARS-CoV-2 infection (Fig. 6d). Subse-
quently, we performed GO category enrichment analysis for the
identified DEG clusters to gain insights into their functional char-
acteristics (Fig. 6d and e).

Among the enriched GO categories identified (Supplementary
Data 4), like in all other cell compartments, we observed increased
baseline expression of type I IFN response genes in all three monocyte
compartments (Supplementary Fig. 6e), reduced upregulation during
progression in CVID patients compared to non-CVID individuals:
clusters 10 and 11 in classicalmonocytes, and clusters 9 in intermediate

and non-classical monocytes (Fig. 6d and e). In contrast to the other
immune compartments analyzed, this upregulation did not persist in
monocytes from CVID patients compared to non-CVID at con-
valescence (Supplementary Fig. 6e). Remarkably, upregulated genes in
monocytes from COVID-19 CVID patients displayed significant
enrichment in categories linked to acute inflammation, IL-1β produc-
tion, and inflammasome complex assembly. This enrichment was evi-
dent across classical monocytes (clusters 6 and 13), intermediate
monocytes (clusters 13 and 16), and non-classical monocytes (cluster
11) (Fig. 6d and e). In this regard, key inflammasome-related genes,
including CASP1 (encoding caspase-1), GSDMD (encoding gasdermin),
MEFV (encoding pyrin),NLRP1,NLRC4 andCARD8, were upregulated in
classical, intermediate, and non-classical monocytes from CVID
patients throughout the disease progression, contrasting with indivi-
duals from both non-CVID cohorts (Fig. 6f). This pattern was also
observed in HLA-DRlow CD163high, HLA-DRlow S100Ahigh and HLA-DRhigh

CD83high monocytes (Supplementary Fig. 7a and b). The upregulation
of these genes, together with other inflammasome-related genes such
as PYCARD and NAIP, persisted at the convalescence stage in the
monocytes from CVID patients, in contrast to non-CVID individuals
(Fig. 6f, and Supplementary Fig. 6f, 7a and b).

Next, we analyzed the TF activities within the specified monocyte
subsets. Among the different TFs that showdifferences in their activity
during SARS-CoV-2 infection, we noticed a more pronounced activa-
tion of PU.1 (encoded by SPI1) in monocytes from CVID patients
compared to their non-CVID counterparts, persisting across both
progression and convalescence stages. This observation was further
supported when we defined cell differentiation trajectories across the
differentmonocyte subpopulations identified (Supplementary Fig. 6g)
and represented the scored expression of the regulons controlled by
PU.1 along pseudotime (Fig. 6g and Supplementary Fig. 7c).

To confirm the potential dysregulation of inflammasome function
in monocytes of COVID-19 CVID patients, we stimulated PBMCs from
an additional cohort comprising both non-CVID individuals and CVID
patients at different stages—before, during, and after SARS-CoV-2
infection—with the inflammasome activator nigericin. Measurement of
caspase-1 activity in the CD14+ monocyte compartment revealed that,
in the course of progression, COVID-19 CVID patients exhibited a
higher inflammasome activity compared to non-CVID individuals
(Fig. 6h). This increased inflammasome activation after nigericin sti-
mulation was not detected during convalescence, despite the elevated
expression of inflammasome genes.

Furthermore, cell-cell communication analysis showed a reduced
crosstalk between classical and non-classical monocytes with naïve
and memory B cells affecting both the APRIL and BAFF signaling
pathways in CVID patients compared to non-CVID individuals during
SARS-CoV-2 infection (Fig. 6i).

Utilizing unsupervised clustering analysis with data from
33 surface antigens (Supplementary Data 7), we characterized the

Fig. 5 | Impaired differentiation, preserved cytotoxic and increased immune
checkpoint molecules by NK cells from COVID-19 CVID patients. a UMAP
showing NK cell clusters, with cell numbers for CVID and non-CVID 1 cohorts
indicated. b Dot plot showing gene expression per NK cell subpopulation; circle
size denotes the percentage of expressing cells and colors indicate scaled gene
expression. c Heatmaps showing fold-change (baseline vs progression) of DEGs in
CVID cohort, andnon-CVID 1 cohorts validatedwithnon-CVID2cohort, for selected
NK cell subsets. Genes are grouped by baseline expression comparison (equal,
upregulated, or downregulated in CVID vs non-CVID). Gene clusters (left) and
cluster sizes (right) are labeled. d Table of selected significant GO categories for
each cluster in c. NA indicates clusters lacking enrichment. e UMAP and box plots
showing cell trajectory of NK cells. Scale refers to pseudotime trajectory.
f Enrichment scores for IRF9, STAT1 and STAT2 in single-cells by NK cell subset.
gBox plots showing ‘cytotoxic response’ score for selected NK cell subsets in CVID,

non-CVID 1, and non-CVID 2 cohorts. Dots correspond to biological replicates from
different subjects in CVID (BL: n = 5, PG: n = 5, CV: n = 5), non-CVID1 (BL: n = 6,
PG_Mild: n = 4, CV_Mild: n = 5, PG_Severe: n = 5, CV_Severe: n = 5) and non-CVID 2
control group (BL: n = 14, PG_Mild: n = 11, CV_Mild: n = 8, PG_Severe: n = 8, CV_Se-
vere: n = 5). h UMAP of NK cells from spectral flow cytometry analysis. i Stacked
barplot of NK cell cluster frequencies, calculated as cell counts per cluster over
total live cells. j Box plots showing frequencies of selected NK cell clusters.
kHistograms and box plots showing granzyme B and perforin levels in selectedNK
cells. Panels j and k show biological replicates for CVID (BL: n = 3, PG: n = 4, CV:
n = 4) and non-CVID controls (BL: n = 4, PG: n = 6, CV: n = 4). Two-sided t-tests were
used (*p-value < 0.05). Box plot whiskers denote minimum and maximum values
(excluding outliers), with box spanningQ1 toQ3 andhorizontal line for themedian.
BLbaseline, PGprogression, CVconvalescence. Sourcedata forpanels are provided
in the Source Data Fig. 5 file.
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myeloid compartment (Supplementary Fig. 1j) in the additional
cohort of CVID and non-CVID individuals at different stages of
SARS-CoV-2 infection. Our analysis revealed 13 distinct cell clus-
ters of classical monocytes (CD14+CD16-), one cluster of inter-
mediate monocytes (CD14+CD16+), one cluster of non-classical
monocytes (CD14-/lowCD16+), 2 clusters of dendritic cells (DCs),

and 1 cluster of plasmacytoid dendritic cells (pDCs) (Fig. 6j, k and
Supplementary Fig. 6h). Moreover, we observed a higher expres-
sion of proteins associated with antigen presentation, such as
CD80 and HLA-DR, and higher levels of PD-1, implicated in the
suppression of antiviral responses, in CVID patients compared to
non-CVID individuals at progression (Fig. 6l).
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All these results indicate that upregulation and persistent activa-
tion of specific inflammasome genes is a feature of the monocytic
compartment in COVID-19 CVID patients, although we could detect
increased caspase-1 activity only during the viral infection. In addition,
the crosstalk between monocytes and B cells through BAFF and APRIL
pathways is disrupted in CVID patients during progression. Finally,
monocytes fromCVID patients show increased antigen presenting and
costimulatorymolecules but alsohigher PD-1 levels duringSARS-CoV-2
infection than non-CVID individuals.

Discussion
Our results show a broad dysregulation of both the innate and the
adaptive immunity systems during SARS-CoV-2 infection and sub-
sequent recovery in CVID patients, which gives us a unique insight into
the effects of a viral challenge on the different immune cells in the
absence of a proper humoral response, and in patients who face the
infectionwith a pre-established immune-dysregulated background. An
important clinical feature in this context is the long-lasting positivity to
SARS-CoV-2 in most of our COVID-19 CVID patients, a characteristic
also described by others74. We hypothesized that the poor humoral
response contributes, at least in part, to the viral persistence, leading
to an altered innate and adaptive immune activation and homeostasis
even beyond infection into convalescence, as elucidated in this study.
Thus, we observed a persistent type I IFN response at convalescence in
all the immune compartments analyzed, except for monocytes. Fol-
lowing SARS-CoV-2 infection, we observed that CVID patients, com-
pared to non-CVID individuals, displayed increased expression of BCR
signaling-related genes in B cells, and persistent general activation of
naïve B cells and expansion of CD21low B cells. Additionally, TCR
signaling-related geneswere upregulated in CD4+ T cells; however, this
was combined with signs of exhaustion of the central memory com-
partment and a defective increase in Th1 response in CD4+ T cells,
leading to an even reduced abundance of Th1 cells during con-
valescence compared to non-CVID COVID-19 patients. Despite this,
there was high expression of IFNG during infection, likely due to the
highly skewed Th1 phenotype at baseline that characterizes CVID
patients54. CD8+ T cells show a strong clonal expansion of effector
memory T cells, with increased expression of cytotoxicity-related
genes. This was also preserved in NK cells despite a differentiation
defect and elevated expression of immune checkpoint molecules. In
monocytes, the upregulation of inflammasome-related genes in CVID
patients with detectable increase in caspase-1 activity was the most
remarkable finding (all summarized in Fig. 7).

Many of the transcriptional alterations detected in COVID-19CVID
patients were persistent at the convalescence stage. The sustained
immune activation including the type I IFN pathway, CD4+ T cell
exhaustion, increased clonal expansion of cytotoxic CD8+ T cells, and
inflammasome activity in monocytes has raised major concerns in the
context of SARS-CoV-2 infection as some of these changes are

associatedwith an increased acute pathology75.While this hasnot been
the observation inmost CVID patients, it is tempting to speculate how
much the persistent alterations in the context of an ineffective clear-
ance of viral infections might contribute to chronic immune dysre-
gulation in complex CVID patients, as similar immunological
alterations have been described also in these patients without overt
viral infection57,76,77. This highlights the importance of studying the
effect of disturbed humoral immunity on overall immune homeostasis
in the context of SARS-CoV-2 infection and subsequent recovery.

Early type I IFN responses are important to control viral replica-
tion, and an impaired type I IFN response, therefore, leads to severe
COVID-1975. Our results indicate that type I IFN response is very similar
in COVID-19 CVID patients compared to mild COVID-19 non-CVID
individuals at the progression stage, rendering type I IFN response
independent from an intact humoral response at this stage of the
infection. The persistent type I IFN response during convalescence
might be one of the drivers of CD4+ T cell exhaustion, increased
cytotoxic differentiation of CD8+ T cells, and the inflammasome
activity in monocytes discussed below78.

The underlying poor specific humoral responsewas confirmed by
the severely impaired anti-SARS-CoV-2 IgG and IgA antibody response,
and a poor selection of BCR repertoires associated with SARS-CoV-2
neutralizing antibodies. In association with the absence of specific
antibody response and general expansion of memory and plasma-
blasts which was observed in non-CVID individuals, we detected a
persistent activation of “naïve” and US-memory B cells evidenced by
the upregulation of BCR signaling-related genes, both activators and
inhibitors, and the persistent expansion of a CD86+ “naïve” B cell
cluster (BC#6) in some CVID patients. We detected an impaired
increase of the canonical NF-κB signaling in these cells, a phenomenon
observed already in CVID patients, independently of a known acute
viral infection79. Analyzing the activity of additional dysregulated TF
activities identified in this study could provide insights into the
defective B cell responses observed in CVIDpatients, as a reference for
future research in the field.

Reduced expression during SARS-CoV-2 infection of CXCR5, a
chemokine receptor involved in B cell migration to B cell follicles80,81

and for appropriate B cell localizationwithin the light zone of germinal
centers82,might reflect and increased extrafollicular at the expenseof a
GC responsewhichwould be underlined by the increased expansion of
CD21low B cells.

In the T cell compartment, at baseline, weobserved the previously
reported CD4+ Th1 bias in CVID patients with the CD21low phenotype
and immune dysregulation54. However, despite this bias towards Th1,
we identified a compromised Th1 polarization in CVID patients during
and especially after SARS-CoV-2 infection, potentially impacting
proper antiviral responses. Particularly, the CD4+ TCM cell compart-
ment from CVID patients was strongly affected by the infection. While
there is an expansion of the partially CCR4+CD25+ cluster TC#3, a

Fig. 6 | Persistent activation of inflammasome genes in COVID-19 CVID
monocytes. aUMAP showingmyeloid cell clusters, with cell numbers for CVID and
non-CVID 1 cohorts indicated. b UMAPs showing expression of CD14 and FCGR3A;
scale indicates expression levels. c Dot plot showing gene expression per myeloid
cluster; circle size denotes the percentage of expressing cells and colors indicate
average expression. d Heatmaps showing fold-change (baseline vs progression) of
DEGs in CVID cohort, and non-CVID 1 cohort validated with non-CVID 2 cohort,
across selected myeloid subsets. Genes are grouped by baseline expression com-
parison (equal, upregulated, or downregulated inCVID vs non-CVID). Gene clusters
(left) and cluster sizes (right) are labeled. e Table of selected significant GO cate-
gories for each cluster in d. NA indicates clusters lacking enrichment. f Heatmaps
showing fold-change (baseline vs progression/convalescence) of selected DEGs in
CVID, non-CVID1, and non-CVID2 cohorts, showing only COVID-19 mild samples;
color indicates Log2(fold-change). g SPI1 regulon enrichment score in single-cells
by NK subset. h Box plots depicting caspase-1 activity in CVID and non-CVID

samples across SARS-CoV-2 infection stages. Dots correspond to biological repli-
cates from different subjects in the CVID group (BL: n = 3, PG: n = 4, CV: n = 4) and
the non-CVID control group (BL: n = 4, PG: n = 4, CV: n = 3). i Cell-cell communica-
tion analysis of BAFF and APRIL signaling pathways during SARS-CoV-2 infection.
Sender cells and ligands in red, receiver cells and receptors in green. j UMAP
showing myeloid clusters from spectral flow cytometry analysis. k Stacked barplot
of myeloid cluster frequencies, calculated as cell counts per cluster over total live
cells. l Box plots showing the MFI of selected proteins in selected monocyte clus-
ters. Dots correspond to biological replicates fromdifferent subjects inCVID group
(BL: n = 3, PG: n = 4, CV: n = 4) and non-CVID control group (BL: n = 4, PG: n = 6, CV:
n = 4). Two-sided t-test was used (*p-value < 0.05). Box plot whiskers denote mini-
mumandmaximumvalues (excludingoutliers),with thebox spanningQ1 toQ3 and
a horizontal line for the median. BL baseline, PG progression, CV convalescence.
Source data for panels are provided in the Source Data Fig. 6 file.
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subset potentially exhibiting regulatory characteristics, during infec-
tion in non-CVID individuals, this was absent in CVID patients and
replaced by a strong shift towards TIGIT+PD-1+ T cells. In combination
with an impaired CD40/CD40L interaction during SARS-CoV-2 infec-
tion, the increased expression of immune checkpoint molecules on
CD4+ TCM cells is compatible with a dysfunctional TCM compartment
as it has beendescribed forHCV infection83 andmaypotentially impact
the proper activation of immune subsets such as B cells and mono-
cytes and the induction of a GC response. The impaired upregulation
of CD40L on CD4+ T cells from CVID patients has been previously
reported84–86.

In the CD8+ T cell compartment, we identified a partly clonal
expansion of effector memory CD8+ T cells and transcriptional and
flow cytometry analysis revealed a significant upregulation of cyto-
toxic genes like GZMB and PRF1 in CVID samples compared to non-
CVID samples. It has been described how SARS-CoV-2-triggered com-
plement activation creates an inflammatory milieu that drives differ-
entiation of CD16+ cytotoxic T cells with high immunopathogenic
potential33. Our analysis indicates that severe COVID-19 patients dis-
play a significant increase in the proportion of that pathogenic T cell
subset, which was not observed in mild COVID-19 patients with inde-
pendence of their PID status.

Similar to CD8+ T cells, we observed an increased signature of
cytotoxicity-related genes in NK cells from CVID patients. This
increased cytotoxicity signature was observed independently of the

infection status and despite impaired differentiation intomoremature
CD56dim NK cell populations. A reduction in circulatingNK cells in CVID
has been previously reported87, but the altered differentiation status
has not been well described and requires further investigation. Simi-
larly, the functionofNKcells inCVID remains tobe fully understood, as
we observed higher levels of the CD38 protein, which is associated
with NK cell activation and mediates cytotoxic responses88, on one
hand, and high levels of the inhibitory molecules TIGIT and TIM-3,
whichhavebeen associatedwith exhaustion inNK cells fromCOVID-19
patients89,90, on the other. Finally, we examined the monocyte com-
partment of CVID patients in the context of COVID-19. Altered
monocyte activation has been described in CVID patients22. Upon
SARS-CoV-2 infection, these immunodeficient individuals displayed an
enhanced and persistent gene upregulation of several components of
different inflammasomes complexes, including pyrin (MEFV), NLRP1-
CARD8 and NLRC4/IPAF-NAIP in the monocytic compartment, while
there was no clear differential expression observed for AIM2 and
NLRP3 related inflammasomes. It is only recently that the activation of
the inflammasome viaCARD8 andNLRP1 viral sensing in the context of
mammalian effector-triggered immunity (ETI) has been described for
rhinovirus, SARS-CoV2, and others91. NLRC4 activation in SARS-CoV-2
infection is reported to contribute to the upregulation of CD8692,
whichmayalsoexplain theobservedupregulationofCD80 inourCVID
patients. Conversely, the role ofmonocyte infection by SARS-CoV-2 via
anti-spike antibody-mediated phagocytosis93, which induces NLRP3

Fig. 7 |Overviewof thedysregulated immunehomeostasis inCOVID-19CVIDpatients.Schemedepicting the altered immunehomeostasis inCVIDpatients uponSARS-
CoV-2 infection and recovery. BL baseline, PG progression, CV convalescence. Created in BioRender. Ballestar, E. (2024) https://BioRender.com/j59o518.
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and AIM2 inflammasomes activation, might be less significant in
antibody-deficient patients who are unable to produce anti-spike
antibodies. Furthermore, our findings indicate a more pronounced
and sustained activation of the transcription factor PU.1 in monocytes
derived from CVID patients compared to their non-CVID counterparts
which might contribute to the increased transcriptional regulation of
the IL1B gene and inflammasome activation as previously described in
myeloid cells94,95. The proinflammatory transcriptome observed in the
myeloid compartment of COVID-19 CVID patients persisted at the
convalescent stage, although our investigation by triggering inflam-
masome activity with nigericin did not elicit increased caspase-1
activity at this time. This is compatible with a prolonged inflamma-
some priming, but not inflammasome activation. This phenomenon
might be also attributed to suboptimal activation of the CARD-
containing sensorsNLRP1, NLRC4, andCARD8 related-inflammasomes
by nigericin, allowing for other triggers in the context of a persisting
viral infection to cause a sustained inflammasome activity also during
convalescence. Future studies will determine whether poor viral
clearance in immunocompromised patients contributes to chronic
immune activation even in the absence of overt infection as it is
observed in CVID.

It is surprising that the sustained SARS-CoV-2 positivity and the
associated persistent type I IFN response, preserved or increased
cytotoxicity in NK cells and CD8+ T cells respectively, and inflamma-
some activation observed here in the COVID-19 CVID patients, did not
cause amore severe course of the disease. As this clinical outcome has
also been reported in patients with agammaglobulinemia and other
CVID patients, who similarly experienced prolonged yet not more
severe illness96–98, it remains to be understoodwhat protectedmost of
these patients from severe COVID-19. It is plausible that the expansion
and enhanced cytotoxic response in the CD8+ T cell compartment,
along with the skewed Th1 polarization (associated with higher levels
of IFN-γ), and with the observed robust type I IFN response in these
CVID patients, might have contributed to the control of the viral
infection. Nonetheless, while the defective humoral response in CVID
patients may not significantly increase the severity of COVID-19, and
might be beneficial due to the impaired production of anti-IFN auto-
antibodies observed in these patients40, it appears to elevate the risks
of both prolonged infection and possibly subsequent reinfection28.

In summary, our investigation detected a strong general impactof
the absence of humoral immunity during and subsequent to SARS-
CoV-2 infection on the innate and adaptive immune system in patients
with CVID. Our study provides valuable insights into the persistent
immune dysregulation observed in CVID patients following SARS-CoV-
2 infection, yet there are limitations that warrant consideration. The
small cohort size limits the generalizability of our findings and restricts
the statistical power needed to detect subtle immune variations across
different CVID presentations. Although longitudinal single-cell RNA-
seq and spectral flow cytometry provided a high-resolution view of
immune alterations, the results may need further validation in larger
CVID cohorts and with other viral infections to assess their specificity
and reproducibility.

Our hypothesis, displayed in Fig. 7, is that the preserved type I IFN
and cytotoxic response allows patients with agammaglobulinemia and
CVID to finally control novel viruses like SARS-CoV2 without a severe
course in most patients. The severely impaired humoral immunity
seems, however, to predispose these patients to a longer persistence
of the virus and thereby to prolonged immune stimulation, although
this needs to be confirmed in future studies with larger cohorts. This
was suggested by the persisting type I IFN response which might in
turn contribute to the observed prolonged broad T and B cell activa-
tion, increased exhaustive phenotype of CD4+ central memory T cells,
expression of cytotoxic signature in CD8+ and NK cells and inflam-
masome activation inmonocytes. The decreasing Th1 signatureduring
the course of the viral infection in patients naturally prone to type 1

immunity was remarkable. This reduction might be related to the
decreased CD40L/CD40 communication, and likely reflects the
increasing exhaustionof theCD4+ T cell compartment in the context of
chronic viral infections, as has been suggested in other viral
infections83 and also for bacterial infections in complex CVID77. These
findings open new avenues for exploring triggers and pathomechan-
isms of the immune dysregulation in complex CVID patients and
prompt further investigations in other patient cohorts with impaired
humoral immunity.

Methods
Patients and ethics approval
Human blood samples were collected from CVID patients diagnosed
according to the European society of immune deficiencies (ESID)
criteria99,100. Samples were collected before (baseline), during (pro-
gression) and after (convalescence) SARS-CoV-2 infection. They were
collected at the Medical Center-University of Freiburg, Germany. The
CVID patients in our cohort were all infected between April 2020 and
May2021, when thewild type strain and the alpha variant of SARS-CoV-
2 were predominant in Germany. SARS-CoV-2 infection diagnosis was
based on nasopharyngeal PCR. All patients included in the study had a
longstanding diagnosis of CVID (age range 32-70 years old). All CVID
patients but CVID4 belonged to the complex form of CVID with signs
of immune dysregulation listed in the Supplementary Data 1a. The
EUROclass distribution showed mostly low B cells or an expansion of
CD21low B cells as it is expected in this clinical subgroup of patients,
especially when they are older as the B cell numbers in this subgroup
often decrease. Thus, the patients were typical CVID patients. The non-
CVID donors analyzed were infected between January 2020 and April
2021, also when the wild-type strain and the alpha variant were pre-
dominant. In addition, none of the CVID patients included in the study,
nor the reference non-CVID individuals, received anti-SARS-CoV-2
vaccination (Supplementary Data 1a). At the time of infection of the
patients included in this study, no known antiviral was available, and
various drugs, including HCQ and ivermectin, were administered
under compassionate use before their efficacy or lack thereof was
demonstrated (Supplementary Data 1a). All donors received oral and
written information about the possibility that their blood would be
used for research purposes, and any questions that arose were
answered. The study was approved by the local Ethics Committees of
the participating center (507/16; 282/11). Prior to sample collection,
donors signed a consent form approved by the Ethics Committee of
their corresponding center, which adhered to the principles set out in
the WMA Declaration of Helsinki. There was no compensation to
participants.

Sample collection
PBMCs were obtained from peripheral blood by Ficoll gradient using
Lymphocyte Isolation Solution. Once PBMCs had been isolated, all
samples were cryopreserved and stored at −150 °C. In the case of the
publicly available datasets of non-CVID individuals, data from samples
at baseline, progression or convalescence stages were used but they
did not correspond with paired samples.

Single-cell capture
Cryopreserved PBMCs were thawed rapidly in a 37 °C water bath, then
slowly diluted in pre-warmed growth medium, centrifuged, resus-
pended in PBS +0.04% BSA and filtered with a 40 um Bel-art Flowmi
strainer. In order to optimize single-cell reagents and to minimize
batch effects, PBMC samples from different donors were pooled. Cells
from different donors were counted and concentration adjusted to
load 50,000 cells on the 10X-Genomics Chromium Station. In cases
where PBMCs from different donors were pooled, a fraction was taken
to isolate genomic DNA for genotyping, using Illumina InfiniumGlobal
ScreeningArray, and theother fractionwas used togenerate single-cell
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gel beads-in-emulsion (GEMs). GenomicDNAwas isolated fromPBMCs
for genotyping using a Maxwell® 16 Blood DNA Purification Kit from
Promega following the manufacturer’s instructions.

Library generation and sequencing
Libraries were constructed following the manufacturer’s protocol for
theChromiumNextGEMSingleCell V(D)J Reagent Kits v1.1 with Feature
Barcode technology for Cell Surface Protein (10X Genomics Rev E), but
with two amendments: the amount of SI primer was doubled, and the
number of PCR cycles was set at 7. Samples were sequenced using the
IlluminaNovaSeq 6000,where cellular gene expression, as well as B cell
and T cell clonality were simultaneously profiled. We targeted ∼300M
raw reads per sample (∼60,000 raw reads per cell) with cycle numbers
of 100 for read 1, 100 for read 2, and 100 for the index read.

Single-cell data alignment, quantification, and quality control
For the CVID samples, the single-cell transcriptome data were aligned
and quantified by Cell Ranger v3.1 using GRCh38 (Ensembl 93) con-
catenated to the SARS-Cov-2 genome as a reference. Pooled donor
samples were deconvolved using Souporcell101, which yielded a geno-
type variant that alloweddonor identity to bematched across samples.
Cells that could not be explainedby a single genotypewere considered
doublets and removedbefore analysis. Additionally, the two cohorts of
PBMCs from non-CVID donors were obtained from publicly available
scRNA-seq datasets of individuals without any known immunodefi-
ciency (Supplementary Data 1).

Cells with the following features were filtered out: more than 20%
mitochondrial gene content, more than 7500 counts per cell, fewer
than 500 genes, or more than 5000 genes. Additionally, genes
expressed in fewer than three cells were removed. Downstream ana-
lysis was performed using the Seurat R package102 (version 4.3.0.1).

Deconvolution of donors in pooled scRNA-seq samples
Pooled scRNA-seq samples containing cells from multiple individuals
were demultiplexed using souporcell. Briefly, the algorithm identifies
genotypic differences between single cells by variant calling aligned
reads using STAR103 and generating a VCF (Variant Call Format) file
using Freebayes (Marth 2012). Souporcell was run with the following
command for all samples (argument $1 corresponds to sample ID, and
N is the number of multiplexed individuals in a sample): /software/
singularity-v3.5.1/bin/singularity exec./souporcell.sif./souporcell_pipe-
line.py -i./cellranger302_count_$1_GRCh38-1_2_0/possorted_genome_
bam.bam -b./cellranger302_count_$1_GRCh38-1_2_0/filtered_feature_-
bc_matrix/barcodes.tsv -f./refdata-cellranger-GRCh38-1.2.0/fasta/gen-
ome.fa -t 8 -o souporcell_result_$1 -k N --skip_remap True
--common_variants./filtered_2p_1kgenomes_GRCh38.vcf, where the
last VCF file with common variants was downloaded as per instructions
in https://github.com/wheaton5/souporcell with the following
command: wget --load-cookies /tmp/cookies.txt “https://docs.google.
com/uc?export=download&confirm=$(wget-quiet-save-cookies/tmp/
cookies.txt-keep-session-cookies-no-check-certificate ‘ https://docs.
google.com/uc?export=download&id=13aebUpEKrtjliyT9rYzRijtkNJV
Uk5F_’-O-|sed-rn’s/. *confirm= ([0-9A-Za-z_]+).*/\1\n/p’)&id=13aebU-
pEKrtjliyT9rYzRijtkNJVUk5F_”-Ocommon_variants_grch38.vcf & & rm-
rf/tmp/cookies.txt.

Furthermore, to find out the exact donor identity of each donor’s
barcode cluster in souporcell results, the cells in parallel have under-
gone genotyping using Illumina Infinium Global Screening Array. In
order to unambiguously identify every individual in the pooled sam-
ples, each donor’s variants were separated from the pooled VCF and
each single-donor VCF was matched to the genotype data using
PLINK104. This software matches each souporcell sample with the
genotype data giving a concordance ratio (based on the similarity of
the variants) that allows us to distinctly identify each sample with each
donor ID.

Cell type identification and cluster annotation
Our scRNA-seq data from CVID patients (CVID cohort) was integrated
with both non-CVID 1 and non-CVID 2 cohorts independently. The
integration was performed by finding anchors between batches from
the CVID cohort, and samples from the non-CVID cohort following the
Seurat pipeline. Both objects were normalized (NormalizeData) con-
sidering counts per million (CPM), top 2000 highest variable genes
were selected based on the vst Seurat algorithm (FindVaria-
bleFeatures) and data was scaled (ScaleData). Principal component
analysis (PCA) was performed on the list of features used to integrate
the cohorts (SelectIntegrationFeatures), the first 50 principal compo-
nents (PCs) were used. Cell clustering was generated with the Louvain
algorithm (FindNeighbors, FindClusters) and then Uniform Manifold
Approximation and Projection (UMAP) was performed for visualiza-
tion, the top 50PCswere selected. VlnPlot of knowncanonicalmarkers
were used for visualization with Seurat.

Preliminary annotation for the obtained unsupervised clusters by
Seurat was assigned by manual annotation with known cell-specific
marker genes (Fig. 1b, c).

For a more detailed evaluation, subclustering analysis of B cells,
T cells, NK cells and myeloid cells was performed following the same
procedure as above. In that case the top 30 PCs were used for
dimensional reduction and clustering. Additionally, for the CVID +
non-CVID 2 cohort samples with a reduced number of cells were fil-
tered out. Similarly, cell clusters were annotated based on known cell
markers12,33,60. Common CVID cells in the two cohorts were used to
validate cell cluster annotation for reproducibility. Dotplots of selec-
ted and specific genes per cluster were visualized with Seurat.

Differential gene expression analysis
Differentially expressed genes (DEGs) were calculated with FindMar-
kers using Wilcoxon Rank Sum test and Bonferroni correction. DEGs
were calculated by comparing the different samples grouped by SARS-
CoV-2 stage (baseline, progression, or convalescence), PID status
(CVID or non-CVID), and cell cluster. In addition, we calculated DEGs
comparing CVID BL vs non-CVID BL. Only DEGs in non-CVID 1 cohort
that were validated in non-CVID 2 cohort (FDR ≤0.1 & Log2(fold
change) sign equal in both non-CVID cohorts) were considered for
downstream analysis. Only cell clusters containing a minimum of 10
cells fromat least 3 different patients in each comparisongroup (based
on PID, SARS-CoV-2 infection stage, and COVID-19 severity) were used
for downstream analysis. For scRNA-seq analysis of the B cell com-
partment, only the three CVID donors with B cells (CVID1, CVID2 and
CVID4) were used for DEGs calculation and downstream analysis. Sex-
stratified analysis was not performed due to the limited size of the
cohort.

Gene Ontology (GO) analysis
For each immune cell compartment, once DEGs were calculated
between baseline and progression in the CVID cohort or in the non-
CVID 1 cohort, we selected only those DEGs in non-CVID 1 cohort that
were also validated in non-CVID 2 cohort. Afterward, we clustered
these DEGs based on their expression profile during SARS-CoV-2
infection and grouped them in three different categories: ‘BL equal’,
comprising genes that exhibit similar expression levels in CVID and
non-CVID individuals at BL; ‘BL CVID up’, for genes that are upregu-
lated in CVID patients compared with COVID-19 controls; ‘BL CVID
down’, including genes that are downregulated in CVID patients
compared to non-CVID individuals at BL. Next, we performed gene
ontology (GO) category enrichment analysis in each of the gene clus-
ters obtained. GO terms enriched in each cluster were obtained using
the R package clusterProfiler105 (version 4.14.0). with the default
parameters. Annotation Dbi R package “org.Hs.eg.db” (version 3.20.0)
was used to map gene identifiers. All significantly enriched GO terms
are collected in Supplementary Data 4. Among the entire list of

Article https://doi.org/10.1038/s41467-024-54732-x

Nature Communications |        (2024) 15:10344 16

https://github.com/wheaton5/souporcell
https://docs.google.com/uc?export=download&confirm=$
https://docs.google.com/uc?export=download&confirm=$
https://docs.google.com/uc?export=download&id=13aebUpEKrtjliyT9rYzRijtkNJVUk5F
https://docs.google.com/uc?export=download&id=13aebUpEKrtjliyT9rYzRijtkNJVUk5F
https://docs.google.com/uc?export=download&id=13aebUpEKrtjliyT9rYzRijtkNJVUk5F
www.nature.com/naturecommunications


significantly enriched GO categories, we selected those containing
particular labels of immunological features. We selected common
labels across compartments containing the following word patterns:
“interleukin”, “interferon”, “necrosis”, “adaptive”, “inflamm”,
“toll”,”Fc”, “pattern”, “chemo”, migration”, “glycolysis”, “tricarbo”,
“fatty”, “electron”, and “oxidative phosphorylation”. Furthermore, in
the case of specific immune cell compartments, the word patterns
additionally used were: a) for B cells: “humoral”, “b cell”, “bcr”, “dif-
ferentiation” and “immuno”, b) for T cells: “t cell”, “vir”, “cyto”, “kill”,
“antigen”, “polarization”, “Th”, “differentiation” and “prolifer”, c) for
NK cells: “natural” and “kill”, and d) for myeloid cells: “present”. To
visualize thepatternof selectedGOcategories along all stages of SARS-
CoV-2 in CVID and non-CVID individuals, we used AddModuleScore
function. For score calculation, lists of genes from selected GO cate-
gories for each population were obtained from Gene Set Enrichment
Analysis (GSEA) and AmiGO Gene Ontology. In order to correct for
different cell numbers per patient group, we calculated gene expres-
sion scores in each single-cell anddepicted themeanof these scores by
PID status (CVID, non-CVID), stage (baseline, progression or con-
valescence) and cell population.

Cytotoxic and anti-fibrotic response analysis
Cytotoxic response was calculated with a list of leukocyte-mediated
cytotoxic-related genes from the GSEA (GO:0001909). Likewise, pro-
fibrotic activity was calculated with a gene list of profibrotic genes
(AREG, DUSP2, ZFP36L2, CXCR4, and TSC22D3)60. The scores were
obtained with AddModuleScore. Then, we calculated the mean of the
obtained scores per each patient, stage (baseline, progression or
convalescence) and cell population in order to correct potential dif-
ferences in cell numbers.

CD4+ T cell polarization analysis
For the T helper cell polarization Th0, Th1, Th2, and Th17 cells were
annotated within the CD4+ T cells population. TBX21, TNF, and IFNG
were used as Th1 markers; GATA3, IL5, and IL4 were used as Th2 mar-
kers and RORC and IL17F as Th17 markers. Each cell was annotated
according to the maximum cell score value obtained using AddMo-
duleScore, with a defined threshold of an average expression value
above 0.4. In case a cell did not reach the 0.4 expression threshold, it
was considered as Th0. To correct cell differences by patient, themean
and the standard error of the Th cells percentage per stage and patient
were calculated.

Transcription factor activity analysis
Inference of TF activities from expression values were calculated
using decoupleR47, a curated resource of TFs and their targets
compiled from various sources including the literature, ChIP-Seq
peaks, in silico predictions, as well as gene expression data, was
used to estimate TF activities from combined expression values of
gene targets. We calculated TF activity at a single-cell resolution
using the default parameters of run_ulm function. To address
potential variations due to different cell numbers per patient, we
conducted subsampling to ensure an equal number of cells across
patients and stages. The mean scores from significant TFs (Sup-
plementary Data 9) were visualized as a heatmap. Additionally, TF
scores of subsampled single cells for selected TFs were depicted in
box plots.

To define canonical NF-κB target genes that are specifically acti-
vated in B cells, we selected DEGs from the publicly available dataset
GSE61608 that overlap with both RELA and NFKB1 regulons. These
target genes were named as “NFKB1/RELA” regulon.

T cell receptor and B cell receptor clonality
Single-cell TCR and BCR data were processed with the Cell Ranger v3.1
vdj pipeline using GRCh38 as a reference. For BCR downstream

analysis, we calculated the percentage of VDJ usage upon SARS-CoV-2
infection by each patient and stage, and represented it as a box plot.

TCR downstream analysis was performed using scRepertoire106 R
package (version 1.10.1). For the TCR gene analysis in the CVID cohort,
the absolute frequency of clonotypes per SARS-CoV-2 infection stage
and patient was calculated by combineTCR and combineExpression,
removing any cell barcode with more than 2 immune receptor chains.
We determined expansion of clonotypes as: single equal to 1, small
between 1 and 5,mediumbetween 5 and 20, large between 20 and 100,
and hyperexpanded between 100 and 500. The relative frequency of
were calculated per SARS-CoV-2 infection stage and cluster, filtering
out the cells without TCR. Clonal diversity was also calculated using
clonalDiversity, showing the Shannon entropy index in box plots.

Pseudotime trajectory analysis
Monocle 3 package107,108 (version 1.3.1) was used to calculate pseudo-
time trajectories of myeloid and NK cells. The root nodes of the tra-
jectories were selected as Classical Monocytes and CD56bright NK cells,
respectively based on literature109. Genes differentially expressed
across the trajectory were calculated using Moran’s I test (graph_test),
only genes with positive value were selected.

Discriminant Regulon Expression Analysis (DoRothEA) database
was used to identify regulons for IRF9, STAT1, STAT2, and SPI1, using
only activator genes with A and B confidence scores. These gene sets
were taken to calculate scoreswithAddModuleScore, and then visualize
them based on the pseudotime order.

Statistical analysis
Statistical analyses were performed in R (v4.3.0). Differences in the
representation of cell types was reported using two-tailed Welch’s t
tests, comparing the proportion of cell types in each patient and
cluster between the CVID and non-CVID cohorts.

Data visualization
Unsupervised subsamplings have been performed for all splitted
UMAP visualizations, selecting the lowest number of cells per CVID
status, COVID-19 severity, and infection stage.

For data visualization the R packages Seurat, ggplot2 (version
3.5.1), monocle3, and scRepertoire have been used. In box plots,
whiskers correspond with the minimum and maximum values of the
dataset. The box is drawn from Q1 to Q3 with a horizontal line to
indicate the median.

Spectral cytometry
All antibodies used for staining are listed in SupplementaryData 7. One
million cryopreserved PBMCs were thawed rapidly in a 37 °C water
bath, then slowly diluted in pre-warmed growth medium, centrifuged,
resuspended in 3mL of PBS. The centrifugation steps after each wash
were performed for 5min at RT 300g, for viability and intra-staining
steps, and 400g, for surface staining steps.

Cells were stained for viability (Supplementary Data 7) for 15min
at RT in the dark, then washed with 3mL of FACSflow and centrifuged.
After viability staining, cells were sequentially stained by incubating
with “Post-Viability Mix” for 10mins, “Chemokines Mix” for 10mins,
and “General Master Mix” for 20mins. Then, cells were washed with
FACSflow twice. Finally, for themyeloid + B cells cytometry panel, cells
were incubated for 10mins at RT with 300μL of PBS + 1% PFA, washed
with FACSflow, incubated with “PostPFA Mix” for 10mins at RT and
washed. In parallel, for the T +NK cells cytometry panel, we used
Dako’s IntraStain (Agilent, K2311) protocol, following manufacturer’s
guides. Cells were acquired on a Cytek Aurora 5-laser spectral flow
cytometer.

Spectral cytometry analysis was performed using FlowJo v.10.10
for initial gating (viability, SSC-A/FSC-A doublets, and cell-lineage
markers), and for the UMAP and Phenograph clustering (FlowJo
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plugins), using all protein markers as input parameters. UMAP calcu-
lation was made using 10 NN (nearest neighbors), 0.1 min_dist and
2 n_components. For Phenograph calculation k = 250 was set. Down-
stream analysis was performed using flowCore (version 2.18.0),
ggplot2 (version 3.5.1), pheatmap (version 1.0.12), and ggpubr (version
0.6.0) R packages.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The chromium droplet-based scRNA-seq data in this study have been
deposited in EGAdatabase under accession code EGAD50000000543.
Interactive visualizations of single-cell transcriptomic datasets from
this study canbe accessed via https://www.immunodeficiencycellatlas.
org. Spectral flow cytometry files have been deposited in Flow-
Repository under accession code FR-FCM-Z8F8. The Whole Exome
Sequencing (WES) data are not publicly available due to ethical and
privacy regulations. Access to the data can be granted upon request by
contacting the corresponding authors. Requests for access will be
reviewed and responded to within 30 days, and any approved access
will be governed by a Data Use Agreement, which may impose specific
conditions on the permissible uses of the data. We used additional
scRNA-seq data publicly-available datasets with the following acces-
sion numbers: HRA000150, CRA002497, GSE158055, E-MTAB-10026,
GSE196456, GSE154567 and GSE175450. Source data are provided with
this paper.

Code availability
The code used in the analyses can be found at https://github.com/
BALLESTARLAB/CVID-COVID110.
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