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Hepatocellular carcinoma (HCC) is the most prevalent prima-
ry liver malignancy, encompassing a heterogeneous group of 

patients with varying prognoses (1). Managing HCC includes 
various therapeutic options, such as liver transplantation, liver 
resection, local-regional therapies, chemotherapy and immuno-
therapy (2). Currently, transarterial chemoembolization (TACE) 
is the treatment of choice for patients with unresectable HCC 
without extrahepatic spread and patent venous vessels. Artificial 
intelligence (AI) research in HCC is evolving rapidly, including 
use of models to enhance HCC detection, segmentation, and 
prognostication. Development of such models requires com-
prehensive data, including imaging and clinical variables (3–5). 
However, the majority of these studies use internal datasets that 
are not publicly available alongside the manuscripts and thus 
lack external data for model validation or performance tuning 
(6–8). Moreover, existing publicly available datasets have a lim-
ited number of cases with imaging and clinical data or tumor 
segmentations, which are crucial for AI research purposes (9,10). 
Substantial efforts are being made to provide these data to en-
hance HCC research.

Here, we present the annotated WAW-TACE dataset, which 
includes data from patients with HCC treated with TACE at the 
Medical University of Warsaw (hereafter, MUW), offering an 
important data resource for diverse researchers. This dataset con-
sists of extensive baseline clinical data, pre-TACE multiphase CT 
imaging with segmentation masks of HCC lesions and multiple 
anatomic structures, radiologic therapy response assessments, 
and crucial patient time-dependent outcome measures such as 
overall survival (OS), progression-free survival (PFS), and time 
to favorable treatment response.

Materials and Methods
This retrospective dataset includes 233 treatment-naive patients 
diagnosed with unresectable HCC and treated with TACE at 
the Central Clinical Hospital of the MUW between May 2016 
and April 2021. The study was approved by the Bioethics Com-
mittee at the MUW (decision no. AKBE/41/2024). Figure 1 
provides an overview of patient inclusion criteria, the size of the 
cohort, and the components of the dataset.

The inclusion criteria were: (a) at least one HCC lesion; (b) 
patients receiving conventional TACE treatment; (c) satisfactory 
liver function (Child-Pugh class A or B) with no evidence of met-
astatic disease; and (d) the availability of contrast-enhanced CT 
prior to the first TACE treatment.

Exclusion criteria were: (a) patients undergoing liver trans-
plantation, resection, ablation, or drug-eluting beads TACE 
before or during the follow-up period; (b) history of malignant 
neoplasms other than HCC; (c) metastatic disease; (d) large vessel 
invasion; and (e) patients with known uncontrolled functional 
or metabolic diseases that could potentially bias survival (such as 
myocardial infarction or stroke).

Clinical Data

Pre-TACE clinical assessment.— The diagnosis of HCC was 
made using imaging criteria (LR-5 according to the Liver 
Reporting Imaging and Data System [LI-RADS] version 2018) 
or pathomorphologic examination in patients without concur-
rent LR-5 observations (considered as equivocal cases, n = 9) 
(3). All patients underwent a series of baseline examinations, 
and the following variables were collected: age, sex, underlying 
etiology of chronic liver disease, number of HCC lesions, lesion 
location, lesion diameter, LI-RADS category, initial treatment 
response category, and serum levels of total bilirubin, albu-
min, creatinine, international normalized ratio, α-fetoprotein, 
and alanine transaminase. Additionally, the following clinical 
scores were calculated: Barcelona Clinic Liver Cancer stage, 
Child-Pugh score, hepatoma arterial-embolization prognostic 
score (11), modified hepatoma arterial embolization prognostic 
II  score (12), six and twelve score (13), and albumin-bilirubin 
transarterial embolization score (14).

TACE technique and postprocedural follow-up.— All pa-
tients underwent standard conventional TACE procedures. 
Target HCC-feeding vessels were catheterized using a mi-
crocatheter, and an injection of 20–40 mL of a lipiodol and 
doxorubicin mixture in a 1:1 ratio was performed, followed 
by gelfoam injection until arterial flow stasis was observed. 
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The TACE was repeated after 4 to 6 weeks, as necessary and 
feasible. Typically, a standard embolization cycle included two 
(or three, if warranted) TACE sessions, followed by a subse-
quent CT assessment. Patients showing a favorable treatment 
response without viable tumor tissue underwent follow-up 
via serial CT or MRI and serum α-fetoprotein concentration 
measurements. The detection of viable tumor tissue during 
follow-up prompted a multidisciplinary team meeting to de-
termine further treatment options.

The index day was set as the date of the first TACE. The 
end of the follow-up period was specified as the time of death 
or the last clinical follow-up. For the subgroup demonstrat-
ing a LI-RADS nonviable treatment response, the PFS was 
calculated as the duration between achieving a nonviable 
response and the reported progression date. Progression was 
determined by reevaluating post-TACE images (CT or MRI 
based on availability) for the presence of disease recurrence 
(according to LI-RADS guidelines) (3).

CT Imaging and Data Processing

CT protocol.— All patients underwent multiphasic CT within 
90 days before the initial TACE cycle. A detailed list of informa-
tion regarding CT scanners, acquisition parameters, and avail-
able examination phases is presented in Table 1.

Volume of interest segmentation.— The exact section thick-
nesses for each individual study is reported in a separate col-
umn in the accompanying ct_hcc_metadata file. Each CT 
examination underwent de-identification and was converted 
to NIfTI format. No additional filtering or CT image normal-
ization was performed.

The segmentation masks for internal organs were generated 
using the nnU-Net deep learning model TotalSegmentator 
(15,16). This algorithm enables the unsupervised segmentation 
of volumes of interest (VOIs), such as the liver, spleen, and kid-
neys, among others. For all segmentation tasks, we utilized the 
pretrained model. No additional training was conducted, as we 
employed the default hyperparameters as previously described by 
Wasserthal et al (16). In our dataset, native, arterial, portal, and 
delayed phases were separately segmented, each with 104 VOIs.

Additionally, for the segmentation of HCC lesions, the To-
talSegmentator extension was employed. These VOIs were man-
ually corrected in Slicer 3D software (version 5.4.0) by a radiol-
ogist (K.B., with 6 years of overall experience, including 2 years 
specifically in medical image segmentation) (17). Two indepen-
dent radiologists conducted validations and made the necessary 
modifications (K.K. and K.L., with 14 and 11 years of experience 
in TACE and abdominal radiology, respectively). All observers 
adhered to a uniform protocol for HCC segmentation, which 
involved outlining the tumor boundaries on subsequent axial CT 
sections. These were then connected using the “fill between sec-
tions” option with subsequent mask’s smoothing using a 3-mm 
Gaussian filter.

Abbreviations
AI = artificial intelligence, HCC = hepatocellular carcinoma, LI-
RADS = Liver Reporting Imaging and Data System, OS = overall 
survival, PFS = progression-free survival, TACE = transarterial 
chemoembolization, VOI = volume of interest

Summary
The WAW-TACE dataset contains baseline multiphase abdominal 
CT images from 233 treatment-naive patients with hepatocellular 
carcinoma treated with transarterial chemoembolization and includes 
377 handcrafted liver tumor masks, automated segmentations of mul-
tiple internal organs, extracted radiomics features, and corresponding 
extensive clinical data. The dataset can be accessed at https://zenodo.org/
records/12741586.
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Liver, Oncology, Hepatocellular Carcinoma

Figure 1: Diagram of patient flowchart and dataset specifications. HCC = hepatocellular carcinoma, TACE = transarterial chemoembolization, VOI = 
volume of interest.
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Feature extraction.— We used PyRadiomics (version 3.0.1) 
to extract features categorized into classes, ensuring adher-
ence to the Imaging Biomarker Standardization Initiative (18). 
Importantly, all radiomics features were extracted from raw 
masks generated by TotalSegmentator, without manual VOI 
correction. For each VOI in the native, late arterial, portal ve-
nous, and delayed CT examination phases, there were 32 fea-
tures belonging to two groups: shape-based features (n = 14) 
and first-order statistics (n = 18). Furthermore, from the largest 
liver tumor VOI, an additional 75 gray-level radiomics features 
were extracted, including 24 gray-level co-occurrence matrix; 
14 gray-level dependence matrix; 16 gray-level size zone matrix; 
16 gray-level run length matrix; and five neighboring gray-tone 
difference matrix.

Results
The WAT-TACE dataset can be downloaded (https://zenodo.
org/records/12741586) and includes four major components, as 
outlined in Figure 1: clinical data, imaging, segmentations, and 
radiomics features.

Clinical Data
Clinical variables, including outcome measures for the patients, 
are presented in tabular format in a separate file (“clinical_data”). 
Table S1 presents all headers from the clinical data spreadsheet 
and variables’ definitions. The baseline characteristics of the 233 
patients (median age, 66 years (range: 28–86 years); 185 male, 
48 female) included in the dataset are summarized in Table 2. 
The median OS was 27.3 months, with 65 censored patients 
(27.9%) and a minimum follow-up duration of 33.8 months 
for surviving patients. The median PFS was 17.7 months, with 
60 observed events and 55 censored patients.

Table 1: Details of CT Imaging Phases, Scanners, and Acquisition Parameters

Variable

A: CT Imaging Phase

Study Phase Acquisition Time No. of Series
Native (P0) No contrast material 200
Late Arterial (P1) 15–30 seconds (after contrast material bolus) 230
Portal Venous (P2) 60–75 seconds 231
Delayed (P3) 4–5 minutes 193

B: CT Scanner

CT System Manufacturer and Location No. of Examinations
Optima CT600 General Electric HealthCare 160
Somatom Xceed Siemens Healthcare  33
Ingenuity Core Philips Healthcare 20
Aquilion One Toshiba Medical Systems 20

C: CT Acquisition Parameters

CT Parameter Value  
Section thickness per phase (median) 1.5 mm for arterial; 1.5 mm for portal; 1.25 mm for delayed
Axial dimension Matrix of 512 × 512 (for 99% of CT series; n = 4 series were 768 × 768) …
Tube voltage 120 kVp (for 214/233 CT examinations), 100–140 kVp for remaining …
Tube current Automated modulation ranging from 250 to 300 mA …
Reconstruction algorithm Standard soft tissue kernel …

Table 2: Baseline Characteristics of Patients Included in 
the WAW-TACE Dataset

Variable No. of Patients (n = 233)

Age (y) 66 (28–86)
Sex
 Female 48 (20.6)
 Male 185 (79.4)
Etiology of chronic liver disease
 Viral 114 (48.9)
 Alcoholic 86 (36.9)
 Other 33 (14.2)
Child-Turcotte-Pugh class
 A 207 (88.8)
 B 26 (11.2)
No. of lesions
 1 149 (63.9)
 2 48 (20.6)
 3 21 (9.0)
 >3 15 (6.4)
Lesion size
 <3 cm 57 (24.5)
 3–5 cm 76 (32.6)
 >5 cm 100 (42.9)
No. of TACE procedures
 1 21 (9.0)
 2 117 (50.2)
 3 30 (12.9)
 >3 93 (39.9)

Note.—Data are numbers of patients with percentages in paren-
theses, or medians with ranges in parentheses. TACE = transarte-
rial chemoembolization.

http://radiology-ai.rsna.org
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Imaging
In total, the following numbers of CT examinations for each 
study phase are available in files “ct_scans”: precontrast phase (n 
= 200), late arterial phase (n = 230), portal venous phase (n = 
231), and delayed phase (n = 193).

Segmentations
The WAW-TACE dataset collectively contains 377 HCC lesion 
segmentations and 104 organ VOIs per patient, available in files 
“tumor_masks” and “organ_masks,” respectively. A representa-
tive set of segmented images from a single WAW-TACE patient 
is presented in Figure 2. Additional examples of segmented im-
ages are presented in Figure 3.

Radiomics Features
The extraction process yielded 3339 radiomic features collec-
tively for all VOIs per patient. These features are listed in tabu-
lar form in the “radiomics_data” file.

Discussion
In the expanding era of AI-based research in oncologic imaging, 
there is a growing demand for extensive data to facilitate the de-
velopment of prediction models and enhance their generalizabil-
ity. The WAW-TACE dataset substantially expands the number of 
publicly accessible annotated HCC lesions imaged using CT, facil-
itating clinical as well as AI research aimed at predicting time-de-
pendent treatment outcomes. The comprehensive nature of this 
dataset positions it as an important resource for various researchers.

Our collection adds a substantial amount of annotated data to 
another recently published TACE dataset (9). In comparison, we 
also include patients with multiple HCC lesions, not just single 
tumors. This approach reflects more closely the clinical context 
of TACE treatments. Moreover, the inclusion of multiphase CT 
examinations, multiple organ segmentation masks, radiomics fea-
tures, and comprehensive clinical data combined with time-de-
pendent outcome measures provides a new opportunity for re-
searchers to explore the potential use of AI models. The dataset 
facilitates robust model training by providing a large, diverse 
collection of annotated HCC lesions, which is required for devel-
oping AI models that can accurately detect and segment tumors. 
These models can then be used to improve clinical decision-mak-
ing by providing precise and reliable predictions about disease 
progression, response to treatments such as TACE, or survival. For 
example, a part of this dataset was used in a recent study where we 
used radiomics for TACE outcome prediction, relying solely on 
automated segmentations (19). Furthermore, the WAW-TACE 
dataset allows for interinstitutional comparisons and cross-vali-
dation, enabling researchers from various institutions to evalu-
ate and test their models against current standards. This can lead 
to enhanced model performance and generalizability, as models 
trained and tested on diverse datasets are more likely to perform 
well across patient populations and imaging conditions. In addi-
tion, the manually created HCC segmentation masks can be used 
to investigate and tailor AI algorithms for tumor segmentation 
and classification. The dataset reflects the complexity of clinical 
scenarios by including a variety of cases with multiple lesions, 
allowing for the development of AI tools capable of addressing 

Figure 2: Visual representations of sample axial contrast-enhanced CT images and segmentations: (A) arterial phase, (B) por-
tal venous phase, (C) delayed phase, and (D) segmented tumor with multiple organ masks, respectively.

http://radiology-ai.rsna.org
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real-world challenges in oncologic imaging. Finally, the dataset’s 
extensive clinical data can aid research into personalized medi-
cine. The models trained on this dataset can be used to predict 
individual patient outcomes by optimizing treatment plans based 
on tumor characteristics and patient profiles.

There are several limitations worth mentioning. First, only 
baseline imaging is available in the dataset. Informative image 
features that may appear on postprocedural scans, or through the 
assessment of changes over time, cannot be evaluated with this 
dataset. Second, not all patients included have all CT phase series 
available, leading to some missing image data. Furthermore, the 
imaging data comes from different CT systems and the median 
section thicknesses varied between patients, which should be em-
phasized when using the data for radiomics analysis. Notably, no 
specific CT image preprocessing or resampling was performed 
prior to radiomics feature extraction. Finally, the most reliable 
study end point was OS, recorded objectively using the national 
government database. However, TACE treatment response as-
sessments and PFS were more subjective, relying on the reeval-
uation of post-TACE imaging by one author (K.B.). The pro-
cess involved using the LI-RADS treatment response algorithm, 
cross-referencing imaging with clinical data, radiology reports, 
and laboratory data. Despite these measures, the subjective nature 
of response evaluation may introduce some variability.

In summary, this interdisciplinary resource is an important 
contribution to HCC research and facilitates use of AI in medical 
imaging research aimed at enhancing patient outcomes.
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