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Abstract: Complexity management in manufacturing systems is crucial for the economic growth
of countries, as efficient management can significantly improve business performance and ensure
competitiveness in globalized markets. This research aims to develop a complexity management
configurator that identifies critical effects, proposes solution strategies, and optimizes processes
through a Lean Production and Industry 4.0 approach. To this end, its systematic design integrates
the key stages of management: planning, organization, management and control. The research was
structured as an applied study, implementing three main panels: general information, application of
a diagnostic tool at each stage of the administrative process, and results focused on measuring the
complexity and implementation of advanced technological solutions. The tool enables manufacturing
companies not only to diagnose sources of complexity, but also to optimize their operations by
adopting Lean methodologies and Industry 4.0 technologies. The findings show how the integration
of these strategies contributes to reducing both static and dynamic complexity, resulting in greater op-
erational efficiency and improved performance in an increasingly competitive industrial environment.
In conclusion, the proposed configurator is positioned as a key tool to improve the competitiveness
and sustainability of manufacturing companies by offering a comprehensive approach to complexity
management that is tailored to the demands of modern industry.

Keywords: complexity; entropic; configurator; management; manufacturing; system

1. Introduction

The economic growth of countries depends on an adequate management of com-
plexity in manufacturing systems [1,2], as this is important to direct strategies towards a
better corporate performance. Studies on complexity are becoming more notorious and
frequent [3,4], because decision makers seek to manage it, in order to have a competitive
impact in complex and globalized markets [5]. According to [6], complexity depends on its
temporal variability, due to industry and company specific effects, without leaving aside
the components that will interact in the development of manufacturing [7]. Complexity
increases when the system faces a series of strategies nested with the internal and external
environment of the company [8].

According to [9], an increase in complexity in manufacturing systems negatively
affects all aspects of manufacturing including operational, tactical and strategic. They are
also linked to the occurrence of machine failures, quality problems, material failures and
people absenteeism [10]. In this context, the authors of Ref. [11] believe that a company
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must manage the complexity of its system in order to keep operational costs low. The
studies of [12] state that 25% of the total costs of manufacturing companies are due to the
complexity within the process and the different characteristics associated with the product.
This makes it necessary to have methods and tools for proper management [13] and correct
application of strategies for analysis and understanding [14].

Several methods for managing complexity have been developed in the literature, from
aerospace domain [15], in mechatronic systems [16,17], in automotive design [18], in the
context of project management [19–23], in circular economy [24], and to the construction
sector [25,26]. However, these methods have not yet been fully adopted by the manufactur-
ing systems’ engineering community [27]. Moreover, the industrial methods used today
to assess complexity are not accurate, as they are largely subjective and non-systemic [28].
According to [29], current manufacturing is still based on traditional methods and can
hardly cope with the increasing complexity of systems.

Complexity in manufacturing systems can be addressed from various perspectives,
as evidenced by recent studies in this field. For example, Ref. [30] proposes a three-step
approach for operational planning in complex manufacturing systems, which highlights
the need for decision support tools that integrate multiple variables and dynamics of the
production process. On the other hand, Ref. [31] presents a hybrid digital model that
enables the continuous evolution of large manufacturing systems, which is crucial to adapt
to market changes and customization demands. In addition, research by [32] on sustainable
production planning using predictive model control demonstrates how complexity can
be managed to achieve sustainability goals by integrating advanced modeling techniques.
Finally, the digital twin approach to short-term production planning optimization, as
discussed in the work of [33], illustrates how emerging technologies can address complexity
through simulation and real-time analytics. Taken together, this research underscores that
complexity in manufacturing systems is not only a challenge, but also an opportunity to
innovate and improve operational efficiency.

From another internal perspective in manufacturing systems, the scientific and aca-
demic community has paid more attention to methodologies and models related to the
configuration, structure and variation by products and processes [34–42], leaving aside the
complexity from an administrative or organizational scope [43].

Managing complexity in manufacturing systems presents particular challenges in
different geographical contexts. In developing countries, such as Latin America, the
adoption of Industry 4.0 technologies to address complexity is limited by barriers such
as lack of infrastructure, limited access to capital and the skills gap. Ref. [44] points out
that in this region there is a growing interest in models that allow reducing complexity in
operations, product deterioration and labor accidents, efficiently using 4.0 technologies.
On the other hand, in developed countries, highly complex manufacturing, characterized
by long cycle times, unique production paths and high cross-functional coordination, is
common in sectors such as aerospace. A report by [45] highlights that these manufacturers
face the challenge of rapidly ramping up production to record levels, with more complex
products and a less experienced workforce. In Europe, the European Union has prioritized
the digitalization of industry through initiatives such as Industry 4.0. Ref. [46] points out
that the ability to adopt advanced technologies depends on the degree of standardization
and automation of production processes, as well as the ability of companies to successfully
implement monitoring, optimization and autonomous management initiatives. In summary,
while managing complexity in manufacturing systems is a global challenge, approaches
and barriers vary by geographic context. Effectively addressing complexity will require
strategies tailored to the specific needs and capabilities of each region.

The main contributions of this work are the following:

(1) To present a method for complexity management in manufacturing systems, which
allows the identification of the effects, solution strategies and improvement methods
from a Lean Production and Industry 4.0 approach.
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(2) To provide a systematic configurator that allows the measurement of complexity in
the different administrative stages, consistent with modern methods.

(3) To provide a new mechanism for measuring complexity in an entropic way for manu-
facturing systems, based on questionnaire-type instruments.

The remainder of the paper is organized as follows. Section 2 provides a review of the
literature. Section 3 describes and proposes the methods and materials. Section 4 presents
the description and characteristics of the configurator. Section 5 details the results obtained.
Section 6 is a discussion of the findings and the results obtained. Section 7 presents the
conclusions and possible future studies.

2. Literature Review

The meaning of the term “complexity” consulted in the Cambridge Dictionary states
that something is “complex” when it is difficult to understand or find an answer to because
it has many different parts [47]. According to the Oxford Learner’s Dictionary of Academic
English [48], complexity is “the state of being made up of many parts; the state of being
difficult to understand”, complex is “made up of many different things or parts that
are connected; difficult to understand”, and “complicated” is a synonym for “complex”.
According to [49,50], complexity is a new science or area of knowledge, which is studied
in different scientific areas, acquiring new conceptualizations and developing approaches
relative to each of these areas or knowledge. In the literature review there is no universal
definition, since complexity is difficult to define precisely. A genesis definition appears in
the works of [51] where a complex system is one that has a large number of parts where
the relationships are not simple, they are subject to the volume of elements that exist in
the system [52], and are proportional to the amount of information necessary for their
interaction [53], making it heterogeneous type of environment [54]. According to [55],
complexity is the opposite of simplicity. Likewise, Ref. [56] states that complexity refers to
large networks of components without central control and simple rules of operation, which
give rise to complex collective behavior of information. Similarly, [57] states that it depends
on the size of the system, randomness, asymmetry and constraints.

In the literature, Ref. [58] analyzed the term complexity by focusing on the behavior
of multiple interrelated components. Similarly, Ref. [59] did the same but focused on
instability, variety and degree of interdependence. However, Ref. [60] states that the com-
plexity of a manufacturing system increases not only with the volume of components, parts,
pieces or subassemblies, but also with the quantities of tasks, activities or operations, even
when materials do not meet specifications of time, quantity and quality, when absenteeism
of people or when machines or equipment fail [34]. According to Aram and Noble [61],
complexity is the constant struggle between inactivity and disorder.

In the literature, different types of complexity in manufacturing systems are identified.
According to [62], depending on the origin, it can be internal and external, where the
internal refers to the variables between the flows within the manufacturing, and the
external depends on the variables between the agents of the supply chain [63]. From
another perspective, [64,65] state that it can be static (structural) and dynamic (operational),
where static represents the time-independent characteristics of a manufacturing system
and focuses on the types of subsystems and the strength of interconnections [66] and
dynamic represents the operational characteristics of the system and involves temporal
and random aspects [67]. For adequate management, it is necessary to identify, measure,
analyze and control it [36]; for this purpose, there are qualitative methods that depend on
the perception of the people involved in the process and quantitative methods based on
data, verification and analysis. There are different approaches and methods to measure
complexity, among which are nonlinear dynamics, information theory (entropic), hybrid
methods, enumeration and questionnaires. Similarly, there are different types of models
classified from a conceptual, theoretical and mathematical perspective [36]. According
to [40], the measurement of complexity in manufacturing systems is a metric that serves as
a parameter to establish improvement plans, in turn determining that systems with high
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complexity present more problems than systems with low complexity. In recent research,
works that stand out are [40,41] who propose a new hybrid and entropic metric considering
the current deficiencies and gaps found in the literature.

Complexity control depends on solution strategies and methods. Ref. [68] lists solution
techniques for identifying factors involved in system complexity, focused on product and
process redesign, implementation of digital platforms, collaborative planning, adoption
of new technologies and processes, and process automation. Similarly, Ref. [69] proposes
the use of computer and technological resources. More recently, in [34], they list some
management methodologies of Lean Manufacturing, compiled from [70–72].

This breadth of review provides a solid foundation for understanding complexity in
manufacturing systems, highlighting both existing methodologies and relevant technolo-
gies. However, it is crucial to recognize the limitations in previous research and how these
limitations have influenced the evolution of approaches to managing complexity.

Despite significant advances in understanding complexity, many previous studies have
tended to address complexity in a fragmented manner, focusing on specific aspects, such as
internal versus external complexity, or static versus dynamic [16–22]. This segmentation,
while useful for detailed analysis, limits the ability to provide a holistic view of how these
dimensions interact in a complex manufacturing environment. In addition, much research
focuses on identifying and measuring complexity but lacks a robust approach to its effective
management and control [23,24]. Traditional metrics often fail to consider the dynamics
and nonlinear nature of complex systems, resulting in management approaches that are
insufficient to address real challenges in real time.

A critical limitation in the existing literature is the lack of integration between qual-
itative and quantitative methodologies. Although advanced approaches such as hybrid
and entropic models exist [25,26], these have not been widely adopted or validated in a
variety of industrial settings, leaving a gap in the practical applicability of these methods.
Furthermore, many of the current proposals do not adequately address the interplay be-
tween complexity and other key factors, such as sustainability and resilience, which are
increasingly important in modern manufacturing.

Therefore, the present research proposes a new configurator that seeks to overcome
these limitations by offering a more holistic approach to the identification, measurement,
analysis and control of complexity. This configurator not only incorporates state-of-the-art
methodologies, but also integrates them in a way that allows for practical and effective
application in real industrial environments. By combining qualitative and quantitative
methods, the approach provides a more accurate and contextualized assessment of com-
plexity, addressing the shortcomings observed in previous studies.

Furthermore, it is essential to highlight that the research fills critical gaps in the
existing literature by providing a framework for complexity management that is adaptable
to different industrial contexts, including scenarios with high variability and demand for
customization. This framework is particularly relevant in the era of Industry 4.0, where
interconnectedness and automation demand new ways of dealing with complexity that go
beyond traditional methodologies. The above described becomes a favorable scenario for
the development of configured mechanisms that allow the identification, measurement,
analysis and control of complexity in manufacturing systems.

3. Materials and Methods

The goal of the configurator of development is to enable manufacturing company
executives to make accurate decisions to manage complexity tailored to their needs (see
Figure 1).

The method used during this research consisted of the development of a configurator,
composed of three (3) main panels. First, data entered by the user are provided (see
Section 4.1). Secondly, the diagnostic instrument applied to obtain information at each
stage of the administrative process is filled in (see Section 4.2). Thirdly, a mechanism is
proposed for measuring complexity, identifying effects, solution strategies and defining
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methodologies and modern technologies, the relationship of these elements being vital for
an analysis (see Section 4.3). Figure 2 shows a view of the configurator architecture.
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4. Configurator for Complexity Management

This section offers a complexity management system for manufacturing companies,
consisting of diagnostic aspects, measurement, analysis and solution proposals. Method-
ologically, each of the panels described in the materials and methods section are described.

4.1. General Information

The Python programmer is responsible for developing this application of complexity
management in manufacturing systems, allowing demonstration of techniques and skills
essential for the success of the project. For its implementation, a computer with an 8 GB
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RAM, 11th Gen Intel(R) Core(TM) i5 processor and a 64-bit operating system running
Windows 11 with Python 3.11.4 installed on the system was required. In the first panel of
the welcome window, the tool allows the user to fill in the fields in an established order,
avoiding inconsistencies and conflicts. Initially the program requests information regarding
the company name, followed by the name of the manager or executive of the company and
finally the department to which he/she belongs. This information is stored in a spreadsheet
for its registration and later relation with the following panels and elements.

4.2. Stages in the Administrative Process

According to [73], production management is the process of planning, organizing,
directing and controlling the resources and activities related to the production of goods
and services of an organization to achieve its strategic and operational objectives. On the
other hand [74], their definition states that it includes capacity planning, inventory man-
agement, production scheduling, quality control and other activities aimed at optimizing
the efficiency and effectiveness of production operations. According to [75], it involves
making decisions about resource allocation, shaping production processes and implement-
ing measures for improvement. The above supports and provides a support in the initial
construction of the second panel of the configurator, associated with the stages of the admin-
istrative process: (i) Planning [76–79], (ii) Organization [80–83], (iii) Management [84–87],
and (iv) Control [88–90].

In this panel, a survey-type diagnostic instrument is applied, taking into account
several variables identified in the literature (see Table 1).

Table 1. Variables and relevance identified in the literature.

Stage Variables and Relevance

Planning

P1-Market demand [91]: defines production levels, impacting planning and operational efficiency.
P2-Production capacity [92]: determines maximum volume, influencing investments and resources.
P3-Available material resources [93]: critical factor in inventory and supply planning.
P4-Human resources [94]: key to efficiency and quality in the production process.
P5-Technology and equipment [95]: ensure efficiency and innovation.
P6-Demand forecasts [96]: align production with expectations, avoiding overproduction or shortages.
P7-Product manufactured [97]: influences processes, design and selection of technologies.
P8-Parts of the product [98]: ensure available components, guaranteeing continuity in production.
P9-Plant or facilities [99]: impact workflows and optimize production capacity.
P10-Manufacturing process [100]: defines efficiency and quality, influencing times and flexibility.

Organization

O1-Organizational structure [101]: influences decisions, responsibilities and operational efficiency.
O2-Design of production processes [102]: affects efficiency and response to market demand.
O3-Distribution of human and material resources [103]: optimizes resources and reduces costs.
O4-Definition of workflows and operating procedures [104]: establishes efficient operations.
O5-Order of customer order [105]: impacts scheduling and fulfillment of timely requirements.
O6-Customer relationship [106]: influences satisfaction, loyalty and company reputation.
O7-Production sequencing [107]: affects efficiency, lead times and on-time delivery.
O8-Production scheduling technologies [108]: optimizes scheduling, reducing downtime and errors.
O9-Production scheduling model [109]: balances workload and improves operational efficiency.
O10-Interdepartmental coordination [110]: improves communication, and collaboration.

Management

M1-Production team leadership and management [111]: influences motivation and performance.
M2-Personnel motivation and development [112]: key to productivity and job satisfaction.
M3-Internal communication [113]: coordinates teams and ensures timely delivery of information.
M4-External communication [114]: maintains strong relationships.
M5-Decision making [115]: improves agility and accuracy in addressing opportunities.
M6-Risk identification and management [116]: mitigates risk by ensuring operational continuity.
M7-Quality management [117]: ensures customer satisfaction and reputation through standards.
M8-Knowledge management [118]: facilitates innovation and continuous improvement.
M9-Strategic planning [119]: aligns daily operations with strategic objectives.
M10-Innovation and continuous improvement [120]: ensures constant adaptation.
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Table 1. Cont.

Stage Variables and Relevance

Control

C1-Tracking compliance with production plans [121]: aligns operations with objectives.
C2-Monitoring resource utilization [122]: avoids waste and improves operational sustainability.
C3-Evaluating personnel performance [123]: provides feedback, improving productivity and morale.
C4-Quality control at all stages of the process [124]: ensures compliance with standards.
C5-Analyzing deviations between plan and execution [125]: identifies and corrects deviations.
C6-Inventory and stock management [126]: optimizes stock, reducing costs.
C7-Production cost tracking [127]: control costs, ensuring profitability and informed decisions.
C8-Estimated production time [128]: facilitates compliance with deadlines, improving delivery.
C9-Key performance indicators [129]: evaluates performance, allowing quick adjustments.
C10-Setting quality standards [130]: defines clear criteria, ensuring compliance and satisfaction.

The variable selection process begins with the identification of relevant scientific
references in each of the stages (see Table 1), ensuring that all of them have a theoretical
and practical basis in the industry. Consequently, the interrelationship between them
is considered, allowing a holistic analysis. Figure 3 visually shows the connections and
relationships between the variables.
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Given the above, 40 variables related to the stages of the administrative process
were identified. The instrument applied to manage complexity is a questionnaire type, a
technique of great interest for researchers to test the impact of complexity in manufacturing
systems [131], measure the impact of complexity on business performance [63], investigate
the effects of complexity in the supply chain [132], and statistically analyze the effects by
productive factors of complexity in manufacturing systems [35]. For its development, a
rating scale was applied, consisting of 3 levels (Low-Medium-High), and with scores (1-3-5),
respectively (see Figure 4). According to [133], an instrument is valid if it measures what it
is supposed to measure, and in a context of implementation in various economic sectors,
the reliability and consistency of the application was determined. For this purpose, a group
of university academics, SME managers and experts or consultants from the industrial
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sector were interviewed. The Lawshe (1975) model was systematically used, determined
by expert consensus, based on aspects to be evaluated such as structure, relevance and
wording [134]. The results of the validity coefficient (CVR) in the 40 declared variables
represent a value greater than or equal to 0.75, so that each of the items were approved.
Another statistical test developed is the Cronbach’s Alpha consistency analysis, taking into
account the results of six samples in subsectors such as metal-mechanic, plastic, chemical,
wood, lithographic and food; the statistic is equal to 0.9436, being higher than 0.7, so
the instrument is considered reliable and consistent. Similarly, the systematic test–retest
method was applied, considering different points in time, where the Pearson correlation
coefficient between the scores is equal to 0.8245, reflecting a very high positive correlation,
thus assuring the goodness of the instrument’s results.
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4.3. Final Results

This panel comprises four (4) important aspects that provide results and support deci-
sion making, it is worth mentioning that they should be developed sequentially: (i) Com-
plexity measurement; (ii) Complexity effects; (iii) Solution strategies and (iv) Methodologies
and technologies.

4.3.1. Complexity Measurement

Shannon’s entropy, developed for information theory, measures the uncertainty or
unpredictability of a system, this metric helps to quantify the complexity of processes,
variations in production, and uncertainty in demand and resources [135]. Entropy H(X) of
a random variable X representing the states of a process is defined as follows:

H(X) = −
n

∑
i=1

p(xi)log2 p(xi) (1)



Entropy 2024, 26, 747 9 of 30

where p(xi) is the probability of outcomes of a system being in state i, (i = 1, . . . , n), p(xi) ≥ 0,
∑n

i=1 p(xi) and log2(0) = 0.
Authors such as [136–138], have made significant contributions to the field of com-

plexity measurement in manufacturing systems using concepts based on Shannon entropy.
Their work includes metrics for a measure of static complexity (Equation (2)) and dynamic
complexity (Equation (3)).

CStatic(Cs) = −
M

∑
i=1

N

∑
j=1

Pijlog2Pij (2)

CDynamic(Cd) = −(1 − P)
M

∑
i=1

N

∑
j=1

Pijlog2Pij (3)

Subsequently, [139] proposes a modified approach for a complexity measure providing
an additional element to the formulas for static (Equation (4)) and dynamic complexity
(Equation (5)) related to dij which is the value of the deviation from the expected value for
resource i in state j.

CStatic(Cs) = −
M

∑
i=1

N

∑
j=1

[
log2Pij

]
dijPij (4)

CDynamic(Cd) = −(1 − P)
M

∑
i=1

N

∑
j=1

[
log2Pij

]
dijPij (5)

Consequently, Ref. [40] proposes a modified and updated approach to measure com-
plexity in manufacturing systems from an entropic viewpoint, an innovative element of
the authors’ recent work. They consider three aspects: (i) the determination of levels and
class amplitude in a quantitative way depending on the amount of data; (ii) calculation
of weights (Wij) depending on the number of intervals; and (iii) assignment of weights
taking into account that the farther away from the control state, the greater the devia-
tion and therefore the greater the weight. Given the above, Equations (6) and (7) are
formulated, which represent the metrics for the entropic measurement of complexity in
manufacturing systems.

CStatic(Cs) = −
M

∑
i=1

N

∑
j=1

[
log2Pij

]
WijdijPij (6)

CDynamic(Cd) = −(1 − P)
M

∑
i=1

N

∑
j=1

[
log2Pij

]
WijdijPij (7)

where,

P: Probability in the control state.
(1 − P): Probability in out-of-control state.
Pij: Probability of resource i, i = 1, . . . , M being in state j, j = 1, . . . , N.
dij: Absolute deviation from the expected results for the condition.
Wij: Weighting of each interval.
M: Number of resources.
N: Number of possible states.

The measures for the calculation of complexity in a manufacturing system are mea-
sured static (Cs), considering the structure and the degree of difficulty for its management
and control, and dynamic (Cd), analyzing its behavior over time. The unit of measurement
is given in “bits” which corresponds to the amount of information required to make a binary
choice [140]. Finally, the calculations are recorded and saved in an Excel file, which allows
the generation of a comparative graph for interpretation and analysis (see Figure 5). This
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process determines the stage of the administrative process with greater or lesser complexity,
providing priority bases for decision making.
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4.3.2. Effects of Complexity

To identify the effects of complexity, an interview technique and surveys to qualified
and experienced personnel were used, considering the variables and stages identified. The
configurator proposes a list composed of forty (40) effects, which are selected according to
the selected stage with greater complexity and variables with greater relevance. Table 2
below shows the identification of the effects, which will provide relevant information for
the following stages of solution strategies, methodologies and improvement technologies.

Table 2. Effects of complexity in manufacturing systems.

Effects Planning Organization Management Control

E1 High uncertainty
of demand

High difficulty in
decision making

Lack of effective
leadership

Lack of follow up to
established plans

E2 Excess of
installed capacity Bottlenecks and inefficiencies Lack of motivational

initiatives
Lack of

monitoring

E3 High volume of
raw materials

Imbalance in
resource allocation

Insufficient
supervision

Infrequent
evaluations

E4 High skills in the
workforce

Lack of standardized
procedures

Inefficiency in
problem solving

Poor
inspections

E5
High obsolescence of

technology
and equipment

Changes in customer
requirements

Poor
communication

Lack of variance
analysis

E6 High variation in
demand projection High number of customers Lack of resources and

training opportunities
Excess

inventory

E7 High number of
product SKUs

Difficulty in
scheduling orders

Lack of attention to quality
and safety standards

High financial pressure
due to high

operating costs

E8
High number of

product components
and parts

Incompatible
scheduling system

Inability to handle
internal conflicts

Frequent delays in the
execution of production

processes

E9 Complex
infrastructure

Difficult order
scheduling model

Lack of a collaborative
culture

Lack of performance
indicators

E10 Different flows of
operations or activities

Lack of coordination
between departments

leading to conflicts
and delays

Resistance to change
hindering the

implementation of
process improvements

Poorly defined quality
standards affecting
product consistency
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4.3.3. Solution Strategies

In order to obtain the effective solution strategies, the brainstorming technique was
applied among experts and previous research where similar problems were addressed.
Table 3 shows one of the selection windows of the production planning stage, evidencing
the different strategies according to the related variable.

Table 3. Solution strategies for the planning stage.

Strategies Planning Organization Management Control

S1
Implement advanced
forecasting systems.
Develop contingency plans.

Implement decision
support tools. Develop a
data-driven
decision-making culture.

Develop leadership skills.
Foster a positive work
environment.

Implement monitoring
systems. Develop an
ongoing monitoring plan.

S2
Optimize installed capacity.
Improve demand
management.

Identify and eliminate
bottlenecks. Improve
operational efficiency.

Implement motivational
programs. Develop
incentive plans.

Improve monitoring
systems. Develop a plan
for efficient resource
utilization.

S3
Secure long-term supply
contracts. Develop a flexible
supply chain.

Optimize resource
allocation. Develop a
contingency plan.

Improve supervision.
Implement quality
programs.

Implement periodic
evaluations. Develop a
feedback system.

S4

Invest in training and
development. Hire
personnel with the
required skills.

Establish standard
operating procedures.
Train staff on procedures.

Develop problem-solving
skills. Implement a
problem management
system.

Improve inspections.
Implement a quality
management system.

S5

Upgrade technologies and
equipment on a regular
basis. Implement preventive
maintenance programs.

Develop a change
management system.
Maintain effective
communication with
customers.

Improve internal
communication.
Implement a
communication
management system.

Develop variance
analysis skills.
Implement a variance
management system.

S6
Improve monitoring and
control systems. Develop
rapid response plans.

Implement a customer
management system.
Improve customer
segmentation.

Develop training
programs. Secure
resources for training.

Optimize inventory
management. Develop
an inventory
reduction plan.

S7

Reduce the number of
product references.
Optimize product
catalog management.

Optimize order
scheduling. Implement
an efficient scheduling
system.

Implement quality
standards. Develop a
quality management
system.

Implement a financial
management system.
Develop a cost
reduction plan.

S8
Standardize components
and parts. Improve
inventory management.

Update and improve the
scheduling system.
Ensure system
compatibility.

Develop conflict
management skills.
Implement a conflict
management system.

Improve process
management. Develop a
delay reduction plan.

S9
Simplify infrastructure.
Improve coordination
between departments.

Develop an efficient
scheduling model. Train
staff in order scheduling

Foster a collaborative
culture. Develop
collaborative programs.

Implement performance
indicators. Develop a
performance evaluation
system.

S10
Standardize operation flows.
Implement process
management systems.

Improve
interdepartmental
coordination. Implement
conflict management
systems

Implementing change
management programs.
Developing a culture of
continuous
improvement.

Define quality standards.
Develop a quality
management system.

4.3.4. Improvement Methodologies and Technologies

In the resolution of specific problems in manufacturing, modern methodologies fo-
cused on lean production are currently distinguished; according to [141], they allow us
to achieve operational excellence; and according to [142], can be applicable in various
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industries. These focus on the elimination of waste, continuous improvement and opti-
mization of production processes. Similarly, advanced digital technologies stand out in
manufacturing processes, due to the fourth industrial revolution, where they provide a the-
oretical framework for the implementation of Industry 4.0 [143] and are today transforming
industry and society [144]. The configurator allows the choosing of various methodologies
and technologies according to the previously selected effects and solution strategies (see
Table 4), supporting decision making and serving as a support for complexity management
in manufacturing systems.

Table 4. Methodologies and technologies for the planning stage.

Technologies Planning Organization Management Control

T1

Heijunka (Production
leveling): To balance
production and
reduce variability.
Just-In-Time (JIT): To
adjust production
according to
actual demand.

Hoshin Kanri (Policy
Deployment): To align
strategic and operational
objectives.
Kaizen: To foster
data-driven and
fact-based
decision making.

Lean Leadership: To
develop effective leaders
in the organization.
Kaizen: To involve
leaders in continuous
improvement and
team motivation.

Visual Management: To
follow up and
continuously monitor
the plans.
Kaizen: To review and
adjust plans regularly.

Agile supply chain
management systems
(IoT and integrated
ERP systems).
Real-time communication
tools with customers and
suppliers
(Cloud computing).

Collaborative
management tools
(Project management
platforms).
Knowledge management
systems to share
information and make
data-driven decisions.

Talent management
platforms to identify
skills and development
needs.
Data analytics to assess
team performance and
make informed decisions
about leadership
development.

Manufacturing Execution
Systems (MES) to monitor
in real time the progress of
production orders.
IoT sensors embedded in
machines to collect
performance and
efficiency data.

T2

Kaizen: To identify and
eliminate waste and
improve efficiency.
Just-In-Time (JIT): To
adjust production and
minimize overcapacity.

Theory of Constraints
(TOC): To identify and
eliminate bottlenecks.
Kaizen: To continuously
improve processes and
eliminate inefficiencies.

Lean Culture: To create a
culture of motivation and
continuous improvement.
Kaizen: To encourage
active participation and
recognition of personnel.

Andon: To monitor and
alert on problems in
real time.
Just-In-Time (JIT): To adjust
resource utilization
as needed.

Capacity analysis
(Simulation and
Digital twins).
Process optimization
technologies
(Machine learning).
Collaborative systems and
digital outsourcing
(Cloud computing).

Digital twins to simulate
and optimize production
processes.
Real-time production
control systems
(IoT—Industrial Internet
of Things).

Performance
management and
continuous feedback
systems.
Online learning
platforms to offer
professional
development courses.

Industrial Internet of
Things (IoT) systems to
monitor raw material and
equipment usage in
real time.
Enterprise resource
management (ERP)
software (SAP S/4HANA)
with specialized modules
for inventory management
and production planning.

T3

5S: To organize and
manage inventory
efficiently.
Kanban: To control and
reduce inventory of
raw materials.

Heijunka: To level the
workload and balance
resource allocation.
Just-In-Time (JIT): To
adjust resources
according to demand.

Gemba Walks: For
supervisors to observe
and improve processes in
the workplace.
Kaizen: To continuously
identify and
eliminate waste.

Gemba Walks: To perform
evaluations and provide
continuous feedback.
Kaizen: To encourage
regular staff feedback
and development.
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Table 4. Cont.

Technologies Planning Organization Management Control

T3

Advanced inventory
management systems
(IoT, RFID).
Predictive analytics tools
to forecast material
demand
(Machine learning).

Integrated enterprise
resource planning
(ERP) systems.
Project management and
collaboration platforms
to coordinate resources
across teams.

Remote monitoring
systems and IoT sensors
to monitor machine and
equipment performance.
Predictive analytics
systems to anticipate
failures and improve
efficiency.

Talent management
platforms that enable
continuous performance
evaluation.
Mobile applications to
facilitate feedback and
continuous staff
development.

T4

Training Within Industry
(TWI): To improve the
skills and capabilities
of personnel.
Kaizen: To engage
employees in continuous
improvement.

Standardized Work: To
document and
standardize operating
procedures.
Kaizen: To continuously
improve and
update procedures.

A3 Problem Solving: For
structured and effective
problem solving.
Kaizen: To continuously
address and solve
problems.

Jidoka (Autonomation): To
detect and correct
defects immediately.
Total Quality Management
(TQM): To improve
inspections and
ensure quality.

Machine learning and
augmented reality
systems for training
(Machine learning).
Repetitive task
automation and
collaborative robotics
(Collaborative robots).

Business Process
Management (BPM)
software (IBM Business
Process Manager) to
design and automate
workflows.
Document management
platforms to store and
share manuals
and guidelines.

Data analysis tools to
identify patterns and
trends that can help in
problem solving.
Online collaboration
platforms to facilitate
employee participation
in problem-solving.

Machine vision systems
and sensors to detect
defects automatically.
Data analysis technologies
to identify quality trends
and problems.

T5

Total Productive
Maintenance (TPM): To
maintain and improve
the equipment.
Kaizen: To identify
opportunities for
technological upgrades.

Jidoka (Autonomation):
To detect and correct
problems quickly.
Customer Focus: To
maintain a continuous
focus on customer needs.

Visual Management: To
improve communication
and transparency in
the workplace.
Kaizen: To improve
communication channels
and methods.

A3 Problem Solving: For
structured analysis and
correction of deviations.
Kaizen: To continuously
address and
correct problems.

Real-time monitoring (IoT
and Sensors).
Data-driven predictive
maintenance.
Digitization of
manufacturing processes
and use of digital twins
(Big data and
Digital twins).

Customer Relationship
Management (CRM)
systems to manage
orders and customer
communication.
Data analysis tools to
forecast changes
in demand.

Customer Relationship
Management (CRM)
systems to improve
external and internal
communication.
Video conferencing and
instant messaging tools
to facilitate real-time
communication.

Business Intelligence (BI)
tools to compare actual
data with planned data.
Early warning systems to
notify significant
deviations.

T6

Heijunka: To level
production and adapt
to fluctuations.
Just-In-Time (JIT): To
adjust production in real
time according
to demand.

Heijunka: To level
production according to
the demand of different
customers.
Kaizen: To improve
efficiency in serving
multiple customers.

Training Within Industry
(TWI): To improve
training and skills
development.
Kaizen: To identify and
provide the necessary
development opportunities.

Just-In-Time (JIT): To
minimize inventory and
reduce costs.
Kanban: To manage and
control inventory
efficiently.

Real-time visibility and
collaboration systems
(Digital supply chain
platforms).
Predictive analytics and
advanced modeling tools.
Agile methodologies for
planning and production.

Marketing automation
and CRM platforms to
manage customer
relationships.
Chatbots and automated
customer service
systems.

E-learning and e-learning
platforms to deliver
training programs.
Talent management
systems to identify
individualized training
and development needs.

RFID and barcode
technologies for accurate
inventory tracking.
Warehouse automation
solutions to streamline
inventory management.
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Table 4. Cont.

Technologies Planning Organization Management Control

T7

Single Minute Exchange
of Die (SMED): To reduce
changeover times and
handle multiple products.
Heijunka: To level
production of multiple
product references.

Kanban: To manage
order flow efficiently.
Just-In-Time (JIT): To
adjust order scheduling
in real time.

Total Quality
Management (TQM): To
ensure quality and safety
in all processes.
Kaizen: To continuously
improve quality and
safety standards.

Cost Deployment: To
identify and reduce
operating costs.
Kaizen: To continuously
improve efficiency and
reduce costs.

Flexible manufacturing
technologies (Adaptive
CNC, 3D printing).
Automation of
configuration and
assembly processes.
Computer-aided design
(CAD) tools for
standardization.

Advanced production
scheduling optimization
algorithms.
Manufacturing resource
planning (MRP) systems
connected in real time.

Quality management
systems (QMS) to ensure
regulatory compliance.
Sensors and IoT
technologies to monitor
safety and quality
conditions in real time.

Advanced cost accounting
systems integrated with
ERP systems.
Data analysis tools to
identify cost reduction
opportunities.

T8

Kanban: To manage and
control component
inventory.
Standardized Work: To
standardize assembly and
component handling
processes.

Kanban: To simplify and
improve scheduling.
Value Stream Mapping
(VSM): To identify and
eliminate inefficiencies in
the scheduling system.

Lean Culture: To foster a
collaborative work
environment and resolve
conflicts.
Kaizen: To effectively
address and
resolve conflicts.

Value Stream Mapping
(VSM): To identify and
eliminate bottlenecks.
Kaizen: To improve
processes and
reduce delays.

Design for additive
manufacturing
(3D printing).
Component visibility and
traceability technologies
(QR codes, RFID).

Enterprise Resource
Planning (ERP) systems
integrated with
production scheduling
modules.
Real-time collaboration
tools to coordinate
scheduling across
departments.

Online conflict
management tools to
facilitate dispute
resolution.
Training in emotional
intelligence and effective
communication skills.

Advanced Planning and
Scheduling (APS) software
(SAP IBP 2105) to optimize
scheduling and reduce
cycle times.
Digital twins to simulate
and optimize production
processes prior to
implementation.

T9

Value Stream Mapping
(VSM): To analyze and
improve the value stream.
5S: To organize and
simplify the
infrastructure.

Heijunka: To level
production and simplify
order scheduling.
Kanban: To manage and
improve order flow.

Lean culture: To develop
a culture of collaboration
and innovation.
Kaizen: To encourage the
participation and
creativity of
all employees.

Key Performance
Indicators (KPIs): To define
and monitor performance
indicators.
Visual Management: To
track and continuously
evaluate performance.

Industrial automation
(Collaborative
robots, AGVs).
Remote monitoring and
control systems (IoT
applied to plant
management).
Modular and flexible
plant design (Adaptable
production lines).

Simulation and modeling
to optimize and simplify
the scheduling model.
Machine learning
algorithms to improve
production scheduling
accuracy.

Enterprise social
networking platforms to
promote interaction and
collaboration among
employees.
Agile project
management tools to
facilitate teamwork.

Data analysis and
visualization platforms to
create interactive
control panels.
Business Intelligence
technologies to monitor
KPIs in real time and
generate automated
reports.
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Table 4. Cont.

Technologies Planning Organization Management Control

T10

Value Stream Mapping
(VSM): To identify and
optimize different
operation flows.
Standardized Work: To
standardize processes and
improve efficiency.

Kaizen: To foster
collaboration and
improve
interdepartmental
communication.
Hoshin Kanri (Policy
Deployment): To align
objectives and improve
coordination.

Lean culture: To create a
culture open to change
and continuous
improvement.
Kaizen: To involve
employees in the change
process and reduce
resistance.

Standardized Work: To
define and document
quality standards.
Total Quality Management
(TQM): To ensure
consistency in product
quality.

Real-time quality
management systems
(Integrated quality
sensors).
Simulation and modeling
tools for workflow
optimization.

Collaborative project
management platforms.
Integrated business
communication systems.

Innovation management
systems to capture and
manage improvement
ideas.”
Simulation and modeling
to test and validate
improvements before
implementing them.

Quality Management
Systems (QMS) integrated
with production systems.
IoT sensors to capture
quality data in real time
and take quick
corrective actions.

4.4. Validation of the Configurator

Validation of the configurator is carried out by means of a case study, focused on
production management and considering the key administrative stages: planning, orga-
nization, management and control. Although the configurator is of an administrative
nature, its approach allows the identification of the most complex stage and provides a
detailed analysis of the effects, strategies and applicable improvement technologies. In
the case study, the configurator was applied to assess the complexity in each of the above-
mentioned administrative stages. The assessment included the measurement of specific
parameters, such as static and dynamic entropy, which reflect the complexity inherent in
each stage. Validation was based on a quantitative analysis of complexity metrics, where
the most critical areas were identified, and improvement strategies based on Industry 4.0
technologies were proposed.

Key metrics used for the evaluation included the calculation of static and dynamic
entropy, as well as the assessment of redundancy and synergy in the information shared
between variables. These metrics allowed a deep understanding of how complexity is
distributed throughout the different stages of the production process and how information
flows and decision making can be optimized.

4.5. Hypothesis

The approach of this hypothesis focuses on how the systematic configurator can
optimize both the structure and the operation of a production management system. By
intelligently adjusting the distribution of resources and frequencies at each stage of the
process, it is possible to reduce static complexity by improving structural stability, while
simultaneously minimizing dynamic complexity by increasing responsiveness to fluctua-
tions and instabilities. This balance, achieved through robust management of critical stages,
results in a more efficient and resilient production system. The following hypothesis is
put forward:

“Implementing a systematic configurator that optimizes resource and frequency
allocation, balancing structural stability and operational adaptability, can reduce
both static and dynamic complexity at critical production stages, improving over-
all system efficiency and mitigating risks associated with operational fluctuations
and instabilities”.

In synthesis, this configurator not only identifies and analyzes manufacturing com-
plexity problems, but also provides effective and customized solutions using advanced
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methodologies and cutting-edge technologies. This makes it an invaluable tool for any
company seeking to optimize its processes and improve its performance. As an innovative
element, the research contribution to the development of the measurement of complexity
in manufacturing systems in an entropic way, based on an information quantification
metric [40,140], where the contribution to science is based on the use of questionnaire-type
instruments, in an objective, precise and detailed way, given that in the literature these are
developed based on subjective mechanisms and Likert-type techniques. Another substan-
tial contribution is to provide an analysis of complexity through four main frameworks in
production and operations management, an aspect that strengthens and promotes decision
making in companies.

5. Results

In order to help the understanding of the methodology, the configurator and its
relationships between the panels, an example of a simple manufacturing system is proposed.
Table 5 shows the data collection from the survey-type instrument belonging to the second
panel and described in Section 4.2. Ten (10) variables are identified per stage, where
the value in the normal complexity state corresponds to a score of 1 (Low complexity).
The actual values vary on a three-level scale (Low-Medium-High) are and scored (1-3-
5), respectively.

Table 5. Results of the application of the instrument in the second panel.

Production
planning

Variable 1 2 3 4 5 6 7 8 9 10
Normal 1 1 1 1 1 1 1 1 1 1

Real 1 3 1 1 1 3 5 5 1 5
Absolute 0 2 0 0 0 2 4 4 0 4

Production
organization

Variable 1 2 3 4 5 6 7 8 9 10
Normal 1 1 1 1 1 1 1 1 1 1

Real 1 1 5 1 1 1 5 1 1 1
Absolute 0 0 4 0 0 0 4 0 0 0

Production
management

Variable 1 2 3 4 5 6 7 8 9 10
Normal 1 1 1 1 1 1 1 1 1 1

Real 1 3 3 1 3 1 3 1 1 1
Absolute 0 0 2 0 2 0 2 0 2 4

Production
control

Variable 1 2 3 4 5 6 7 8 9 10
Normal 1 1 1 1 1 1 1 1 1 1

Real 1 3 1 3 1 1 5 3 1 5
Absolute 0 2 0 2 0 0 4 2 0 4

In this data analysis, an assessment was made of the dispersion of complexity measures
for several variables using the absolute difference from a low complexity reference value,
which is set at 1. The data indicate increasing levels of complexity, with 1 being the low
complexity level and 5 being the high complexity level. To quantify dispersion, the absolute
difference between each actual observed value and the normal reference of 1 is calculated.
These differences provide insight into how complexity values vary compared to the low
complexity value, providing a clear measure of dispersion.

In the analysis of the dispersion of complexity in the stages of planning, organization,
management and production control, the absolute difference has been used. Figure 6 shows
for each variable evaluated, the stages where the real complexity deviates significantly
from the real expected value. In production planning, absolute differences of up to 4 are
observed, indicating a high dispersion in variables such as manufactured product (7), parts
of the product (8) and manufacturing process (10). The production organization stage
shows greater dispersion in the variables of distribution of human and material resources
(3) and production sequencing (7). Production management shows diverse variations in
several variables, while production control reflects dispersion patterns similar to those of
planning. This analysis allows us to clearly identify and visualize the stages and variables
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with greater deviations in complexity, facilitating a better understanding and management
of the levels of complexity in the production process.
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Consequently, a proportional analysis is developed from the quantification of the
sum of the absolute dispersions of the complexity in the four key stages of the production
process, supported by the theory and practice of dispersion and variability presented
by [145,146] who establish that they can be adapted by ranges; from this, the following
intervals are established: high dispersion (greater than 30%); moderate dispersion (between
20% and 30%); medium dispersion (between 10% and 20%); and low dispersion (less
than 10%). Given the above, it is identified that the production planning stage has high
dispersion, with 32% of the total and a sum of absolute deviations of 16, reflecting a high
variability in the complexity of its variables. The production organization has medium
dispersion, representing 16% of the total with a sum of 8, suggesting consistency and
proximity to the low complexity reference. Production management, with 24% and a sum
of 12, shows moderate dispersion. Finally, production control, representing 28% of the total
with a sum of 14, also shows a moderate dispersion in the complexity of its variables (see
Figure 7).
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In terms of complexity measurement, Equations (6) and (7) are tested by determining
the necessary intervals for each of the administrative stages of the production process,
which depend on the variations obtained in the calculation of absolute values. Table 6
shows that when there are three types of results such as (0-2-4), three intervals are necessary,
and when there are possible combinations (0-2), (0-4) or (2-4), two intervals are necessary.

Table 6. Calculation of parameters and complexity by stages.

Production
Planning Wj dij Interval Frequency Pij Static Dynamic

1 0.17 0 0.000 1.333 5 0.500 0.000 0.000
2 0.33 2 1.334 2.668 2 0.200 0.310 0.155
3 0.50 4 2.668 4.001 3 0.300 1.042 0.521
6 1.00 10 1.000 1.352 0.676

Production
organization

1 0.33 0 0.000 2.000 8 0.800 0.000 0.000
2 0.67 4 2.001 4.001 2 0.200 1.238 0.619
3 1.00 10 1.000 1.238 0.619

Production
management

1 0.33 0 0.000 2.000 9 0.900 0.000 0.000
2 0.67 2 2.001 4.001 1 0.100 0.443 0.221
3 1.00 10 1.000 0.443 0.221

Production
control

1 0.17 0 0.000 1.333 5 0.500 0.000 0.000
2 0.33 2 1.334 2.668 3 0.300 0.347 0.174
3 0.50 4 2.668 4.001 2 0.200 0.929 0.464
6 1.00 10 1.000 1.276 0.638

It then calculates the weighted weight for each of the intervals (Wij), with this value
being dependent on the number of intervals and it objectively assigns more weight to the
interval furthest away from the control or normal state (see Table 6). The calculations are
shown below:

Stage Production planning and control
Number of intervals (K) = 3
Ordinal sum of the intervals = (1 + 2 + 3) = 6
Interval 1 = 1/6 = 0.17
Interval 2 = 2/6 = 0.33
Interval 3 = 3/6 = 0.50

Stage Production organization and management
Weighting for each of the intervals
Number of intervals (K) = 2
Ordinal sum of the intervals = (1 + 2) = 3
Interval 1 = 1/3 = 0.33
Range 2 = 2/3 = 0.67

The measure of range (R) or range of the variable is calculated, taking into account the
difference between the maximum value and the minimum value of the data and the
amplitude of each interval by dividing the total range by the desired number of intervals.
The results are presented below:
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Range or range of the variable
Range (R) = Maximum value − Minimum value
Range (R) = 4 − 0
Range (R) = 4

Amplitude of each interval
Amplitude (C) = Range (R)/Intervals (K)
Amplitude (C) = 4/3 = 1.333
Amplitude (C) = 4/2 = 2.000

Consequently, the absolute deviations data are classified within the intervals denoted as
frequencies and the probabilities (Pij) are calculated. In turn, the average deviation of the
expected value (dij) is calculated as shown below:

Stage Production Planning
Frequency (interval 1) = 5
Frequency (interval 2) = 2
Frequency (interval 3) = 3
Total frequency = 10

Pij (interval 1) = 5/10 = 0.5
Pij (interval 2) = 2/10 = 0.2
Pij (interval 3) = 3/10 = 0.3

dij (interval 1) = (0 + 0 + 0 + 0 + 0 + 0 + 0)/5 = 0
dij (interval 2) = (2 + 2)/2 = 2
dij (interval 3) = (4 + 4 + 4)/3 = 4

Static (interval 1) = −(0.500*0.17*0)*[Log2(0.500)] = 0.000
Static (interval 2) = −(0.200*0.33*2)*[Log2(0.200)] = 0.310
Static (interval 3) = −(0.300*0.50*4)*[Log2(0.300)] = 1.042

Dynamic (interval 1) = −(1 – 0.500)*Log2(0.500)*(0.500*0.17*0) = 0.000
Dynamic (interval 2) = −1 – 0.200)*Log2(0.200)*(0.200*0.33*2) = 0.155
Dynamic (interval 3) = −(1 – 0.300)*Log2(0.300)*(0.300*0.50*4) = 0.521

Figure 8 presents the results obtained, considering the static and dynamic complexity
for each of the administrative stages of the production process which is more important at
the moment of decision making, since the time variable is not relevant. Production plan-
ning shows the highest static complexity with 1.352 bits, indicating a high structural and
managerial difficulty. Organization and control are also present, suggesting that structural
factors are predominant. In management, static complexity is low with 0.443 bits, indicat-
ing lower structural and temporal challenges. This analysis highlights the importance of
structural factors in the complexity of the production process and provides a clear view
of the areas that may require further attention for management and control. Considering
the above results, it is prioritized in the production planning stage for the execution of the
following phases presented by the configurator.
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The analysis of production planning has identified three key variables that contribute
significantly to its high complexity. Table 7 presents a consolidation of effects, solution
strategies, modern methodologies and 4.0 technologies. Providing a holistic approach to
reduce complexity and improve efficiency in production planning.
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Table 7. Consolidation of relevant variables in the configurator.

Variable Effects Solution Strategies Methodologies Technologies

7. Product
Manufactured

High number of
product references

Reduce the number of
product references.
Optimize product
catalog management.

Single Minute Exchange of
Die (SMED): To reduce
changeover times and
handle multiple products.
Heijunka: To level
production of multiple
product references.

Flexible manufacturing
technologies (adaptive
CNC, 3D printing).
Automation of set-up and
assembly processes.
Computer-aided design
(CAD) tools for
standardization.

8. Parts of the
Product

High number of
product
components and
parts

Standardize
components and parts.
Improve inventory
management.

Kanban: To manage and
control component
inventory.
Standardized Work: To
standardize assembly and
component handling
processes.

Design for additive
manufacturing (3D
printing).
Component visibility and
traceability technologies
(QR codes, RFID).

10. Manufacturing
process

Different flows of
operations or
activities

Standardize operation
flows.
Implement process
management systems.

Value Stream Mapping
(VSM): To identify and
optimize different
operation flows.
Standardized Work: To
standardize processes and
improve efficiency.

Real-time quality
management systems
(integrated quality sensors).
Simulation and modeling
tools for workflow
optimization.

A broader and more robust analysis involves the application of joint entropy, which
consists of the combination of two and three stages in the production context (planning,
organization, management, and control), thus making it necessary to calculate the entropies
for each possible combination. The literature addresses and highlights the concept of re-
dundancy in information theory, to understand how information can be shared by different
variables within a system [135,147,148]. Similarly, the concept of synergy quantifies how
the combination of variables produces additional information that is not present when the
variables are considered separately [149,150].

Figure 10 clearly shows that the redundancy varies significantly from 0.63 to 0.99, in-
dicating different degrees of information sharing or overlap between the different variables
or stages. The highest value of redundancy (0.99) suggests that, in this specific scenario,
a significant part of the information is shared between certain stages or variables. This
could imply that some processes or stages are highly interrelated, which could potentially
generate inefficiencies due to duplication of efforts or information. Lower redundancy
values, such as 0.63, indicate less overlap and possibly a more efficient flow of information
between stages. Lower redundancy can be beneficial in reducing unnecessary complexity
and improving clarity in decision-making processes.

Regarding the synergy analysis, it is evident that from the variation from 1.26 to 1.97,
the highest value suggests a strong potential for innovation or improved results when
certain stages or variables are combined. This indicates that the interaction between these
elements could lead to significant improvements in efficiency, innovation or overall per-
formance. In summary, this knowledge provides a solid foundation for refining processes,
improving collaboration and optimizing the overall management of complexity within
the organization.

A variation of different scenarios considering static and dynamic complexities along
different stages of production management delves into how complexities vary at each
stage and what implications can be derived from these patterns. Initially, three frequency
distribution scenarios are proposed: (i) Balanced, (ii) High-Mid-Low and (iii) Low-Mid-
High (see Figure 11).
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In the production planning stage, in the Balanced scenario, the static complexity is
moderate. However, in the High-Mid-Low and Low-Mid-High scenarios, this complexity
increases significantly. This suggests that when the distribution of resources is not balanced,
this stage is affected by higher levels of uncertainty and difficulty in management, reflecting
higher structural complexity. The same is true for dynamic complexity, since it follows a
similar pattern to static complexity.

In the organization stage in all scenarios, the static complexity in this stage is mod-
erate; this highlights that an inequitable distribution of resources generates additional
organizational challenges, affecting the overall efficiency of production. This is a similar
case with the dynamic complexity which also increases in the less balanced scenarios; this
suggests that fluctuations in resources can lead to difficulties in organizational adaptation,
increasing the risk of inefficiencies.

The management stage is the one with the lowest static complexity in all scenarios,
indicating that, regardless of how resources are distributed, management presents fewer
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structural challenges. This result suggests that the management stage is less sensitive to
variation in the frequency distribution, ensuring that the dynamic complexity remains low,
which reinforces the inherent stability of management compared to other phases. This
suggests that this stage can act as a buffer against abrupt changes in operating conditions.

Finally, in the control stage, the static complexity is high, especially in unbalanced
scenarios, which indicates that this phase is very sensitive to how resources are allocated,
increasing the challenges and negatively impacting the supervision capacity and opera-
tional adjustments. Dynamic complexity is high in scenarios with unbalanced distributions,
which implies that a bad adjustment of resources and frequencies not only complicates the
structure, but also generates instability and risk in the operation.

In summary, the results suggest that a configurator that prioritizes a balanced distribu-
tion can significantly reduce the complexity of operations. Furthermore, it is confirmed
that robustness in critical stages (especially planning and control) is essential to main-
tain stability in sub-optimal scenarios. This corroborates the hypotheses and highlights
how resource and frequency allocation decisions directly affect complexity in the different
production phases.

Although the configurator has shown its validity in the case study, application in
other business contexts could present challenges related to adaptability to different or-
ganizational structures and variability in production processes. Therefore, a sensitivity
analysis is proposed to evaluate how the configurator responds to changes in the initial
parameters and how it can be adapted to different industrial sectors. In addition, the
configurator’s flexibility will be evaluated through its ability to integrate with different
continuous improvement methodologies and emerging technologies, thus ensuring its
universal applicability. The configurator has also been designed to be adaptable to different
industrial contexts, measuring its effectiveness in terms of cost reduction, production time
and product quality improvement. The evaluation of redundancy and synergy between
the different variables allows the identification of opportunities to optimize complexity
management, ensuring that maximum use is made of the information available at each
stage of the administrative process.

6. Discussion

This study analyzes static and dynamic complexity in manufacturing systems by
means of a systematic configurator designed to optimize the distribution of frequencies
and resources in various stages of production management. The results obtained show
a clear trend: static complexity tends to be reduced when resource configurations and
task distribution are optimized, while dynamic complexity is mitigated by prioritizing
robustness in critical stages. This approach offers evident improvements in operational
stability and efficiency, favoring control in tactical and strategic situations.

However, it should be considered that this analysis adopts a “reductionist” view of
complexity, typical of manufacturing engineering, which focuses on minimizing complexity
to maximize efficiency. This perspective contrasts with organizational complexity theory,
which suggests that complexity should not always be reduced; in certain organizational
environments, it is beneficial to maintain or even increase complexity to foster adaptabil-
ity and innovation. Authors such as [151,152] point out that in dynamic organizations,
complexity can be seen as a resource that allows systems to better adapt to changes in
the environment.

The configurator presented follows Lean Manufacturing principles and adopts Indus-
try 4.0 technologies to manage complexity. However, instead of accepting complexity as
a strategic necessity, the configurator seeks to systematically reduce it, aligning with the
Lean Manufacturing vision. Although this approach is effective in the context of mass
production or highly regulated systems, it is necessary to recognize the limitations that
might arise when applying this model in more flexible or creative environments where
complexity brings competitive advantages.
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In terms of quantitative results, sensitivity plots and scenario analysis show how
varying frequencies affect both static and dynamic complexity. For example, by varying
the scenarios at different stages, an average decrease of 30% in static complexity and
a 25% reduction in dynamic complexity was observed, supporting the hypothesis that
systematic optimization can lead to tangible operational improvements. This ability of
the configurator to adapt to different scenarios and reduce uncertainty stands out as a
strength of the proposed model, particularly in environments where predictability and
control are essential.

From a comparative perspective with the literature, Ref. [153] highlights how human
cognitive and motor skills interact with complexity in manufacturing systems, especially
in aging populations. These authors propose a model where complexity is managed by
integrating human capabilities with automation. Our approach could complement these
ideas by incorporating considerations of human–machine interaction in the configuration
of scenarios. Similarly, Ref. [154] suggests that complexity assessment in assembly systems
should be based on a multi-criteria approach, which coincides with the logic of the con-
figurator, although our study emphasizes more entropic quantification and only expert
assessment in the diagnostic phase.

It should be noted that this study does not deny the importance of complexity as an
organizational resource. However, in specific production contexts where efficiency, stability
and control are paramount, reducing complexity remains a valid and effective strategy. This
does not imply a rejection of organizational complexity theory, but rather an adaptation of
it to the needs and constraints of highly structured manufacturing systems.

7. Conclusions

Complexity management in manufacturing systems is crucial in today’s industrial en-
vironment, characterized by increasingly sophisticated and dynamic production processes.
This research presents a systematic configurator for complexity management, offering
companies a robust tool to identify, measure, analyze and optimize their processes and
operations, based on state-of-the-art methodologies and modern technologies. The con-
figurator was implemented in Python due to its versatility and ease of integration with
different information systems, which allows an agile and scalable application in various
industrial contexts.

The main contribution of this research lies in the introduction of an entropy-based
complexity measurement mechanism, based on a diagnostic questionnaire and a global
analysis of production and operations management. This analysis covers the four classic ad-
ministrative stages (planning, organization, management and control), ensuring informed
and objective decision making. The configurator is structured on the basis of data input
by the user and the application of a diagnostic instrument, where 40 key variables were
identified. These variables were validated using Lawshe’s model, Cronbach’s Alpha and
the test–retest method, ensuring the reliability and consistency of the instrument.

Once the diagnosis is completed, the configurator proceeds to a comprehensive anal-
ysis of the static and dynamic complexity of the manufacturing system, providing cus-
tomized and effective solutions. This approach is supported by Lean Manufacturing
methodologies and Industry 4.0 technologies, such as artificial intelligence, digital twins
and IoT systems, which enable real-time reconfiguration of tasks and resources, ensuring
system stability even under changing conditions.

The configurator is not only compatible with existing digital tools, such as ERP and
MES systems, but also integrates efficiently with these platforms, improving companies’
ability to manage complexity in systems with high variability. In addition, the evaluation
of redundancy and synergy in the production stages revealed a significant reduction in
redundancy (from 0.99 to 0.63 bits) and an increase in synergy (up to 1.97 bits), highlighting
how technological integration and optimization of the use of human resources can increase
system efficiency and coordination.
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Finally, the unified hypothesis put forward in the study, which postulates that a
systematic configurator can reduce both static and dynamic complexity, was corroborated
by detailed analysis. In scenarios where adaptive planning and control of tasks and
resources is prioritized, a 20% reduction in dynamic complexity and a 15% reduction in
static complexity were observed, validating the configurator’s effectiveness in complex and
demanding environments.

In conclusion, this systematic configurator represents an innovative tool to optimize
production in industrial sectors with high variability by integrating optimization strategies
with advanced digital technologies. Future research could explore the adaptation of this
configurator to specific sectors, considering the aging of the workforce and the incorpora-
tion of emerging technologies, such as predictive models and autonomous platforms, to
achieve greater automation and efficiency in production management.
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