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PHF21A is a histone-binding protein that recognizes unme-
thylated histone H3K4, the reaction product of LSD1 histone
demethylase. PHF21A and LSD1 form a complex, and both
undergo neuron-specific microexon splicing. The PHF21A
neuronal microexon interferes with nucleosome binding,
whereas the LSD1 neuronal microexon weakens H3K4 deme-
thylation activity and can alter the substrate specificity to H3K9
or H4K20. However, the temporal expression patterns of
PHF21A and LSD1 splicing isoforms during brain development
and their biological roles remain unknown. In this work, we
report that neuronal PHF21A isoform expression precedes
neuronal LSD1 expression during human neuron differentiation
and mouse brain development. The asynchronous splicing
events resulted in stepwise deactivation of the LSD1–PHF21A
complex in reversing H3K4 methylation. An unbiased prote-
omics survey revealed that the enzymatically inactive LSD1–
PHF21A complex interacts with neuron-specific binding
partners, including MYT1-family transcription factors and post-
transcriptional mRNA processing proteins such as VIRMA. The
interaction with the neuron-specific components, however, did
not require the PHF21Amicroexon, indicating that the neuronal
proteomic milieu, rather than the microexon-encoded PHF21A
segment, is responsible for neuron-specific complex formation.
Finally, by using two Phf21a mutant mouse models, we found
that Phf21a neuronal splicing prevents excess synapse formation
that otherwise would occur when canonical PHF21A is
expressed in neurons. These results suggest that the role of the
PHF21A microexon is to dampen LSD1-mediated H3K4
demethylation, thereby containing aberrant synaptogenesis.

Brain development, the process in which the organ gov-
erning cognition forms, is arguably one of the most complex
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and intricate processes. Precisely regulated gene expression,
including transcriptional regulation, is key for normal brain
development. Human genetics studies of neurodevelopmental
disorders have highlighted the critical roles of chromatin
regulation in brain development. Chromatin regulators, which
place, read, and erase histone and DNA modifications, repre-
sent a major gene group responsible for neurodevelopmental
disorders, such as intellectual disability, schizophrenia, and
autism spectrum disorders (1–3). However, chromatin regu-
lators are broadly expressed across the body, making it chal-
lenging to understand the brain’s particular vulnerability to
chromatin dysregulation.

Recent work has begun to unveil the unique features of
chromatin regulations in neurons. For example, cytosine
hydroxymethylation is most abundant in neurons and can play
a role in gene regulation (4, 5). Non-CpG DNA methylation,
primarily in the CA context, is found abundantly in neurons
undergoing synaptogenesis and modulates synaptic gene
expression (6, 7). In addition, our group has reported evolu-
tionally conserved neuron-specific microexon splicing events
in 14 chromatin regulators (8). In most cases, except for the
LSD1 and PHF21A, as discussed below, the functional con-
sequences of neuronal splicing events remain unknown. Thus,
these observations have opened an area of research to inves-
tigate the roles and mechanisms of neuron-specific chromatin
regulation and its potential link to human neurodevelopmental
disorders.

Of the 14 chromatin factors that undergo neuron-specific
splicing, two proteins—histone H3K4 demethylase LSD1 (aka
KDM1A) and H3K4me0 reader protein PHF21A (aka BHC80)
—are particularly intriguing for two reasons. First, their non-
neuronal forms assemble into a stoichiometric complex sup-
pressing neuron-specific genes in non-neuronal cells (9, 10).
The complex consists of LSD1, PHF21A, class I histone
deacetylases HDAC1 and HDAC2, HMG-box DNA binding
protein BRAF35, and CoREST, which promote the nucleo-
some binding of LSD1 (9–13). REST/NRSF is the transcription
factor that recruits the PHF21A–LSD1 complex to neuron-
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Neuronal splicing of H3K4me reader PHF21A/BHC80
specific genes in non-neuronal cells for transcriptional
silencing (9). Second, loss-of-function mutations in both
genes, KDM1A and PHF21A, cause rare neurodevelopmental
disorders that involve cognitive deficits (14–16). Since these
mutations impact both canonical and neuronal isoforms of
LSD1 and PHF21A, it remains to be determined which isoform
is responsible for observed cognitive deficits.

The neuronal microexon splicing events in LSD1 and
PHF21A cause small—just a few encoded amino acids—yet
significant changes in their protein functions. The LSD1
neuronal splicing reduces H3K4 demethylation activity (17)
and reportedly alters substrate specificity towards H3K9 (18)
or H4K20 (19). Furthermore, the LSD1-Thr369, one of the
four amino acids encoded by the neuronal microexon, is
phosphorylated in the brain and, in turn, negatively modulates
binding to CoREST, HDAC1/2 (20), and the nucleosome (8).
The LSD1 neuronal splicing is modulated by neuronal activity
(21), thereby contributing to excitation-inhibition balance,
stress-response behavior (22), and learning and memory (19).
Meanwhile, PHF21A neuronal splicing ablates the DNA-
binding function of PHF21A mediated by an AT-hook motif,
which is present in the canonical (PHF21A-c) but not in
neuronal PHF21A isoform (PHF21A-n) (8). In sum, the
emerging understanding is that the neuronal splicing events in
LSD1 and PHF21A interfere with H3K4 demethylating func-
tion and contribute to the circuit homeostasis and cognitive
functions.

Critical questions regarding LSD1 and PHF21A neuronal
splicing still need to be addressed. First, developmental
expression patterns of LSD1 and PHF21A isoforms have yet to
be examined in detail. Second, we do not know whether
neuronal LSD1 and PHF21A isoforms participate in a similar
complex as non-neuronal cells or if the neuronal complex is
unique. Third, the biological roles of PHF21A neuronal
splicing remain unknown. To address these questions, in this
study, we characterized the expression kinetics of LSD1 and
PHF21A neuronal isoforms during neuronal differentiation, its
consequences on the demethylase activity and complex for-
mation, and examined the roles of PHF21A neuronal splicing
in synaptogenesis.
Results

PHF21A completes switching to neuronal form prior to LSD1

The difference between PHF21A-n and PHF21A-c arises
from the alternative usage of mutually exclusive exons, E14-
n or E14-c (Fig. 1A). To examine the expression kinetics of
PHF21A-n and LSD1-n during neuronal differentiation, we
first turned to in vitro differentiation of Lund human
mesencephalic (LUHMES) cells into neurons. LUHMES cells
are known to produce a homogeneous neuronal population
quickly once their differentiation is induced by dibutyryl-
cAMP, thereby making them well-suited for biochemical
investigations (23). We confirmed the homogenous
morphological changes 3 days after the differentiation in-
duction (Fig. S1A) and induction of neuronal markers,
2 J. Biol. Chem. (2024) 300(11) 107881
RBFOX3 and TUBB3, as expected (Fig. S1B). The reverse
transcriptase coupled polymerase chain reaction (RT-PCR)
indicated that PHF21A mRNA completely switched from
PHF21A-c to PHF21A-n after 3 days of neuronal differenti-
ation (Fig. 1B). In contrast, the appearance of LSD1-n form
began only after 6 days of differentiation. LSD1-c continues
to be expressed during neuronal differentiation, which is
consistent with the previous report (17).

To measure the LSD1-n/c ratio more quantitatively, we
performed Illumina-based complete amplicon sequencing of
the LSD1 RT-PCR products harboring the alternative se-
quences internally. We adjusted the isoform ratio by ac-
counting for the PCR efficiency difference; LSD1-c efficiency
was 2.8% greater than LSD1-n PCR efficiency, which trans-
lates to a 1.62-fold underestimation of LSD1-n abundance, if
uncorrected, in amplicon sequencing carried out with a
30-cycle PCR (Fig. S1, C and D, and see Experimental
procedures). The LSD1-c:LSD1-n ratio obtained by the
complete amplicon sequence was then adjusted with the
correction values. LSD1-n emerged on day 3, kept
increasing, and reached a plateau at approximately 37.7% on
day 9 of LUHMES cell differentiations (Fig. S1E). A Western
Blot analysis (WTN) using an anti-PHF21A antibody showed
that the PHF21A-c protein was mostly replaced with
PHF21A-n on day 3 (Fig. 1C), which agreed with the RT-
PCR result. Note that WTN cannot distinguish LSD1-c
and LSD1-n, which only differ in four amino acids; the
doublet WTN signal originates from another alternative
sequence located at the region close to the LSD1 N terminus
(24). The large difference in PHF21-n and PHF21A-c PCR
efficiency (23%) precluded us from a reasonably accurate
quantification of the isoform ratio. These data indicated that
the expression of PHF21A-n precedes that of LSD1-n in
differentiating LUHMES cells.

Next, we examined the expression kinetics of the PHF21A
and LSD1 isoforms in developing mouse brains. RT-PCR
indicated that PHF21A mRNA largely switched from
PHF21A-c to PHF21A-n after E15.5 mouse cortex (Fig. 1D). In
contrast, the LSD1-c was present throughout the develop-
mental periods examined. In this RT-PCR analysis, the LSD1-
n/c ratio appeared to show stepwise increases on E16.5 and P0.
The quantification of the results with the Illumina amplicon
sequencing indicated that LSD1-n mRNA consists of 42% at
E18.5 and increased further to 81% at P0 brain (Fig. S1E). In
contrast, the percentage of PHF21A-n protein reached a
plateau (91%) already in the E16.5 mouse cortex (Fig. 1, E–G)
like PHF21A mRNA isoforms. Total protein levels of LSD1
and PHF21A decreased after birth, implicating a greater
contribution of these factors to embryonic brain development.
These results indicate that, similar to the observation in
LUHMES cells, the increase of neuronal form is faster for
PHF21A than LSD1 in vivo. Since PHF21A adopts the
neuronal form earlier than LSD1, the two proteins potentially
form a complex containing PHF21A-n and LSD1-c prior to the
mature neuronal complex containing PHF21A-n and LSD1-n,
especially in the late gestation period.
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Figure 1. The expression of PHF21A-n increases faster than that of LSD1-n. A, schematic representation of LSD1 and PHF21A neuronal splicing events.
B, mRNA levels of LSD1 and PHF21A isoforms in LUHMES cells. Cells were differentiated into neurons as indicated and harvested from day 3 to day 12,
analyzed by RT-PCR (n = 2). C, expression of PHF21A and associated proteins in LUHMES cells and 293T cells examined by Western blot analysis using
antibodies as indicated. D, mRNA levels of LSD1 and PHF21A isoforms in the developing mouse brain. Whole-cell lysates prepared from mouse whole brains
(E12.5 and E13.5) and cortices (from E14.5 to P2) at indicated periods were analyzed by RT-PCR. E, expression of PHF21A and LSD1 proteins in the
developing mouse brain. Whole-cell lysates were subjected to Western blot analysis. F, quantification of Western signals for PHF21A-c, PHF21A-n, and LSD1
normalized by histone H3. PHF21A-c, and LSD1 levels were further normalized to E12.5. G, the ratio of PHF21A protein isoforms in the developing mouse
brain based on the Western signals. F & G, day 12.5 to 13.5: n = 1, pooled embryonic brain is used. Day 14.5-P2: Mean ± S.E.M., n = 3, technical replicates.
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Neuronal splicing of H3K4me reader PHF21A/BHC80
The complex with PHF21A-n and LSD1-c demethylates H3K4

Prior studies have described LSD1-n as a weaker H3K4
demethylase (17), H3K9- (18), and H4K20- (19) demethylase.
Having established the differential expression kinetics of
PHF21A and LSD1 isoforms, we sought to determine the
substrate specificity of the PHF21A-n:LSD1-c complex. We
immunoprecipitated (IP) the complexes with a PHF21A anti-
body from undifferentiated (day 0) and differentiating (day 3)
LUHMES cells. PHF21A-IP samples from both day 0 and day 3
contained LSD1, indicating that PHF21A-n can interact with
LSD1 (Fig. 2). On day 0, 62.8% of PHF21A and 100% of LSD1
adopt the canonical form (Fig. 1B and S1E). On day 3, 91.6% of
PHF21A adopts the neuronal form (Fig. 1B), while 94% of
LSD1 is still the canonical form (Fig. S1E). Thus, the major
complexes at day 0 and day 3 were PHF21A-c: LSD1-c and
PHF21A-n: LSD1-c, respectively.

We then incubated the IP samples with recombinant
designer mono-nucleosomes carrying either H3K4me2,
H3K9me2, or H4K20me2. Demethylation reactions can be
detected by either the decrease of dimethylation or the
appearance of monomethylation after the reaction via
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Western blot analysis, as previously described (Fig. 2A) (8).
As a control, we examined the enzymatic activity of PHF21A
complex from 293T cells, which only express PHF21A-c and
LSD1-c (Fig. 2, 293T lanes). We reliably detected the gen-
eration of H3K4me1 by the PHF21A complexes isolated
from both day 0 and day 3 LUHMES cells as well as 293T
cells (Fig. 2B, quantified in Fig. S2, A and B). The H3K4me1
signals were absent or nearly absent when the H3K4me2-
nucleosome was omitted from the reaction, ruling out the
coprecipitated cellular H3K4me1-nucleosome as the WTN
signal source (Fig. 2B, lanes 6, 10, &14). The control IgG IP
samples did not show any activity (Fig. 2B, lanes 4, 8, and
12). In this LUHMES cell system, the overall abundance of
PHF21A was greater during differentiation than the undif-
ferentiated state, leading to a greater LSD1 level in IP
samples, although the total LSD1 level was unchanged
during differentiation (Fig. 1C). With the greater LSD1 level,
the day 3-complex yielded a similar level of H3K4me1
compared to the day 0-complex, suggesting weaker enzy-
matic activity of the PHF21A-n:LSD1-c complex than the
canonical PHF21A-c:LSD1-c complex.
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With H3K9me2 or H4K20me2 nucleosomes, we did not
find either a decrease in the di-methylation signal or the
appearance of mono-methylation, indicating that the com-
plexes were inactive on these substrates (Fig. 2, C and D).
Cellular fractionation assays using LUHMES cells showed that
the percentages of chromatin-bound PHF21A and LSD1 were
unchanged during the differentiation, in which PHF21A-c
converts into PHF21A-n (Fig. S2, C and D). These results
demonstrate that H3K4 is the substrate of the PHF21A-
n:LSD1-c complex.
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Figure 3. No detectable demethylation activity of the mature neuronal
complex with PHF21A-n and LSD1-n. The demethylation assay of
immunoprecipitated PHF21A complexes from the P0 mouse cortices using
the designer nucleosomes carrying H3K4me2 (A), H3K9me2 (B), and
H4K20me2 (C). Neither a reduction of di-methylation nor the appearance of
mono-methylation was observed with any demethylation reactions.
No detectable demethylation activity of the mature neuronal
complex with PHF21A-n and LSD1-n

In our previous work with reconstituted LSD1–CoREST–
PHF21A tripartite complex, we found that the mature
neuronal complex with LSD1-n and PHF21A-n has weaker
H3K4 demethylase activity and lacks detectable activity to
H3K9me2 and H4K20me2 (8). However, the reconstitution
experiment with purified proteins left a possibility that addi-
tional interaction partners could bestow new substrate speci-
ficity to the neuronal complex. Indeed, a previous report
showed that the interaction with SVIL protein in neurons led
LSD1-n to demethylate H3K9 instead of H3K4 (18). We,
therefore, sought to determine the substrate specificity of the
neuronal complex with PHF21A-n and LSD1-n isolated from
neurons.

Our initial attempt was to differentiate LUHMES cells
further than day 3 to the point where a significant fraction of
LSD1 adopts neuronal form. However, the LSD1-n level did
not reach >40% and reached a plateau on day 9, and subse-
quent culture did not result in a greater LSD1-n ratio, as
discussed earlier (Fig. S1E). We also noted that prolonged
culture of LUHMES cells led to fewer cell numbers and made
it impractical to collect sufficient IP materials for demethyla-
tion assays. For these reasons, we turned to the mouse P0
brains, which show high expression levels of the two proteins
adopting predominantly neuronal forms; 94% of PHF21A and
81% of LSD1 are neuronal forms (Figs. 1G and S1F).

We carried out PHF21A IP from the P0 mouse cortices and
demethylation assay using the recombinant designer nucleo-
somes (Fig. 3, A–C). Unlike the PHF21A-n:LSD1-c complex in
Fig. 2, we did not detect the specific appearance of H3K4me1
when both the H3K4me2 nucleosomes and the complex were
present in the reaction (Fig. 3A, compare lane 9 to lanes 8 &
10). Meanwhile, the PHF21A complex from 293T cells shows
the specific H3K4me1 appearance (Fig. 3A, lane 5) in the
parallel reactions. Importantly, LSD1 levels in PHF21A-IP
samples were greater in the brain samples than 293T, ruling
out the possibility that an insufficient amount of LSD1–
PHF21A complex resulted in the lack of enzymatic activity.
When we used the H3K9me2 and H4K20me2 nucleosomes,
the P0 brain PHF21A complex did not consistently generate
mono-methylations either (Fig. 3, B and C). These results
indicate that the mature neuronal complex with LSD1-n and
PHF21A-n isolated from the brain lacks detectable enzymatic
activity in these assays.
Comparative proteomics analysis of PHF21A-containing
complex in MEFs and neurons

We then reasoned that investigating PHF21A-n–interacting
proteins in neurons might provide insights into the undetectable
demethylation activity of the mature complex. To this end,
we performed a comparative PHF21A immunoprecipitation
J. Biol. Chem. (2024) 300(11) 107881 5
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coupled with mass spectrometry (IP-MS) study using mouse
embryonic fibroblast (MEF) and cortical neuron cultures (DIV7)
(Fig. 4A). LSD1-n is 91% of total LSD1 in the cortical neurons,
while absent in MEF (Fig. S1G). PHF21A is predominantly the
canonical form in MEF and neuronal form in cortical neurons
(Fig. 4F). Though proteins specifically precipitated by the
PHF21A antibody were barely visible in silver staining (Fig. 4A),
we were able to identify consistently coprecipitated proteins
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across replicates (n = 3) (Table S1). Of the total 108 proteins
identified, eight proteins in MEF and 17 proteins in cortical
neurons passed our threshold: p< 0.1, FC (anti-PHF21A/control
IgG)> 1.5, and peptide number ≥ 6 (Fig. 4, B and C). Notably, all
eight proteins identified in MEF were also identified in neurons
(Fig. 4D). Most of these common interactants, such as LSD1,
RCOR1 (aka CoREST), HDAC2, and HMG20B (aka BRAF35),
were known components of previously isolated LSD1 complexes
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(9, 10, 25, 26). In neurons, nine additional proteins were identi-
fied. Of these, zinc-finger transcription factors MYT1 and
MYT1L are exclusively expressed in embryonic neurons (27)
(Fig. 4E). Primary roles of some neuron-specific PHF21A-inter-
action partners are outside chromatin regulation; DDX5 and
VIRMAhave been implicated in splicing andmRNAmethylation
(28–33), while TUBB5, TUBA1A, ACTA2, and MYH10
comprise of the cytoskeleton (34–37), which required further
validation of interaction (See Fig. 5).

BRAF35/HMG20B is a component of the canonical
PHF21A–LSD1 complex purified from non-neuronal HeLa
cells (9, 10). Previous work showed that a BRAF35 paralogue
called iBRAF (aka. HMG20A) is expressed in mature neurons
instead of BRAF35 (38, 39). iBRAF inhibits the action of
BRAF35, thereby promoting the expression of neuron-
specific genes (38, 39). These observations led us to
postulate that BRAF35 interacts with PHF21A-c while iBRAF
interacts with PHF21A-n. Since our MS analysis was incon-
clusive due to the short polypeptides of BRAF35 and iBRAF,
we tested whether BRAF35 and iBRAF interact with PHF21A
isoforms by co-immunoprecipitation Western analysis. We
found that BRAF35 was expressed in both MEF and neurons,
whereas the iBRAF was primarily expressed in neurons
(Fig. 4F, lanes 1&4). In MEF, BRAF35 was co-
immunoprecipitated with PHF21A-c as expected, while in
neurons, iBRAF was co-immunoprecipitated with PHF21A-n.
Notably, though BRAF35 expression levels are comparable
between MEF and neurons, the co-immunoprecipitated
BRAF35 level was much lower in neurons than in MEF
(Fig. 4F, lanes 3&6). These results suggest that BRAF35 can
interact with PHF21A-n; however, iBRAF outcompetes
BRAF35 for PHF21A-n binding in neurons.

Having identified neuron-specific PHF21A-interacting pro-
teins, we sought to understand the temporal dynamics of
PHF21A-containing complexes during brain development. To
this end, we examined the expression kinetics of these novel
PHF21A partners in developing mouse brains by Western blot
analyses. Consistent with the previous reports (38, 39),
BRAF35 expression decreased during brain development,
which is accompanied by the concomitant increase of iBRAF
expression (Fig. 4G). Such reciprocal expression pattern was
also found in MYT1 and MYT1L; the MYT1 level was higher
in early development (E12.5 to E15.5), whereas MYT1L started
increasing from E14.5. After birth, however, the expression of
BRAF35 and MYT1 returned, while their pairs, iBRAF and
MYT1L, plunged their expression again, representing an
intricate regulation of these complex components. Together,
these results suggest that PHF21A interacts with both ca-
nonical and neuron-specific proteins, and the interaction
partners can change during neuronal differentiation owing to
their dynamic expression patterns.

Unlike the previous report with SH-SY5Y cells (18), we did
not detect SVIL protein in the neuronal PHF21A complex,
which might explain why we did not detect the H3K9 deme-
thylation activity of the complex (Fig. 3C). Another work from
our group demonstrates that neuronal splicing of PHF21A and
LSD1 both contribute to the reduced H3K4 demethylation
activity of the complex by interfering with their contacts with
the nucleosomes (8). However, the reconstituted neuronal
complex with LSD1-n, CoREST, and PHF21A-n still exhibited
H3K4 demethylase activity, albeit weaker than its canonical
counterpart (8). A plausible explanation of the difference is
that the reconstituted complex in the other study was much
more abundant than the complex from the brain used in the
present study. Nonetheless, these observations all agree with
the negative impact of the two neuronal splicing events on the
enzymatic activity of the LSD1–PHF21A complex.
The binding partners of PHF21A-n and ectopic PHF21A-c in
neurons are highly similar

Having identified new neuron-specific PHF21A-binding
partners, we wondered if being the neuronal form enables
PHF21A to interact with these new partners in neurons. To
address this question, we have generated a mouse model in
which the Phf21a neuronal microexon is deleted by CRISPR-
Cas9 (The Phf21a-Dn allele, Fig. 5, A and B). In contrast to
Phf21a-KO mice, which lack both canonical and neuronal
forms and die neonatally (40), homozygous Phf21a-Dn mice
(Phf21aDn/Dn) were viable (Fig. 5C). In the cortical neurons
isolated in Phf21aDn/Dn mice, PHF21A-c is expressed at a
comparable level with PHF21A-n in WT (Phf21a+/+) neurons
(Fig. 5D). Thus, Phf21a-Dn represents the swapping mutant, in
which PHF21A-n is replaced with PHF21A-c in neurons,
allowing us to test if being neuronal form is necessary to
interact with neuronal binding partners.

First, we examined whether the ectopic PHF21A-c expres-
sion in neurons alters the stability of binding partners for
which specific antibodies are available. We did not observe any
overt changes in the levels of LSD1, CoREST, HDAC2,
BRAF35, and iBRAF, indicating that ectopic PHF21A-c does
not impact the stability of known binding partners (Fig. 5D). In
addition, overexpression of PHF21A-n, PHF21A-c, LSD1-n, or
LSD1-c did not change the protein levels of endogenous
PHF21A, LSD1, BRAF35, HDAC2, CoREST, and stably-
expressed iBRAF in 293T cells (Fig. S3A). Thus, neuronal
PHF21A and LSD1 splicing events do not influence the sta-
bility of the binding partners examined.

Next, we performed proteomics quantification of PHF21A-
associated proteins in Phf21a+/+ and Phf21aDn/Dn mice cortex
(P0) with IP-MS (n = 3–4 per genotype). As discussed earlier,
at this stage of brain development, 94% of PHF21A and 81% of
LSD1 are neuronal forms in Phf21a+/+ mice cortex (Figs. 1G
and S1F). Thus, Phf21a+/+ data mostly represents PHF21A-n–
associated factors in neurons, and Phf21aDn/Dn data represents
PHF21A-c–associated factors in neurons. In this P0 brain
proteomics study, unlike the earlier study with DIV7 cortical
neuron cultures (Fig. 4A), we saw clear protein bands unique
to PHF21A-IP samples (Fig. 5E) and identified many more
proteins (149 in Phf21a+/+ samples, padj < 0.01, FC > 2, and
peptide number ≥ 6) (Table S2). Proteins identified in DIV7
mostly overlapped with the proteins found in the P0 brain
(Fig. S3B). The greater numbers of identified proteins are likely
due to higher PHF21A levels in the P0 brain than in DIV7
J. Biol. Chem. (2024) 300(11) 107881 7
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neurons. With Metascape analysis (41), we found these
PHF21A-interacting proteins belong to several protein-
interaction networks: positive regulation of stem cell popula-
tion maintenance, HDACs deacetylate histones, processing of
intronless pre-mRNAs, and RNA methylation (Fig. 5F and
Table S3). Reciprocal IP assays validated some of these new
PHF21A-interaction partners, including VIRMA, CPSF6,
MYT1L, and DDX5 (Fig. 5G).

The proteomic profile of the Phf21aDn/Dn mice cortex
sample was highly similar to that of Phf21a+/+ (Fig. 5, H and I).
In the Phf21aDn/Dn mice cortex samples, we identified 126
proteins, which largely overlapped with those found in WT
samples (Fig. 5J). Twenty two proteins were uniquely found in
WT, and nine proteins were uniquely found in Phf21aDn/Dn.
To determine whether these unique binding factors between
WT and Phf21aDn/Dn samples reflect genuine changes or
borderline statistical significances, we compared the PHF21A-
Ab/control IgG fold enrichment values (log2FC, the average of
3–4 replicates) of all PHF21A-interacting proteins found in
either Phf21a+/+ or Phf21aDn/Dn samples (Fig. 5K). The log2FC
enrichment values show a high concordance (R2 = 0.93) be-
tween genotypes, and the linear regression slope was 1.07. The
log2FC values of these Phf21a+/+- and Phf21aDn/Dn-specific
binding proteins still show high concordance between geno-
types, and these proteins mostly had low FC values. Further-
more, differential enrichment analysis between PHF21A-Ab–
bound proteins between Phf21a+/+ and Phf21aDn/Dn yielded no
statistically significant proteins (Fig. S3C). Thus, we concluded
that interacting proteins did not substantially change in neu-
rons when PHF21A-n was replaced with PHF21A-c.

These results demonstrate that PHF21A participates in
unexpected molecular networks, such as post-transcriptional
regulation, in neurons, and the PHF21A neuronal splicing is
dispensable for the interaction between PHF21A and its
neuronal partners.

The roles of neuronal splicing in synaptogenesis

The above molecular studies led to the question of why
neurons generate the hypomorphic neuronal PHF21A isoform.
To address this question, we employed two Phf21a mutant
mouse models. The first model harbors the constitutive
Phf21a-null allele (40). Homozygous Phf21a-null mice
(Phf21a−/−) lack both neuronal and canonical isoforms (40).
The second model is the above Phf21a-Dn mice, in which
PHF21A-c replaces PHF21A-n in the neurons. We examined
from cortical neurons (DIV7) isolated from Phf21a+/+, Phf21a+/Dn, and Phf21aD

expressed in Phf21a-nDn/Dn neuron. E, silver staining of proteins co-precipitated
indicated genotypes. Asterisks indicate proteins specifically found in PHF21A-i
proteins with Metascape (41). The statistically significant PHF21A interactors in
that contain proteins validated by reciprocal IP experiments are presented. G,
and newly identified interaction partners. H and I, volcano plots of Co-IP-MS
Phf21aDn/Dn (I) cortices. Green dots: the bait protein, PHF21A. Black and red do
peptide ≥ 6). Red dots: neuron-specific proteins identified in Fig. 4C that pass th
the log2 FC (a-PHF21A antibody/control IgG), and the y-axis denotes -log10 p-v
Phf21aDn/Dn cortex (orange). K, scatter plot comparing the log2FC (a-PHF21A
Phf21aDn/Dn cortices. The R2 value and the fit of the linear regression are indi
significant interactors in Phf21a+/+ a-PHF21A and Phf21aDn/Dn (Cutoff: Padj-val
Fig. 4C that pass the cutoff. Blue dots: statistically significant interactors in Phf2
Dn. The x-axis shows the log2 FC of Phf21a+/+ (a-PHF21A antibody/control IgG). T
synaptogenesis in the two mouse models because synaptic
deficits are common in neurodevelopmental disorders associ-
ated with chromatin dysregulations (42).

First, we quantified the synaptic density in the primary
cultures of cortical neurons (Fig. 6, A–C). Excitatory synapses
were visualized by the colocalized immunofluorescent signals
of pre- and post-synaptic markers on the dendritic shafts of
pyramidal neurons. We observed a significant decrease of
excitatory synapses in Phf21a-null neurons, in which hetero-
zygous mutant neurons exhibit an intermediate phenotype
between WT and homozygous mutant neurons (Fig. 6, A and
B). In contrast, excitatory synapse density was higher in
Phf21aDn/Dn neurons (Fig. 6, A and C). Inhibitory synapse
densities did not change either in Phf21a−/− or Phf21aDn/Dn

neurons (Fig. 6, D–F).
Next, we quantified the dendritic growth and dendritic spine

density in vivo by Golgi staining; dendritic spines are the post-
synaptic structure of excitatory synapses (Fig. 6, G–L). We
chose two brain regions, the hippocampal CA1 and prefrontal
cortex (PFC), essential for cognitive functions. For the Phf21a-
null model, we only analyzed heterozygous mutants (Phf21a+/−)
because homozygous mutants die immediately after birth prior
to major synaptogenesis. In the Phf21a+/− neurons, the den-
dritic lengths of pyramidal neurons were significantly shorter
than WT in both CA1 and PFC (Fig. 6, G and H). Phf21aDn/Dn

neurons exhibited slight upward shifts of dendritic length, but
the shifts were not statistically significant (Fig. 6I). Consistent
with the results of cultured neurons, the dendritic spine density
showed significant decreases in Phf21a+/− neurons, while an
increase in Phf21aDn/Dn neurons, in CA1. The PFC dendritic
spines showed similar results, except that the difference be-
tween WT and Phf21aDn/Dn neurons did not reach statistical
significance (Fig. 6, G and L).

These results indicate that PHF21A plays an important role
in excitatory synapse development. When PHF21A-c replaced
PHF21A-n in neurons, more excitatory synapses formed,
suggesting that PHF21A-n is synthesized to prevent excess
synapse formation mediated by PHF21A-c.

Discussion

In this work, we have described the asynchronous neuronal
splicing of LSD1 and PHF21A in differentiating human neu-
rons and developing mouse brains. The lagged LSD1 neuronal
splicing implicated a stepwise transition of the complex
abundance from LSD1-c:PHF21A-c, LSD-c:PHF21A-n, and
n/Dn mice using antibodies as indicated. PHF21A-c instead of PHF21A-n is
by anti-PHF21A antibody using the nuclear extracts from P0 cortices of the

mmunoprecipitates. F, functional enrichment analysis of PHF21A-interacting
Phf21a+/+ cortices were used. Log10 p-value < −10. The molecular networks
reciprocal Co-IP-Western assays to validate the interaction between PHF21A
analysis of PHF21A-interacting proteins (n = 3–4) using Phf21a+/+ (H) and
ts: statistically significant interactors (Cutoff: FC > 2, Padj-value < 0.01, and
e cutoff. Gray dots: proteins that do not pass the threshold. The x-axis shows
alues. J, Venn diagram of PHF21A interactor in Phf21a+/+ cortex (blue) versus
antibody/control IgG) of all PHF21A-associated proteins between WT and
cated. Green dots: the bait protein, PHF21A. Black and red dots: statistically
ue < 0.01, and peptide ≥ 6). Red dots: neuron-specific proteins identified in
1a+/+ a-PHF21A. Orange dots: statistically significant interactors in Phf21aDn/

he y-axis shows the log2 FC of Phf21aDn/Dn (a-PHF21A antibody/control IgG).
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then LSD1-n:PHF21A-n during brain development. The
resulting complexes are deactivated for H3K4 demethylating
activity along with this transition. Our proteomics studies
revealed that PHF21A-n interacts with the known proteins and
new neuron-specific partners in neurons. Unexpectedly, the
neuronal splicing of PHF21A was dispensable for interacting
with these neuron-specific binding partners. Neuronal
morphological analyses of the two Phf21a mutant mouse lines
indicated that the microexon prevents excess synaptic
formation.

The substrate specificity of LSD1-n has been shown as
H3K4 (8, 17), H3K9 (18), and H4K20 (19). In the present
study, similar to our prior study (8), we did not detect H3K9 or
H4K20 demethylating activity in either the PHF21A-n:LSD1-c
or PHF21A-n:LSD1-n complexes. Instead, we observed the
stepwise deactivation of the complex, which ultimately became
incapable of reversing H3K4me in our assays. The lack of
activity towards H3K9 can be explained by the absence of SVIL
protein in our PHF21A-IP samples. We do not have any
reasonable explanation for the lack of activity toward H4K20,
given that this activity was observed in a purified system
involving recombinant CoREST and LSD1 isoforms (19). It
could be argued that H4K20 demethylation is not the function
of LSD1-n that forms a complex with PHF21A; our complex
was purified by an anti-PHF21A antibody rather than an anti-
LSD1 antibody. However, others and our prior work did not
detect H4K20 demethylation activity using the bipartite com-
plex of recombinant LSD1-n and CoREST either (8, 43). To
resolve this issue fully, it is imperative to identify the respon-
sible variables between these observations and seek additional
evidence, such as X-ray crystallography.

Regardless of the LSD1-n neofunctionalization issue, the
common conclusion agreed by all the studies is that LSD1
neuronal splicing impairs its H3K4 demethylation activity. In
the present study, our observations indicate that the devel-
oping brain relentlessly decommissions the LSD1–PHF21A
complex and might make the complex play distinct functions
by interacting with unique proteins in neurons. For example,
we identified neuron-specific zinc-finger transcription factors
MYT1 and MYT1L as neuron-specific PHF21A-binding pro-
teins (Fig. 4). MYT1 and MYT1L belong to Myt-transcription
factor family and are expressed specifically in neurons with
particularly high levels in the embryonic brain (44). Both
MYT1 and MYT1L bind to a consensus DNA motif
AAAGTTT (27) and transcriptionally suppress the Notch
signaling pathway, which negatively regulates neurogenesis, in
turn, promotes neurogenesis (45, 46). MYT1L also represses
the transcriptional program of deeper layer neurons in the
adult prefrontal cortex (47) and non-neuronal genes (46, 48).
SIN3-HDAC is a major corepressor that enables MYT-
mediated transcriptional suppression in vertebrates (47, 49).
However, an MYT1 proteomics study with Neuro2A cells
segment. Scale bars represent upper: 100 mm, lower: 5 mm. H and I, quantificatio
and L, quantification of dendritic spine density in Phf21a-null (K) and Phf21a-D
respectively. Both apical and basal dendrites from 12 neurons per animal were
median is indicated with a bar within the box, and the whiskers denote the 1.5
identified the LSD1–CoREST–PHF21A complex (50), which is
consistent with our results and suggests plausible roles of the
complex in the MYT-mediated transcriptional regulation of
the neurodevelopmental program. Furthermore, MYT1L can
also activate the transcription of neuronal maturation genes
with unknown mechanisms (27, 51). It is tempting to speculate
that the neuronal splicing of LSD1 and PHF21A is responsible
for the functional switch of MYT1L from repressor to acti-
vator, with the neuronal LSD1–PHF21A complex acting as a
dominant negative machinery. Lastly, this is the first report
describing the interaction between the LSD1–PHF21A com-
plex and post-transcriptional mRNA processing machinery
such as CPSF6 and VIRMA. The association of these mRNA
processing proteins is specific or much stronger in neurons
(Figs. 4 and 5). While CPSF6 controls alternative poly-
adenylation (52), VIRMA promotes m6A RNA methylation
(53). Thus, the neuronal LSD1–PHF21A complex might be
involved in mRNA processing in neurons. Further in-
vestigations are needed to understand this process better.

Lastly, our work provides the initial clue to the question:
why does PHF21A need to adopt neuronal form in neurons?
Excitatory synapse numbers increased in a PHF21A functional
dose-dependent manner, where Phf21a-null cells showed the
least synaptic density, while neurons with Phf21a-c showed the
greatest synaptic density both in vitro and in vivo (Fig. 6). The
results suggest that PHF21A can promote gene expression
program of synaptogenesis; however, PHF21A-c is too potent
in this function. Functional dampening of PHF21A by
microexon splicing allowed optimal synapse numbers, which
might have provided selective advantages by optimizing
cognitive functions during vertebrate evolution. Interestingly,
the PHF21A-n does not achieve the optimal synaptic density
by providing unique protein–protein interactions, given that
the protein interactome of PHF21A-c in neurons was essen-
tially identical to that of PHF21A-n (Fig. 5). Future studies
should address how PHF21A-n working with newly identified
interacting partners in confining the synapse numbers within a
proper range.

Experimental procedures

Cell culture

LUHMES cells

LUHMES cells were purchased from ATCC (CRL-2927).
The culturing and handling procedures of LUHMES cells were
as described previously (54). In brief, LUHMES cells were
grown at 37 �C in a 5% CO2 atmosphere in DMEM/F-12
(Gibco 11,330–032) containing N2 supplement (Gibco
17502048) and 40 ng/ml bFGF (Peprotech 100-18B). Before
plating, plates were coated with PDL overnight at 37 �C and
washed with water thrice. Confluent cultures were passaged by
trypsin digestion. One day after plating, the proliferation
n of dendritic length in Phf21a-null (H) and Phf21a-Dn (I) mutants (n = 72). K
n (L) mutants (n = 72). The boxes show the lower and upper quartile values,
quantified: three of 2-month-old males per each genotype were used. The

× data range of the box. (*p < 0.05, ****p < 0.001, Unpaired Student’s t test).
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medium was replaced with DMEM/F-12 containing N2 sup-
plement, 1 mg/ml tetracycline (Sigma T7660), 1 mM dibutyryl
cyclic AMP (Selleck Chemicals S7858) and 2 ng/ml Recom-
binant Human GDNF (Peprotech 450–10).
HEK293T

HEK293T cells were grown at 37 �C in a 5% CO2 atmo-
sphere in DMEM (Gibco 11995065), supplemented with 10%
FBS. Primary Neurons: The primary neuron culture was per-
formed as previously described (8) with slight modifications.
For molecular analyses, Cytarabine (10 m M, aka AraC, Tocris)
was added to the culture at DIV3 to eliminate the non-
neuronal cell growth. MEFs: MEFs culture was performed as
previously described (8). Cells were passaged less than twice
for most experiments.
Antibodies and PCR primers

Primary antibodies used are the following: rabbit anti-
PHF21A (1:1000, in house, raised against 1–100 aa of human
PHF21A expressed and purified from E.coli), rabbit anti-LSD1
(1:1000, Abcam ab17721), rabbit anti-BRAF35 (1:1000,
ABclonal A4408), rabbit anti-HDAC2 (1:200, Santa Cruz sc-
7899), rabbit anti-CoREST (1:1000, Abcam ab183711),
mouse anti-H3 (1:500, Santa Cruz sc-517576), rabbit anti-
H3K4me1 (1:5000, Abcam ab176877), rabbit anti-H3K4me2
(1:5000, Revmab bioscience 31–1037–00), rabbit anti-
H3K9me1 (1:5000, Epicypher 13–0029), rabbit anti-
H3K9me2 (1:5000, Abcam ab194680), rabbit anti-H4K20me1
(1:2500, Abcam ab9051), rabbit anti-H4K20me2 (1:5000,
Abcam ab9052), mouse anti-H4 (1:200, Abcam ab31830),
rabbit anti-iBRAF (1:1000, ABclonal A7286), rabbit anti-Myt1
(1:500, Invitrogen PA5-85510), rabbit anti-Myt1l (1:500, Pro-
teintech 25234-1-AP) and rabbit anti-MeCP2 (1:500,
Proteintech 10861-1-AP), Virma (1:1000, 25712-1-AP), CPSF6
(1:1000, ab99347), DDX5(1:2000, ab126730). The primers
used for the amplification are as follows: hLSD1_F1:
GCTGTGGTCAGCAAACAAG, hLSD1_R3: ATATTCC
TTGCATAGGGCGGTC, hLSD1_F2: CCCACTTTATGAA
GCCAACGGAC, hLSD1_R2: CAACCGGTTAAACTCTT
GCTCTACC, hPHF21A_F1: GCAGTGACATACCTAAA-
CAGC, hPHF21A_R1: CCAGGATGGTGTTCTTCATTTC,
hTBP_1: GATCTTTGCAGTGACCCAGC, hTBP_2: CGCT
GGAACTCGTCTCACTA, hTUBB3_for: GTGAAAACTGC-
GACTGCCTG. hTUBB3_rev: ACGACGCTGAAGGTGTT-
CAT, hRBFOX3_for: GCATGACCCTGTACACACCA, hR
BFOX3_rev: TTCTCTGTAGGGTCGGAGGG, mLSD1_F3:
CCCACTTTATGAAGCCAATGGAC, mLSD1_R3: CAACCG
GTTAAATTCTTGTTCTACC, mLSD1_F1 AGGTCTTG-
GAGGGAATCCCATG, mLSD1_R1 ATTCCTTGCA-
GAGGGCAGTC, mPHF21A_F1: CAGTCACTTACCTTAAC
AGCAC, mPHF21A_R1: TGCTGCTCTTCATCTCCATAC,
mTbp_qPCR_F: TTCAGAGGATGCTCTAGGGAAGA, mT
bp_qPCR_R: CTGTGGAGTAAGTCCTGTGCC, Phf21a-n-
F2: ACAGACGCCCAGCACCTTTAG, Phf21a-n-R2: GTA
AGGGCTCCAAACCCCAG.
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RNA purification and complete amplicon sequence

Total RNA was isolated using the RNeasy Plus Mini Kit
(QIAGEN 74134) according to the manufacturer’s protocol.
The RNA concentration was determined using a Bio-
Spectrometer (Eppendorf). Total RNA (1 m g) was used to
generate the ProtoScript II First Strand cDNA Synthesis Kit
(Biorad E6560S) following the manufacturer’s instructions.
PCR reactions were performed with KOD Hot Start DNA
Polymerase (Sigma 71086–3) using a Mastercycler X50a
(Eppendorf). Complete amplicon sequencing was performed
by the CCIB DNA Core Facility at Massachusetts General
Hospital (Cambridge, MA). Illumina-compatible adapters with
unique barcodes were ligated onto each sample during library
construction. Libraries were pooled in equimolar concentra-
tions for multiplexed sequencing on the Illumina MiSeq
platform with 2 × 150 run parameters. Upon completion of the
NGS run, data were analyzed, demultiplexed, and subsequently
entered into an automated de novo assembly pipeline, Ultra-
Cycler v1.0 (Brian Seed and Huajun Wang, unpublished).

Quantitative RT-PCR

The expression of different target genes was validated by
quantitative PCR (qPCR) using the 7500 Real-Time PCR
Systems (Applied Biosystems). The reactions were performed
with the Power SYBR Green PCR Master Mix (Applied Bio-
systems 4367659) as recommended by the manufacturer. Real-
time PCR was performed with a hot start step of 50 �C for
2 min and 95 �C for 10 min, followed by 30 cycles of 95 �C for
15 s, 60 �C for 1 min, and analyzed with 7500 software
(Applied Biosystems). The PCR efficiency was calculated by
linear regression between Ct values and concentrations of
human LSD1-c and LSD1-n cDNA in pENTR plasmids. The
resulting PCR efficiencies (E) were 73.5% for LSD1-c and
70.8% for LSD1-n, where 100% defines a doubling of DNA
copy number per one PCR cycle. The correction value was
calculated as ½ðELSD1-c þ1Þ ˇ

30 =ðELSD1-n þ1Þ ˇ

30�. The LSD1-c:
LSD1-n ratio obtained by the complete amplicon sequence
described above was multiplied by the LSD1-n value with the
correction value (1.62).

Cell fractionation and WTN analysis

LUHMES and 293T cells were fractionated by Subcellular
Protein Fractionation Kit (#78840, Thermo Scientific). Whole-
cell lysates were prepared from mouse whole brains (E12.5 and
E13.5) and cortices (E14.5 to P2). Cells were lysed in radio-
immunoprecipitation assay (RIPA) buffer (50 mM Tris-HCl
pH7.5, 150 mM 5M NaCl, 0.5% Sodium Deoxycholate mon-
ohydrate, 0.1% sodium dodecyl sulfate (SDS) and 1% TritonX-
100) supplemented with Protease Inhibitor (Roche,
11873580001). Extracted proteins were boiled for 10 min with
2X Laemmeli buffer (100 mM Tris-HCl pH6.8, 4% SDS, 0.2%
Bromophenol blue, 20% Glycerol and 5% b-mercaptoethanol)
at 100 �C. Proteins were separated by SDS-polyacrylamide gel
electrophoresis (PAGE) electroblotted onto a polyvinylidene
difluoride (PVDF) membrane (Millipore, IPFL00010). PVDF
membrane was masked with Intercept Blocking Buffer (LI-
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COR, 927–70001) for 2 h at 4 �C, incubated with primary
antibodies in Intercept Blocking Buffer overnight at 4 �C,
washed with PBST (137 mM NaCl, 2.7 mM KCl, 11.9 mM
phosphates and 0.1% Tween20) and incubated with secondary
antibodies in Intercept Blocking Buffer for 1 h at RT. After the
final washes, fluorescence signals were detected using Odyssey
DLx Imager (LI-COR).

Co-immunoprecipitation analysis (Co-IP)

Nuclei were enriched from the Dounce homogenized 293T
cells, MEFs, neurons, and cortex using EZ Nuclei Lysis buffer
(10 mM Tris at pH 7.4, 10 mM NaCl, 5 mM MgCl2, 0.5% NP-
40, x1 Protease inhibitor cocktail). Nucleoproteins were
extracted from nuclei with the same volume of IP Extraction
Buffer (20 mM HEPES at pH 7.9, 1.5 mM MgCl2, 0.6 M KCl,
0.2 mM EDTA, 0.5 mM DTT, 25% Glycerol, x1 Protease
inhibitor cocktail) as EZ Nuclei Lysis buffer for 30 min at
4 �C. For Co-IP, samples were bound to 5ug of crosslinked
antibody (Rabbit IgG, a-PHF21A) each sample for 3 h at 4 �C.
Then, samples were subjected to SDS-PAGE and Western
blot analyses. For Co-IP WTN, to reduce the background
signals originating from IgG molecules used for IP, the
PHF21A antibody was biotinylated by Pierce Antibody Bio-
tinylation Kit (90407) following the manufacturer’s protocol
and used as the primary WTN antibody. Likewise, for
PHF21A IP, antibodies (Control rabbit IgG, a-PHF21A) were
crosslinked as follows: first, the antibodies were reacted with
Protein A/G beads (1:1 mixture) overnight at 4 �C, then
crosslinked by 10 mMDMP (Thermo 21667) in 0.2 M sodium
borate pH 9.0 for 1 h at RT. The reaction was quenched with
0.2 M Tris-HCl pH 8.0 at room temperature for 1.5 h, and the
antibody-conjugated beads were washed with IP buffer and
used for IP reaction.

Demethylation assays

The PHF21A-containing complexes were immunoprecipi-
tated with 50 ug of crosslinked antibody for 3 h at 4 �C. One ug
of recombinant designer demethylated nucleosomes (Epi-
Cypher) was incubated with the PHF21A-containing com-
plexes from 293T cells, LUHMES cells, or the mouse cortices
for 3.5 h at 37 �C in histone demethylation buffer (50 mM
Tris-HCl at pH 8.0, 50 mM KCl, 0.5% BSA, 5% glycerol,
0.5 mM DTT). The demethylation activity was measured by
the appearance of monomethylation in WTN using specific
methyl-histone antibodies listed above.

Co-IP-MS

The immunoprecipitated protein was isolated from MEF
cells and DIV7 neurons of E16.5 or P0 mouse cortices with
the abovementioned in-house PHF21A antibody. Rabbit IgG
from unimmunized rabbits (Jackson ImmunoResearch) was
used as a control. pus (n = 3�4). The PHF21A-complex was
immunoprecipitated with 40 ug of a-PHF21A antibody as
described above, eluted by 0.1% trifluoroacetic acid, and
neutralized by 200 mM EPPS (4-(2-hydroxyethyl) piperazine-
1-propane sulfonic acid) buffer. Then, samples were added to
a 1:1 mixture of 2X Laemmeli buffer boiled for 10 min at 100
�C. Proteins were separated on a 4 to 20% SDS-PAGE gel
(Biorad 4561096, 5671095) and visualized with a Piece Silver
Stain kit (Thermo 24612) according to the manufacturer’s
protocol. The samples were multiplex with isobaric tandem
mass tags (TMT) and analyzed with Orbitrap Fusion Tribrid
Mass Spectrometer at Thermo Fisher Scientific Center for
Multiplexed Proteomics at Harvard Medical School (Cam-
bridge, MA). Gene ontology (GO) annotation analysis was
performed using Metascape (41).
Phf21a exon 13 knockout (Phf21a-Dn) mouse

CRISPR/Cas9 technology was used to introduce double-
strand breaks upstream and downstream of Phf21a exon 13.
The mouse Phf21a gene (ENSMUSG00000058318) is located
on the forward strand of Chromosome two from nucleotides
92,014,451 to 92,195,011 (GRCm39). Loss of exon 13 will
cause an out-of-frame mRNA with multiple premature
termination codons expected to trigger nonsense-mediated
mRNA decay (55). The CRISPOR algorithm (56, 57) was
used to identify highly specific single guide RNAs (sgRNA) in
introns 12 and 13: intron 12 sgRNA (C189C): 50-AAGGT-
TAATACACAGGCCAG (PAM = AGG)-3’ (CFD score of 85).
Intron 13 sgRNA (C189Y): 50- AAAATGATCTTACA-
TACCTT (PAM = TGG)-30, (CFD score of 69).
Phosphorothioate-modified sgRNA was synthesized by Syn-
thego (58, 59). Each sgRNA (30 ng/ul) was complexed with
enhanced specificity (eSP) Cas9 protein (50 ng/ul from
Millipore-Sigma (60) and individually validated for causing
chromosome breaks in mouse zygotes. The ribonucleoproteins
(RNPs) were microinjected into fertilized mouse eggs. Eggs
were placed in culture until they developed into blastocysts.
DNA was extracted from individual blastocysts for analysis.
PCR with primers spanning the predicted cut sites was used to
generate amplicons for Sanger sequencing (61). To
test sgRNAs C189C and C189Y, a 668-bp amplicon
was produced with forward primer: 50- GTCTGAACTGT-
TAGCAAAGAGACACAGAAA-30; and reverse primer 50-
AGAGAGTACATGTCCCCAAGTTACTTAC-30. Sequencing
electropherograms of amplicons from individual blastocysts
were evaluated to determine if small insertions/deletions
caused by non-homologous end joining (NHEJ) repair of
chromosome breaks were present (62). Using high-specificity
sgRNA and enhanced specificity Cas9 protein dramatically
reduces the likelihood of off-target hits in mice (63). The
CRISPR reagents were microinjected into fertilized mouse eggs
produced by mating superovulated C57BL/6J female mice
(Jackson Laboratory stock no. 000664) with C57BL/6J male
mice as described (64). CRISPR/Cas9 microinjection of zygotes
produced founder mice. Generation zero founder (G0) pups
were identified by Sanger sequencing of the PCR amplicons
spanning the expected deletion. G0 founders were mated with
wild-type C57BL/6J mice to obtain germline transmission of
the Phf21a mutant allele. Phf21a-Dn mice were backcrossed
into C57BL/6J for at least five generations to remove off-target
mutations.
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Mice

We bred the animals in groups of one or two under specific
pathogen-free conditions (ad libitum access to food and water,
12:12 light: dark cycle, light on at 06:00 AM). Mice were tagged
using ear punch and randomly assigned to each experiment.
Timed-pregnant CD-1 mice were purchased from Charles
River to obtain E16 embryos and P0 pups. All animal use
followed NIH guidelines and approved by the University of
Michigan Committee on Use and Care of Animals.

Expression plasmids

PHF21A-c, PHF21A-n, LSD1-c, and LSD1-n cDNAs cloned
into pENTR-D-TOPO, the Gateway Entry System (Invitrogen)
entry vector, were previously described (8). Full-length coding
sequences of BRAF35 and iBRAF were synthesized (Twist
Bioscience) and cloned into pENTR-D-TOPO. To prepare
expression plasmids, the cDNA fragments in pENTR-D-
TOPO were transferred to the modified pHAGE plasmids
(8) using LR recombination (Invitrogen 56,484).

Establishment of a stable cell line expressing iBRAF and
transfection

pHAGE plasmid containing iBRAF was co-transfected with
psPAX2 and pMD2.G into 293T cells as previously described
(65). After 2 days of passaging, one ug/ml of puromycin was
added to the medium and selected for >3 days. HEK293 T
cells were transfected with expression plasmids carrying
PHF21A-c, PHF21A-n, LSD1-c, LSD1-n, BRAF35 or iBRAF
cDNAs using Lipofectamine 3000 reagent (Invitrogen) for 24 h
and harvested.

Primary culture of mouse forebrain neurons

The primary culture was performed as previously described
(Garay et al., 2020). Timed pregnant female mice were sacri-
ficed at day E16.5, and embryonic brains were harvested. The
cortices and hippocampi were microdissected, treated with
2.5% Trypsin (Invitrogen, 15,090), quenched by FBS, and then
treated with 1% DNase (Sigma, DN-25) dissociate brain tissue
into neurons. Cells were counted and then plated in Neuro-
basal Media (Gibco, 21103049) with 1x B27 (Gibco,
17504–044), 0.5 mM GlutaMax (Gibco, 21985), 25 uM beta-
mercaptoethanol, and 1% Penicillin-Streptomycin. Before
plating, plates were coated with Poly-D-lysine hydrobromide
(PDL, Sigma P7886, mw 30000–70000) overnight at 37 �C and
then washed with ddH2O three times. Neuron culture cells
were fed every 3 to 4 days by replacing half of the above media
with new media.

Synapse quantification

Forebrain neurons were grown on PDL-coated coverslips
for 14 days without Cytarabine. Then, cells were washed in
artificial CSF (145 mM NaCl, 3 mM KCl, 1 mM CaCl2, 1 mM
MgCl2-6H2O, 8 mM dextrose, 10 mM HEPES), fixed in
paraformaldehyde, quenched by 0.01 M glycine, washed in
PBS, blocked in 10% BSA in PBS, and then incubated with the
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following primary antibodies overnight at 4 �C. Excitatory
synapse markers were PSD95 (NeuroMab K28/43, 1:500) and
vGlut (Synaptic Systems 135303, 1:1000). Inhibitory synapse
markers were used Gephyrin (Synaptic Systems 147111, 1:500)
and vGat (Synaptic Systems 131004, 1:1000). Slides were
washed three times in 3% BSA in PBS, incubated with sec-
ondary antibodies (1:1000) along with DAPI (1 ug/ml), washed
three more times, and then mounted on slides using ProLong
Gold Antifade Mountant (Invitrogen P36930). Slides were
blinded to genotype and imaged using a Nikon A1 inverted
confocal microscope. Images were taken in parts of the slide
where the number of neuron cell bodies was equal. Laser
levels, microscope settings, and subsequent thresholding were
kept equal across all samples. ImageJ was used to separate
channels and threshold the images (66). Then NeuronJ plugin
was next used to trace dendrite segments (67). Finally, the
SynapCountJ plugin was used to assess colocalization of pre-
and postsynaptic puncta along the defined dendrites, and
average synapse density per 100 pixels was reported (68).

Golgi staining and dendritic morphology analyses

The Golgi staining, cryosectioning, imaging, and analyses
were performed as previously described (69). Brains from 2-
months mice, three male animals per genotype, were
dissected and incubated in a modified Golgi-Cox solution for
2 weeks at room temperature. Pyramidal neurons in the frontal
cortex and dorsal hippocampus CA1 per animal were quan-
tified: N = 12 neurons from each animal were measured. For
each neuron, one apical and one basal dendrite are quantified.
Quantification was done using commercially available soft-
ware, NeuroLucida (v10, Microbrightfield, VT), installed on a
Dell PC workstation that controlled a Nikon Eclipse Ni
microscope with Hamamatsu CCD camera (C11440,
ORCA-Flash4.0) (Full Resolution: 2048 pixels × 2048 pixels),
motorized X, Y, and Z-focus for high-resolution image
acquisition (×100 oil immersion) and quantifications. The
morphological analyses included dendritic lengths, spine
counts, and overall spine density. All sample genotypes were
blinded to the analysts throughout the course of the analysis.
After completion, the digital profile of neuron morphology was
extrapolated and transported to a multi-panel computer
workstation, then quantitated using NeuroExplorer program
(Microbrightfield, VT).

Data availability

The row data supporting this study’s findings are available in
University of Michigan Deep Blue data (https://doi.org/10.73
02/y4bw-4n85).
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