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Abstract

Manual segmentation of stacks of 2D biomedical images (e.g., histology) is a time-consuming task 

which can be sped up with semi-automated techniques. In this article, we present a suggestive 

deep active learning framework that seeks to minimise the annotation effort required to achieve a 

certain level of accuracy when labelling such a stack. The framework suggests, at every iteration, 

a specific region of interest (ROI) in one of the images for manual delineation. Using a deep 

segmentation neural network and a mixed cross-entropy loss function, we propose a principled 

strategy to estimate class probabilities for the whole stack, conditioned on heterogeneous partial 

segmentations of the 2D images, as well as on weak supervision in the form of image indices that 

bound each ROI. Using the estimated probabilities, we propose a novel active learning criterion 

based on predictions for the estimated segmentation performance and delineation effort, measured 

with average Dice scores and total delineated boundary length, respectively, rather than common 

surrogates such as entropy. The query strategy suggests the ROI that is expected to maximise 

the ratio between performance and effort, while considering the adjacency of structures that may 

have already been labelled - which decrease the length of the boundary to trace. We provide 

quantitative results on synthetically deformed MRI scans and real histological data, showing that 

our framework can reduce labelling effort by up to 60 – 70% without compromising accuracy.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
*Corresponding author. alessia.atzeni.14@ucl.ac.uk (A. Atzeni). 

Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Supplementary material
Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.media.2022.102549.

HHS Public Access
Author manuscript
Med Image Anal. Author manuscript; available in PMC 2024 November 29.

Published in final edited form as:
Med Image Anal. 2022 October ; 81: 102549. doi:10.1016/j.media.2022.102549.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/4.0/


Keywords

Segmentation; Deep learning; Active learning; Partial annotation; Histology

1. Introduction

1.1. Motivation

Histology concerns the study of the microanatomy of cells and biological tissue through the 

microscopic examination of in vivo (via biopsy) or ex vivo specimens (Culling, 2013). In 

the case of ex vivo, the specimen often consists of a block of tissue embedded in paraffin 

wax which is cut into thin sections with a microtome, mounted on glass slides, and stained 

to enhance the visualisation of different microanatomical features (e.g, cytoarchitecture, 

Bancroft and Gamble 2008). Examples of structural stains commonly used in histology 

include haematoxylin and eosin (H&E) or Luxol fast blue with cresyl violet (LFB/CV).

While the most common application of human histology is clinical pathology, there 

is growing interest in its application to 3D atlas building in neuroimaging: since 

histological sections can be digitised at sub-micron resolution, they enable differentiation 

and characterisation of structures that are not visible with mm-scale imaging (e.g., MRI). 

Three-dimensional histological atlases of the brain provide superior levels of detail than 

their MRI counterparts. Examples of histological atlases in human neuroimaging include 

Iglesias et al. 2018 and Krauth et al. 2010 (thalamus); Yelnik et al. 2007 (basal ganglia); 

Chakravarty et al. 2006 (basal ganglia and thalamus); Adler et al. 2014 (hippocampus); 

Cartmell et al. 2019 (nucleus accumbens); or Amunts et al. 2013 and Ding et al. 2016 

(whole human brain).

Building histological atlases presents two major challenges: 3D registration (“histology 

reconstruction”) and manual delineation. Histology reconstruction is needed because 

specimen preparation greatly distorts the geometry of the tissue, due to cutting and 

mounting. A number of dedicated registration algorithms exist to solve this problem (Pichat 

et al., 2018), many of which rely on an external reference volume acquired prior to cutting 

(e.g., an MRI scan) in order to avoid errors like “banana effect” (Yang et al., 2012) and 

z-shift (Pichat et al., 2017).

The second challenge, which we address in this paper, is the need for manually segmenting a 

large number of thin sections at a very high level of detail, making this task very challenging 

compared to its mm-scale counterpart. Manual delineation by an expert is considered the 

gold standard in segmentation, as it is assumed to provide the partitioning closest to the 

underlying “true” anatomy. However, it is very tedious and time-consuming, which limits 

sample sizes. This problem is exacerbated in histological atlas building, due to the large 

number of images that need to be labelled. Moreover, naïve manual segmentation of such 

datasets is intrinsically inefficient, due to the high similarity between adjacent sections or 

images in the stack, making a large part of the annotations redundant.
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1.2. Related work

Semi-automated, interactive, and suggestive (active learning) strategies have been developed 

to decrease the time required by manual segmentation. Here we provide a short survey of 

existing techniques under this classification – bearing in mind that there often exists overlap 

between the groups, e.g., some suggestive methods are interactive, whereas others ultimately 

seek to build an automated system.

1.2.1. Semi-automated and interactive segmentation—In semi-automated 

algorithms, the user provides a relatively small amount of input, e.g., a brushstroke, 

bounding box or landmarks on a single 2D image; or dense labels for one 2D image in 

a stack (or a slice in a 3D volume). Then, an automated algorithm uses this input to produce 

a dense segmentation. If these algorithms run quickly enough, they can also be used in an 

interactive fashion, with the option of progressively refining the segmentation by providing 

additional input.

One of the first interactive algorithms developed to quickly contour objects within 2D 

images is Intelligent Scissors (Mortensen and Barrett, 1998). In this method, the user is 

required to interactively place landmark points in proximity to an object edge, after which 

a minimum cost path to any other point in the image is computed and a live-wire which 

wraps around the object of interest is generated to ultimately form a closed contour. Another 

type of interaction consists of drawing a bounding box around the ROI. One representative 

example of this approach is GrabCut (Rother et al., 2004), which treats the pixels outside 

the bounding box as certain background, and solves the segmentation task by iteratively 

minimising an energy functional with graph cuts (Boykov et al., 2001) – with possible 

refinement through additional scribbles. A third type of interaction consists of brushstrokes 

drawn by the user on the background and foreground. Widespread methods which made use 

of this type of interaction include Random Walker (Grady, 2006) and GeoS (Criminisi et al., 

2008). In Random Walker, each pixel is assigned the label with the maximum probability 

of being reached by a random walk starting from the scribbles corresponding to that label. 

GeoS casts segmentation as approximate energy minimisation problem in a conditional 

random field, and adds a parallel filter operator built upon geodesic distance maps derived 

from the scribbles to produce a spatially smooth and contrast-sensitive segmentation.

The aforementioned interactive segmentation algorithms can be either directly applied to 3D 

volumes (GrabCut, Random Walker, GeoS), or generalised to 3D datasets (see Falcão and 

Udupa 2000; Grady 2008; Iglesias 2017 for extensions of smart scissors to 3D). However, 

these 3D versions assume continuous volumes and are not design to cope with stacks of 2D 

images, as in histology.

A different approach for semi-automated segmentation, which has proven effective with 

2D images, 3D volumes, and stacks of images, is to use a supervised approach, using 

partial manual labels as training data. One family of such approaches is registration-based 

segmentation, best represented by its multi-atlas version (MAS) (Iglesias and Sabuncu, 

2015; Rohlfing et al., 2004). These algorithms non-rigidly register a set of labelled images 

(“atlases”) to a test image, and merge the deformed labels into a segmentation with a label 

fusion approach. MAS is directly applicable to stacks of 2D images if the 2D slices used as 
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atlases are fully labelled, since the registration of adjacent images is often accurate (Atzeni 

et al., 2018).

Another family of supervised techniques which achieves state-of-the-art performance in 

many automated medical image segmentation tasks relies on voxel classifiers trained on 

a subset of labelled voxels, e.g., brushstrokes, or labelled slices. This approach is well 

represented by Arganda-Carreras et al. (2017), included in the Fiji software (Schindelin 

et al., 2012), which uses brushstrokes to train classical classifiers, such as random forests 

(Breiman, 2001) and support vector machines (Boser et al., 1992; Cortes and Vapnik, 1995). 

Such classifiers can be trained and updated quickly, allowing their use in an interactive 

manner.

Modern approaches rely on convolutional neural networks (CNNs) for segmentation, such 

as the widespread U-net or V-net architectures (Ronneberger et al., 2015; Milletari et al., 

2016). Çiçek et al. (2016) presented a semi-automated setup, in which a deep network 

is trained from scratch using a sparse set of manual annotations on a volume (e.g., three 

orthogonal slices), and then applied to the whole volume to obtain a dense segmentation. 

Training from scratch takes a long time and precludes interactive segmentation. Instead, 

fine-tuning a pre-trained network can keep the algorithm interactive. For example, Wang et 

al. (2018) integrates CNNs with bounding box and scribble-based interactions for interactive 

2D and 3D medical image segmentation. In the context of natural image segmentation, 

Jang and Kim (2019); Kontogianni et al. (2020) use the user-provided clicks to finetune the 

weights of the CNN. In our previous work (Atzeni et al., 2018), we start from a subset of 

labelled 2D histology sections and produce a dense segmentation of the whole image stack 

by integrating MAS and a CNN.

A number of modern machine learning methods use “guidance maps” to produce 

segmentations from an input image and a small number of clicks. These are heat maps 

which play the role of spatial priors, and are typically fed as an additional input channel to 

a segmentation CNN. For example, Zhang et al. (2020b) build guidance maps by centring 

2D Gaussians on the centre and corners of the object, provided by the user with three clicks. 

Further clicks can be interactively added at test time to refine the guidance maps. Maninis 

et al. (2018) is very similar, but allows the user to click on extreme points, determining 

the location of the Gaussians on the guidance maps. Rather than using Gaussians, Luo et 

al. (2021) utilise the geodesic distance transform from the user provided clicks (which can 

be easily updated with additional clicks) to recompute the guidance map and interactively 

update the segmentation. Majumder and Yao (2019) use multiple, more sophisticated 

guidance maps which align with both low-level and high-level image structures present 

in the scene; the former are represented with superpixels, and the latter with region-based 

object proposals.

Rather than using CNNs to make prediction at the pixel or voxel level, some approaches 

seek to model the contour of the objects instead. For example, Castrejon et al. (2017) 

and Acuna et al. (2018) propose interactive methods based on recurrent neural networks 

that predict the vertices of a polygon outlining the object; this approach enables the 

user to correct vertices if needed. An evolution of this method (Ling et al., 2019) uses 
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graph convolutions to predict the whole outline at once, rather than sequentially. This 

idea of fitting contours to has also been applied to medical images by Tian et al. 2020 

(prostate segmentation in MRI) and by Williams et al. 2021 (levator hiatus segmentation 

in ultrasound); the former use a graph CNN, whereas the latter explicitly deform an active 

contour in order to minimise an energy function combining the output of a (fixed) CNN and 

the location of landmarks placed by the user.

Rather than assuming that user interactions are independent, some works have sought to 

exploit their spatial and temporal correlation. For example, Liao et al. (2020) and Ma 

et al. (2020) model the dynamic process for successive interactions using multi-agent 

reinforcement learning, where every voxel is an agent. Similarly, Lin et al. (2020) consider 

the different importance of clicks depending on their order, and propose a “First Click 

Attention Network” to make better use of the crucial first click. However, none of the 

aforementioned supervised approaches take into account the contribution of the manual 

annotations towards the segmentation accuracy in relation to the labelling effort. Such effort 

can be minimised with active learning frameworks, which automatically suggest which 

unlabelled images (or regions) to annotate, in order to increase segmentation performance 

with minimal manual tracing effort, thus allocating human effort more efficiently (Settles, 

2012).

1.2.2. Suggestive segmentation with active learning—Active learning is 

motivated by machine learning problems where data may be abundant but labels are scarce 

or expensive to obtain. Active learning aims to train a robust supervised or semi-supervised 

system with as little manual labelling as possible, by suggesting to the user what subset 

of the available data to label, in order to maximise the performance of the model. In 

segmentation, if the learning algorithm is fast enough, it can be used in an interactive setting, 

e.g., requesting the user to manually segment the optimal slice (or slices) in a 3D scan that 

will enable automated segmentation of the rest of the volume.

Most active learning approaches rely on: (i) training an initial classifier with a small set 

of manually labelled data; (ii) estimating the informativeness of unlabelled instances and 

requesting a label for the most informative sample (e.g., a point, region, image, or volume); 

(iii) retraining the classifier; and (iv) iterating (i)-(iii) until the desired performance level 

is reached. Common querying (informativeness) criteria for step (ii) include: uncertainty 

sampling, where the active learner selects the instances about which it is least certain how 

to label (e.g., with maximum entropy, Lewis and Gale 1994); decision-theory, where the 

framework selects the instance that would lead to the greatest change to the current model 

if its label was known (e.g., Cohn et al. 1996); or hypothesis space search, which aims to 

reduce the set of all classification hypotheses consistent with the ground truth (e.g., with 

query by committee, Freund et al. 1997).

Active learning strategies have been extensively used in computer vision, and have been 

shown to reduce labelling effort and increase learning speed in object recognition tasks 

(Aghdam et al., 2019; Kapoor et al., 2007; Vijayanarasimhan and Grauman, 2011), 

classification problems (Li and Guo, 2013; Wang et al., 2016), and semantic segmentation 

(Konyushkova et al., 2015; Mackowiak et al., 2018; Siddiqui et al., 2020; Vezhnevets et 
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al., 2012). In the context of medical images, they have been shown to reduce training 

sample sizes in a wide array of scenarios, both with classical and modern machine 

learning techniques. Examples of the former include: computer-aided diagnosis of diabetic 

retinopathy (Sánchez et al. 2010, based on uncertainty sampling and query-by-bagging); 

segmentation of different organs in CT and MRI scans (Iglesias et al. 2011; Top et al. 2011); 

or patient-specific 3D heart models for surgical planning (Pace et al. 2015).

The more recent literature on active learning in biomedical imaging relies almost exclusively 

in deep learning architectures. The type of interaction and strategies to measure the 

usefulness of a potential annotation vary widely across studies. For example, Yang et 

al. (2017) assess uncertainty as the variance over bootstrapped predictions (Efron and 

Tibshirani, 1994) in histology segmentation task, and then use cosine similarity to pick 

representative examples that are given to the user for manual segmentation. Similarly, 

Kuo et al. (2018) use an ensemble to estimate uncertainty in an intracranial haemorrhage 

segmentation task (with the Jensen-Shannon divergence), but also attempt to predict the 

manual delineation time with a log-linear model; they select for manual segmentation the 

examples that maximise the sum of uncertainties within a given time budget. In the context 

of cell instance segmentation, Wang and Yin (2021) also use model ensembles to prompt 

the user to label the cells that maximise a combination of uncertainty, diversity (measured 

with a clustering algorithm), and representativeness – measured with the cosine similarity 

of features extracted with the first 10 layers of VGG16 (Simonyan and Zisserman, 2014) 

pretrained on ImageNet (Deng et al., 2009).

Rather than using ensembles, Wang et al. (2020) use grouped convolutions to obtain 

multiple candidate segmentations of fetal brain in MRI, compute a slice-wise uncertainty, 

and prompts the user to manually correct the slice with highest uncertainty. In a pulmonary 

nodule detection task, Liu et al. (2020) also avoid ensembles by ranking the samples to 

be labelled with an uncertainty loss explicitly predicted by multi-layer feature maps. In a 

vessel segmentation task in ocular images, Xu et al. (2021) choose patches for the user 

to densely segment by picking the one with the smallest sum of squared deviations from 

p = 0.5, which is a simple surrogate for uncertainty, similar to the entropy, and which does 

not require ensembling. A quite different approach was presented by Dai et al. (2020) in 

the context of brain tumour segmentation: they choose the most informative example by 

taking a step in image space along the direction of the gradient of the loss (which is Dice), 

and finding the nearest neighbour of this image in a lower dimensional latent space learned 

with a variational autoenconder (Kingma and Welling, 2013). Finally, we would like to 

pinpoint that types of interaction other than clicks, contours, masks, and labels have been 

presented. For example, Cai et al. (2021) request user interaction at the super-pixel level, 

which they find to be more time efficient than polygons; they measure uncertainty with 

the Best-versus-Second Best (BvSB) margin Joshi et al. (2009), i.e., the ratio between the 

posteriors of the two most likely classes at each pixel.

A recent, comprehensive survey of deep active learning and suggestive methods for medical 

image segmentation can be found in Budd et al. (2021).
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1.2.3. Partially annotated data—An often overlooked aspect in interactive 

segmentation of 2D stacks is the fact that human labellers often desire to improve the 

segmentation of a certain structure by labelling it in additional images, but without having to 

label all other structures on that image. While it is trivial to train a pixel classifier using only 

the labelled ROIs, this approach fails to exploit the information in the unlabelled pixels, e.g., 

the fact that they do not belong to any of the labelled ROIs. A similar problem is faced by 

applications where there are multiple annotators but no gold standard due to the challenges 

associated with generating ground truth labels (Raykar et al., 2009; Tanno et al., 2019; Yan 

et al., 2010; Zhang et al., 2020a).

In the context of MAS, Commowick et al. (2012) proposed to ameliorate the effect of 

missing labels by adding a prior on the confusion matrices to the STAPLE algorithm 

(Warfield et al., 2004). Also in the context of MAS, Iglesias et al. (2015) proposed a 

family of probabilistic models for label fusion suited for scenarios in which different 

manual delineation protocols with potentially disparate structures have been used to annotate 

the training scans. The generative model assumes that the atlases have a hidden “fine” 

segmentation with all the structures present in the training data, and that the actual observed 

labels have been obtained by collapsing groups of hidden fine labels into more general, 

coarse labels. This idea has been adapted to the training of deep segmentation networks 

with heterogeneously labelled datasets. Essentially, the network predicts segmentations at 

the finest level of detail (i. e., with all possible labels), while losses (e.g., cross-entropy, 

Dice) are computed at the (generally coarser) level of each dataset, merging classes in the 

prediction as needed. In the context of cross-entropy, such generalised loss have been named 

“marginal cross-entropy” or “super--label-aware cross-entropy” (Kemnitz et al., 2018; Ram 

and Sabuncu, 2018; Fang and Yan, 2020). A generalised Dice was used by Shi et al. (2021).

1.3. Contribution

As previously mentioned, active learning can be used to assist the learning procedure by 

optimising the selection of unlabelled samples for human labelling. However, the methods 

described in Section 1.2.2 use querying objective functions which do not necessarily 

represent what the annotator is interested in, e.g., entropy rather than Dice scores. Moreover, 

existing techniques do not use adequate surrogates of the time it takes to label an ROI, often 

assigning a constant cost to every slice or structure. Therefore, there is a clear need for better 

proxies for the annotation effort.

In this paper, we propose a solution to these problems via a novel active learning framework 

for suggestive and interactive segmentation of 2D stacks of images, which exploits a 

number of practically useful sources of information that are often disregarded by suggestive 

methods. Specifically, our method:

• Requests the manual delineation of a single ROI on a single slice at every 

iteration – as opposed to, e.g., labelling all the structures on a slice or volume 

– and updates a segmentation CNN that produces dense segmentations for 

all slices using a principled mixed-cross entropy loss that effectively exploits 

partially annotated images.
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• Exploits, in a principled manner, weak supervision in the form of boundary 

image indices for each structure, which labellers commonly use in practice (e.g., 

“a certain ROI first appears in image i1 and last appears in image i2”).

• Seeks to optimise the metric we are interested in (average Dice), rather than a 

proxy (e.g., entropy).

• As Kuo et al. (2018), we use a realistic surrogate for effort (tracing time) 

based on boundary length, but we also account for multiple ROIs and their 

spatial relationships, e.g., segments already labelled as part of the boundary of a 

neighbouring ROI.

To the best of our knowledge, this is the first method for active learning segmentation 

which seeks to directly optimise Dice while accounting for the boundary length of the 

different ROIs (including shared boundaries when available), while effectively exploiting 

partial annotations – and thus supporting annotations of one ROI on one 2D image at the 

time.

2. Methods

Our proposed method aims to help the human annotator to use their time more efficiently 

by prompting them to delineate structures which help a segmentation CNN learn faster, 

i.e., using less training data. Furthermore, it requests delineations of specific ROIs on 

specific slices at every step, thus avoiding having to label all the ROIs on a 2D image 

at every iteration. The method consists of three main components (Fig. 1). First, a mixed 

cross-entropy segmentation loss, inspired by our previous work (Iglesias et al., 2015), which 

estimates probabilities from weak annotations (partially annotated images and boundary 

image indices). Second, a predictor for the annotation effort. And third, a novel query 

strategy for iterative structure suggestion that accounts for the chosen objective metric and 

annotation effort, including shared boundaries. The model is flexible in terms of CNN 

architecture and in terms of objective metric (e.g., Dice score or pixel accuracy).

2.1. CNN training with sparse labels and weak annotations

Let in x n = 1, …, N be a stack of N 2D images defined on discrete coordinates x over image 

domains Ωn n = 1, …, N (with Ωn ⊂ ℝ2), and let ln x n = 1, …, N be the corresponding segmentations 

(discrete label maps) that we seek to obtain, where ln x ∈ ℭ (and ℭ = 1, …, C  is the set of 

C possible labels).

At any stage of our active learning process, the pixels in every image n in the stack can be 

divided into two sets: the set of manually labelled pixels Ln, and the set of unlabelled pixels 

Un:

Ln = x ∈ Ωn:x is labelled and has label ln x ∈ ℭ
Un = x ∈ Ωn:x is not labelled and we know that ln x ∈ ℭn ,

where ℭn ⊆ ℭ is the set of possible labels that the unlabelled pixels in image n are compatible 

with (further details below). Therefore:
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ln x ∈ ℭ, ∀x ∈ Ωn,
ln x ∈ ℭn, ∀x ∈ Un,
ln x ∉ ℭn, ∀x ∈ Ln .

(1)

The set ℭn is informed by two different sources. First, the set of labels present in Ln Such 

labels are excluded from ℭn: if an ROI has already been labelled, no pixel outside it can 

belong to that class anymore. The second source of information is weak supervision in the 

form of boundary image indices for each structure, i.e., structure c first appears in image 

n = nc1 and last appears in image n = nc2. Note that labellers routinely identify the images 

where each ROI is present, so exploiting this information is of high practical importance. 

Specifying nc1 and nc2 only requires two mouse clicks while the labeller is inspecting the 

sections and does not involve any delineation. Furthermore, if the labeller is not confident 

about the presence or absence of a specific structure in an image, they can add a safety 

margin to the boundary image indices. In sum:

c ∈ ℭn, if n ≥ nc1 ∧ n ≤ nc2 ∧ ¬Anc,
c ∉ ℭn, oherwise,

where Anc ∈ 0,1  is a binary variable that specifies whether structure c has been annotated in 

image n.

Now, let fn x; θ = f1
n, …, fC

n T  be the probability of the pixels in image n belonging to 

the class c, as estimated by a CNN with parameters θ. In order to estimate θ (i.e., train 

the CNN), we follow our previous work in MAS (Iglesias et al., 2015) and extend the 

classic cross entropy function to accommodate partial annotations and weak supervision. 

Specifically, when the CNN is presented image in during training, it will predict probabilities 

for all the labels c ∈ E. In training, we merge (sum) for every input image the predictions 

for the labels in the set ℭn into a generic background label. This merged “background” 

can be compared against the unlabelled pixels in the training set to compute the loss 

and backpropagate through the CNN to update its parameters θ. Specifically, the training 

optimises the following loss function:

ℒ θ = −
n = 1

N

x ∈ Ln

logfl x
n x; θ +

x ∈ Un

log
c ∈ ℭn

fc
n x; θ

(2)

The loss in Eq. (2) can be optimised with any standard optimiser (e. g., Adam; Kingma and 

Ba 2014). We note that the classical cross entropy loss is recovered if the image n is fully 

annotated, i.e., Un = ∅, and a naive cross entropy loss ignoring missing data is obtained if 

only the labelled pixels are used in training, i.e., if the second term is disregarded and the 

known information on the unlabelled pixels is not exploited.
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Once the CNN has been trained, it can be used to classify all the images in the stack. Since 

there is no guarantee that the prediction of the CNN will satisfy the constraints in Eq. (1), 

we combine the CNN output and the constraints with Bayes’s rule in order to obtain the final 

label probabilities at the current iteration. The probability pc
n x  of class c at location x of 

image n is given by:

pc
n(x ∣ Ln, Un, ℭn; θ =

δ c = ln x , if x ∈ Ln,
fc

n x; θ / ∑
c′ ∈ ℭn

fc′
n x; θ , if x ∈ Un ∧ c ∈ ℭn ,

0, otherwise .

(3)

At any time of the learning process, the hard segmentation of each image n is given by:

Sn x = argmax
c

pc
n x ∣ Ln, Un, ℭn; θ .

(4)

2.2. Annotation effort estimation

To overcome the lack of knowledge about the annotation effort in terms of delineation 

time, we choose to use the structure boundary length as a proxy. This choice accounts 

for the increasing manual labelling time with the size of an ROI and the irregularity of 

its boundaries. For example, manually tracing a convoluted structure such as the cerebral 

cortex takes more time than labelling a structure with the same area but regular boundaries. 

Moreover, we consider neighbouring labelled ROIs when computing the boundary length, by 

subtracting the length of the shared boundary (see example in Fig. 2).

In order to estimate the effort (i.e., boundary length) that is required to label an ROI or a 

certain image, we maintain a symmetric C × C matrix B = Bcc′  with the cumulative averages 

of the boundary lengths of the structures, as well as the averages of the shared boundary 

lengths between pairs of structures. Specifically, Bcc stores the average boundary length of 

structure c (in pixels), and Bcc′ = Bc′c stores the average length of the boundary shared by c and 

c′ :

Bcc = ∑n = 1
N Anc ℓ ln = c
ϵ + ∑n = 1

N Anc
,

Bcc′ = ∑n = 1
N AncAnc′ ℓ ln = c, ln = c′

ϵ + ∑n = 1
N AncAnc′

,

where ℓ M  is the boundary length (in pixels) of a binary mask M, and ℓ M, M′  is the 

shared boundary length of two binary masks. We note that ϵ is a small constant that places 

a very weak prior (around zero) on the boundary lengths. This design choice does not have 
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any practical implications for the diagonal of B, since we assume that every ROI has been 

labelled once before starting the active learning (see Section 2.4 below). However, the prior 

keeps the estimates of the shared boundary lengths to zero for all structure pairs, until 

examples have been observed (i.e., c and c′ labelled in the same image n). We note that 

adding a prior with a positive length value would encourage the active learning to explore 

many label pairs in the same image, which actually hinders the performance of the active 

learning approach described in Section 2.3 below, given the large amount of neighbouring 

pairs that the framework would be encouraged to explore.

Given the current estimate of B, the estimated effort (remaining boundary length Rnc) 

required to delineate structure c on image n is estimated as:

Rnc = Bcc − ∑
c′ = 1

C
Anc′Bcc′, if c ∈ ℭn

0, otherwise .

(5)

Note that if on a given image n all the ROIs neighbouring class c have been labelled, then the 

remaining required effort for that ROI c in image n is considered to be zero, i.e., Rnc = 0.

2.3. Active learning querying strategy

Let n t
t = 1, …, T

 and c t
t = 1, …, T

 be, respectively, the sets of images and classes delineated 

by the labeller in T  annotation steps, i.e., at iteration t, the the user annotated the ROI 

corresponding to class c t  on image number n t . The cumulative segmentation accuracy 

metric (average Dice score) D and annotation effort E are functions of these two sets:

D T = gD n t
t = 1, …, T

, c t
t = 1, …, T

,

E T = gE n t
t = 1, …, T

, c t
t = 1, …, T

.

Ideally, if the exact functions gD and gE were known, we could design an optimal querying 

strategy which, e.g., minimises the effort E required to achieve a minimum Dice score 

Dmin, or maximises D without surpassing a maximum effort Emax (i.e., a “labelling budget”). 

However, given that these functions are unknown, most active learning strategies rely on 

greedy approaches that seek to optimise a combined function accuracy and effort one step at 

the time.

Quantifying the exact annotation effort in terms of annotation time is almost always 

unfeasible, so surrogates for E are required. Most existing active learning methods 

for medical image segmentation request the labelling of an image or volume without 

considering the time cost that may be associated with it, and also use the number or images, 

patches or pixels as a proxy for time cost in evaluation (e.g., Top et al. 2011; Pace et al. 
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2015; Yang et al. 2017; Dai et al. 2020; Xu et al. 2021). However, ROIs require different 

labelling time depending on their size, shape, and spatial relation to the rest of the image. 

For this reason, we consider the annotation effort as being class-specific and dependent 

on the surrounding ROIs that may have already been labelled (as described in Section 2.2 

above), such that:

ΔE T = E T − E T − 1 ∝ Rnc
T .

A common surrogate for the function D T  – or rather the increment ΔD T = D T − D T − 1

– is the entropy of the candidate samples according to the current classifier, such that 

the framework queries the unlabelled examples for which the segmentation model is most 

uncertain. This approach is suboptimal, as the most uncertain data often comprise out-of-

distribution examples. Instead, we argue that a more effective querying criterion would 

aim to directly optimise the expectation of a segmentation accuracy metric chosen by the 

labeller (Dice, in our case). To this end, we propose a simple method to predict the classifier 

performance at each iteration T  from the performance for each ROI over previous iterations:

Dc
T = αDc

T − 1 + 1 − α Dc
T − 2 ,

(6)

where Dc is the Dice score for class c, and α is a smoothing parameter to balance the 

contribution of the current and past performance of the classifier. Note that the real Dc
T − 1

is known once the labels for iteration T − 1 have been provided by the annotator and the 

classifier has been updated, as it can simply be computed as the Dice score between the hard 

segmentation computed with Eq. (4) and the available manual annotations averaged across 

images in the stack. While this strategy lags one step behind (compared with, e.g., entropy-

based approaches), it has the advantage of using the metric of interest (Dice) directly, rather 

than a surrogate.

Given our estimates of Dice and effort, we propose to maximise the ratio between their 

increments at every iteration:

n T , c T = argmax
n, c

ΔDc
T

ΔE T = argmax
n, c

ΔDc
T

Rnc
T .

In practice, we have found the estimates of Dice improvement ΔDc
T  to be too noisy. Better 

results are obtained by replacing it by the complement of the Dice score, i.e., the room for 

improvement, such that our final active learning criterion is:

n T , c T = argmax
n, c

1 − Dc
T

Rnc
T .

(7)
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2.4. Implementation details

2.4.1. Network architecture—Our implementation relies on a simple fully 

convolutional network (FCN) built on top of a VGG-16 architecture (Simonyan and 

Zisserman, 2014). Skip connections were added between lower and higher layers, enabling 

dense prediction at input resolution; further details can be found in Long et al. (2015).

2.4.2. Network training—Training sought to minimise Eq. (2), combined with a L2-

norm penalty on the network weights (with relative weight 0.0001). During training, images 

and labels were augmented with random geometric (rotation, translation, scaling, shearing, 

non-linear deformation) and intensity (brightness, contrast) perturbations, randomly cropped 

to patches of size [128, 128], and min-max normalised. Nonlinear deformation was achieved 

by independently sampling a bivariate Gaussian distribution (diagonal covariance, σ = 4
pixels) with x, y  shifts at a set of control points, located on regular grid with 5 pixel 

spacing; a dense field is obtained by interpolating the shift between the control points. The 

rest of augmentation parameters were sampled from uniform distributions, with minimum 

and maximum values summarised in Table 1.

The network weights were optimised with a stochastic gradient descent algorithm with 

momentum 0.9 (Qian, 1999) and batch size 8. We follow the experimental setup of Long 

et al. 2015 and set the learning rate to 0.05 for the initial fine-tuning and to 0.005 for 

the further fine-tuning, as they provided good performance in previous work on histology 

(Atzeni et al., 2018). We trained the initial network for 3,000 epochs (approximately 

10,000–20,000 iterations, depending on the size of the stack), after which we observed 

minimal change in the loss and no perceptible difference in the outputs. During the active 

learning, we fine-tuned the network for 10 further epochs at each iteration t. All models 

were trained on a NVIDIA Tesla V100 GPU.

2.5. Summary of algorithm

The proposed method is summarised in Algorithm 1. It requires an initial set of 

manual annotations Ln n = 1, …, N, which contains at least one segmentation of each structure 

somewhere in the stack of images, and the set of compatible labels for each image 

ℭn n = 1, …, N, acquired through weak annotation. The algorithm starts by initialising the 

VGG-16 portion of the network with publicly available weights resulting from training 

on ImageNet (Deng et al., 2009). We then make an initial fine-tuning of the network with 

Eq. (2) (i.e., in a semi-supervised fashion) using all the available partial information: the 

manual annotations in the labelled images, and the boundary image indices for all ROIs. 

This semi-supervised strategy, combined with the ImageNet initialisation, makes training 

robust against overfitting, despite the small amount of labelled pixels.
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After initialising the network, the framework updates the estimated effort according to Eq. 

(5), and produces a segmentation prediction (Eq. (4)) which is the result of the combination 

of the CNN prediction and the constraints derived by the information contained in the partial 

labelling and weak annotation, as described in Eq. (3). The segmentation performance of the 

previous iterations and the estimated effort are then used to formulate a query (i.e., request 

the labelling of an ROI on a given image), according to the selection criteria described in 

Eq. (7). The aforementioned steps are repeated until a stopping criterion is reached. Possible 

stopping criteria include reaching a desired average Dice score or a maximum amount of 

manual annotation effort. We note that the only hyperparameter of our active learning model 

is the smoothing term α (Eq. (6)), which we set to 0.5 in all experiments below.

3. Experiments and results

This section presents two sets of experiments. The first set aims to compare our framework 

with three baseline methods that are commonly used in interactive segmentation with 

active learning: random, slice-wise uniform, and entropy based selection. The second set 

of experiments consists of an ablation study that explores how different elements of the 

method contribute to the final performance of our active learning framework. Both sets 

of experiments are performed on two different datasets: a synthetic dataset consisting of 

artificially deformed brain MRI slices, and a real dataset of thoroughly labelled human brain 

histology.

3.1. Datasets

3.1.1. Synthetic MRI dataset—The synthetic dataset was generated by artificially 

deforming the publicly available 3D MRI dataset from the MICCAI 2013 Challenge 

“Workshop on Segmentation: Algorithms, Theory and Applications (SATA)” (Asman et 

al., 2013). The dataset consists of 35 T1-weighted brain scans acquired on a 3T scanner 

with an MP-RAGE sequence at 1mm isotropic resolution. Fourteen structures were labelled 

by experts in coronal plane: left and right amygdala, caudate, accumbens, hippocampus, 

putamen, thalamus and pallidum. We augmented these labels with left and right white matter 

and cerebral cortex segmentations obtained with FreeSurfer (Fischl et al., 2002; Fischl, 

2012). Labels for contralateral structures were merged.

From these 3D MRI volumes and corresponding segmentations, we synthesised a stack of 

coronal images as follows: (i) Removing the coronal slices of the volume not containing 

diencephalon structures; (ii) Sparsifying the volume, dropping four every five coronal slices 

(i.e., 5 mm spacing); and (iii) Deforming the remaining coronal slices (and corresponding 

segmentations) with 2D deformation fields generated independently for each slice. The 2D 

fields were generated as the composition of a similarity and a nonlinear transform. The 

similarity component is a combination of random rotations, translations and log-scalings, all 

sampled from zero-mean Gaussian distributions, with standard deviations of 10∘, 10 pixels, 

and 0.1, respectively. The nonlinear component is sampled with the same method we used 

for nonlinear augmentation in training (Section 2.4.2). The final stacks had an average of 24 

images, with 256 × 256 pixels each.
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3.1.2. Histology dataset—We also present results for 15 stacks of 2D histology 

sections of human brain tissue. The tissue used for this experiment was donated for 

research to the Queen Square Brain Bank for Neurological Disorders. The dataset consists 

of 15 coronal blocks dissected from three hemispheres from three different human brains. 

Each block was processed for paraffin wax embedding, and subsequently sectioned with 

a sledge microtome at 25μm thickness (see Mancini et al. 2020 for further details on the 

tissue processing). The sections were mounted on 74 × 52mm glass slides, stained with 

Luxol fast blue with cresyl violet, and digitised at 3.97μm resolution. For the purposes of 

this article, we downsampled the images to 160μm resolution (approximately 400 × 300 

pixels), as a compromise between detail and computational requirements. Trained research 

assistants, supervised by expert neuroanatomists, manually segmented one section every ten 

in subcortical blocks (~40 labelled sections per block), and one section every twenty in 

cortical blocks (~20 per block). Blocks have 9 fully labelled sections and 70 different ROIs 

on average (266 unique ROIs in the dataset in total); detailed descriptions of the blocks and 

ROIs can be found in the Supplementary Material.

3.2. Experimental setup

3.2.1. Simulation of user interactions—User interaction was simulated as follows. 

The initial set of manual annotations Ln n = 1, …, N, Un n = 1, …, N, ℭn n = 1, …, N  was created by 

picking for labelling a central section for each ROI. We simulate the user’s choice of central 

section by taking the actual central image for each ROI and randomly picking one within 3 

sections of it. From that point on, the results of the queries are simulated by simply taking 

the ground truth segmentation for the queried section / ROI pair. Since every image stack in 

the real histology dataset has different visible ROIs, we trained a separate, dedicated model 

for every stack with Algorithm 1. The cost of labelling is simply the total boundary length of 

the delineated ROIs, accounting for shared boundaries.

3.2.2. Competing methods—We compare the proposed method against three 

commonly used baselines:

Random selection (henceforth “rand”): this model follows the same steps described in 

Section 2.5, except for the active learning stage where both image and structure indices are 

selected randomly instead of with Eq. (7). Each image and structure in the unlabelled pool 

has an equal probability to be queried.

Slice-wise uniform (henceforth “uniform”): in this model, the manual annotator delineates 

all ROIs (in random order) in one section, before proceeding to the next. Sections are 

labelled in an order that minimises, at every step, the maximum number of consecutive 

unlabelled sections (ties are broken randomly).

Entropy (henceforth “H”): the framework suggests the structure c within the image n for 

which the entropy is maximal, i.e.,
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n, c = argmax
n, c

Hnc, where

Hnc = − 1
Ω x ∈ Ω

pc
n x ∣ Ln, Un, ℭn; θ logpc

n x ∣ Ln, Un, ℭn; θ .

(8)

Entropy with Monte Carlo dropout (henceforth ‘H_dropout”): the entropy given by Eq. 

(8) is often underestimated as it does not account for the uncertainty in the model (i.e., in 

its weights). In order to obtain more realistic estimates of the entropy, we recompute the 

entropy with label probabilities obtained with Monte Carlo dropout (Gal and Ghahramani, 

2016), i.e., replacing pc
n with:

pc
n 1

S ∑
s = 1

s
pc

n x ∣ Ln, Un, ℭn; θs ,

(9)

where S = 20 is the number of Monte Carlo samples, each yielding network weights θs

obtained with dropout at testing with probability 0.5.

3.2.3. Ablation study—In order to quantitatively assess the contribution of each 

element in the proposed active learning framework, we perform an ablation study where, 

starting from the proposed method, we remove or add model components.

The compared models are the following:

BDα (boundary length, Dice, and α).: This is our proposed approach, where CNN 

training is performed using Eq. (2), and the query strategy follows Section 2.3.

Dα (Dice, and α).: We further ablate the boundary length, i.e., we set Bcc′ = 0, ∀c ≠ c′.

BDα−CE (BD α with cross entropy).: We investigate the effect of removing the proposed 

loss (Eq. (2)) and replacing it with a standard cross entropy loss.

HBDα BDα with entropy term).: CNN training is performed using Eq. (2). We add to 

the querying criterion a term with the entropy of the ROI and section at hand according to 

the current classifier, such that the framework optimises:

n T , c T = argmax
n, c

1 − Dc
T Hnc

T

Rnc
T ,

where Hnc
T  is calculated with Eq. (8).
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HD α (Dice and α with entropy term).: CNN training is performed using Eq. (2). We now 

reinstate α and ablate the annotation effort estimate Rnc
T , such that the framework optimises:

n T , c T = argmax
n, c

1 − Dc
T Hnc

T .

HB (entropy and boundary length).: CNN training is performed using Eq. (2). For the 

query strategy we ablate the accuracy prediction and replace it with the entropy, i.e., we 

optimise:

n T , c T = argmax
n, c

Hnc
T

Rnc
T .

3.3. Results

The results of the first set of experiments, which compares the performance of the proposed 

method with three commonly used baselines, are shown in the top row of Fig. 3. The graphs 

show the average Dice score (computed across stacks and ROIs) against the percentage 

of boundary pixels manually labelled for the synthetic (MRI) and real dataset (histology), 

respectively. The plots for the random strategy are averages over five runs. The results are 

consistent across the two datasets: the proposed method generally climbs faster than the 

competing baselines and outperforms them all across the range of labelling efforts.

The method based purely on entropy (which is widely used in the active learning literature) 

is heavily penalised by its bias towards bigger ROIs (please see Figures S4 and S5 in the 

supplement): labelling such structures requires a larger labelling effort, and neglecting small 

ROIs has a detrimental effect on the average Dice. The corresponding curves plateau at 

65–70% Dice for the two datasets, and only increase further when one starts labelling the 

smaller ROIs towards the end. Furthermore, the addition of Monte Carlo dropout does not 

affect this trend, as it suffers from the same bias towards larger ROIs; the results with and 

without Monte Carlo sampling are very similar for both datasets.

The method based on random selection does not have these problems, as it is not biased 

towards any structure or section. However, that also means that it is unable to exploit 

knowledge on structure size, shared boundaries, etc. Neglecting such information seems to 

be particularly inefficient in the histology dataset, due to the higher number of ROIs - and 

thus more complex distribution of neighbouring ROIs and boundary lengths.

In terms of ROIs, the slice-wise uniform approach only has a slight bias towards structures 

that appear on more sections. However, it has (by construction) a very high spatial bias, 

labelling all ROIs in a section before proceeding to the next. While this is an effective way 

of discovering neighbouring relationships, it also precludes sampling of different ROIs in 

different parts of the stack, and also leads to oversampling of large (and thus expensive) 

ROIs. As a result, its performance is worse than that of the random selection method on both 

datasets.

Atzeni et al. Page 17

Med Image Anal. Author manuscript; available in PMC 2024 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In contrast, the proposed method mitigates the effect of structure size by considering the 

typical boundary length. Moreover, it further utilises knowledge on shared boundaries and 

expected Dice score improvements, which the competing methods do not exploit. This 

yields great increases in the Dice scores that can be achieved with a certain labelling budget 

(Tables 2 and 3), or, alternatively, great reductions in the labelling effort that is required 

to achieve a target Dice score (Tables 4 and 5). For example, our approach reduces by 

approximately 75% the effort that is required to achieve a 90% or 95% Dice compared 

with the second-best method (random selection) in the MRI dataset. The reduction is 

approximately 60% in the histology dataset.

The bottom row of Fig. 3 compares our approach with the ablated variants. Each model 

element (mixed cross entropy, boundary length module, estimation of Dice improvement) 

contributes to reduce the effort needed to reach a predefined Dice score, in a statistically 

significant fashion (Tables 2–5). Of these elements, the boundary length estimation is crucial 

for the performance of the proposed algorithm on both datasets – but particularly for the 

histology, where there is a complex network of neighbourhood relationships. It is also 

apparent from the graphs that the entropy term is detrimental to the performance, even when 

used in combination with other elements.

Finally, Figs. 4 and 5 qualitatively compare the results of the queries for the different 

strategies, on the MRI and histology datasets, respectively. Each figure shows a snapshot of 

the manually annotated ROIs when a Dice score of 95% has been reached from the same 

initial set of delineations, which gives an idea of: what ROIs were prioritised and on what 

slices; and how much delineation effort was required to achieve 95% Dice (similar figures 

for 90% Dice score are shown in Figures S1 and S2 in the Supplementary Material). One 

can observe how the proposed method does not require the annotation of large structures 

like the cerebral cortex or white matter (besides the initial labels), considerably reducing the 

annotation effort. Furthermore, we can observe how our method finds a balance between 

spreading ROI annotations across the annotated; we omit this for the ground truth and the 

slice-wise uniform case as they require whole slice annotation. stack (to obtain information 

on many images) and querying clusters of ROIs (to take advantage of the contour of 

neighbouring structures that have already been labelled). This is in contrast with the 

baselines, which waste a lot of labelling effort on larger structures that do not contribute 

much to the average Dice.

4. Discussion and conclusion

In this study, we have presented a novel active learning framework for heterogeneously 

labelled stacks of biomedical images, which leverages on a realistic surrogates of the 

annotation effort and of the accuracy measure one aims to optimise (Dice). Our framework 

exploits partial annotations, weak supervision (in the form of boundary indices), and realistic 

estimates of class- and section-specific annotation effort in order to greatly reduce the time 

it takes to produce accurate segmentations (e.g., Dice > 0.90 or Dice > 0.95) for large 

histological datasets.
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Our results on synthetic data show that our framework significantly outperforms three 

commonly used baselines (entropy, random, and uniform), decreasing the labelling effort 

that is required to achieve accurate segmentations by 70%. Although the real histology 

dataset is intrinsically more complex due to the number of structures to be labelled and 

the characteristics of the images themselves, the results follow the same trend in these 

experiments (60% reduction) and confirm the ability of our method to produce accurate 

segmentations with lower annotation effort on real data with real-world artifacts (e.g., 

folding and tearing of tissue).

Considerably reducing labelling times is crucial when annotating histology at large scale. 

For example, we are currently using semi-automated techniques to build a high resolution 

atlas of the human brain, based on approximately 5000 sections that need to be labelled. 

Our current approach is based on uniform labelling (labelling one section every four in each 

block), which approximately accounts for 5000–10,000 h of manual labour. The results in 

this paper suggest that a reduction of up to 60% in labelling time may be achieved with our 

proposed technique, which would represent an approximate saving of 90 weeks of work.

The experiments in this article have used boundary length as a proxy for labelling cost 

in the evaluation. Ideally, one would instead use actual labelling time measured in ideal 

circumstances. However, attaining such ideal circumstances is very difficult in practice. 

Fatigue in the annotator and memory bias when labelling the same dataset twice with 

different methods both introduce noise in the measurements. Moreover, timing experiments 

are not reproducible. Boundary length is immune to these issues, and is also a better proxy 

for labelling time than the commonly used number of images, volumes or patches, as 

explained in Section 2.3.

Future work will focus on exploring statistical priors on the different variables in the model. 

For example, one could build a model of the boundary length B based on knowledge derived 

from previous cases or from anatomy (e.g., “thalamus and amygdala are never neighbours”). 

We will also investigate the possibility of improving the efficiency of the algorithm by 

allowing the user to correct the CNN segmentation for an ROI on a given image, which 

may be more efficient than requesting manual delineation from scratch – particularly if the 

corrections are provided with an interactive algorithm. Further improvements in efficiency 

may be achieved by reusing models actively trained on one dataset when segmenting a 

similar dataset, e.g., of the same modality and with the same visible structures.

As high-resolution histological datasets become increasingly available in atlasing and brain 

mapping, we believe that approaches like the one presented in this paper will be crucial for 

generating ground truth labels at scale.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overview of proposed method. Starting from a stack of 2D images with a minimum 

subset of heterogeneously manually labelled structures, we first extract statistics about the 

annotation effort and we train a segmentation network. We then predict the segmentation 

accuracy and combine it with the annotation effort prediction to formulate a query. Once 

a new structure is delineated, the statistics about the annotation effort is updated and the 

segmentation network is fine-tuned. The algorithm iterates until a target accuracy is reached.
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Fig. 2. 
(a) Sample histological section. (b) Available manual annotations at iteration t of the active 

learning process. (c) Query at t + 1: the algorithm has requested labelling of the amygdala on 

this section (in light blue). (d) The actual boundary length that needs to be labelled (in light 

blue) is much smaller than the perimeter of the amygdala, since most of it has already been 

labelled as part of neighbouring structures (in red).
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Fig. 3. 
Average Dice (computed across stacks and ROIs) against the percentage of boundary pixels 

manually labelled. The top row shows the results for the competing methods, whereas the 

bottom row refers to the ablation study. The dotted red line indicates 95% Dice. Note that 

the initial labelling effort needed to bootstrap the algorithm (i.e., labelling each ROI once) 

is approximately 3% of the boundary length in the MRI dataset and 20% in the histology 

(higher, due to the larger number of ROIs). The results for “Rand” are averages over five 

runs.
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Fig. 4. 
Qualitative results for a synthetically deformed MRI stack comparing the proposed 

framework with three commonly used baselines: entropy based (H), random, and uniform. 

The figure represents a snapshot of the manually annotated ROIs when the different methods 

reach a Dice score of 95%, starting from the same set of manual delineations. From top 

to bottom the rows show the ground truth labels which have been synthetically created, 

the initial training set consisting of manual annotation of one instance for each structure in 

the image stack, the proposed framework and the competing baselines. In parenthesis we 

report the corresponding manual effort (in % of the total effort). The label B indicates the 

background has been annotated; we omit this for the ground truth and the slice-wise uniform 

case as they require whole slice annotation.
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Fig. 5. 
Qualitative results for a histology block comparing the proposed framework with three 

commonly used baselines: entropy based (H), random, and slice-wise uniform. The figure 

represents a snapshot of the manually annotated ROIs when the different methods reach a 

Dice score of 95% starting from the same set of manual delineations. From top to bottom 

the rows show the ground truth labels, the initial training set consisting of manual annotation 

of one instance for each structure in the block, the proposed framework and the competing 

baselines. In parenthesis we report the corresponding manual effort (in % of the total effort). 

In the uniform case labelling all sections but one (corresponding to an effort of 89.22%) 

achieves 92.20% Dice, i.e., still below the 95% standard used for the other methods. The 

label B indicates the background has been annotated; we omit this for the ground truth and 

the slice-wise uniform case as they require whole slice annotation.
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Table 4

Synthetic MRI data. Manual labelling effort (in % of total boundary length) needed to reach 90% and 95% 

Dice score. All p-values estimated with the Wilcoxon signed-rank test comparing the method at hand against 

ours are below 0.001.

Dice 90% 95%

BDα 11.63 ± 2.40 14.97 ± 2.29

BDα CE 15.71 ± 2.20 18.86 ± 2.70

Dα 12.00 ± 1.88 14.86 ± 1.73

HBDα 21.49 ± 7.13 39.31 ± 8.44

HB 26.77 ± 12.07 35.06 ± 13.68

HDα 88.97 ± 2.29 93.11 ± 1.20

H 98.71 ± 0.89 99.60 ± 0.50

H dropout 99.20 ± 0.68 99.74 ± 0.44

Rand 45.89 ± 11.44 66.01 ± 11.25

Uniform 62.17 ± 9.42 78.77 ± 5.54
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Table 5

Histology data. Manual labelling effort (in % of total boundary length) needed to reach 90% and 95% Dice 

score.

Dice 90% 95%

BDα 33.27 ± 8.39 38.80 ± 10.50

BDα_CE 37.06 ± 9.90 42.60 ± 12.19

Dα 44.33 ± 14.68 48.20 ± 16.09

HBDα 36.67 ± 10.49† 43.27 ± 13.84†

HB 42.93 ± 13.48 52.67 ± 17.87

HDα 70.67 ± 15.74 79.87 ± 17.17

H 92.07 ± 20.01 93.93 ± 20.47

H_dropout 92.00 ± 21.91 93.47 ± 22.27

Rand 87.47 ± 19.35 92.57 ± 19.58

Uniform 85.07 ± 7.64 91.00 ± 4.31

The dagger † indicates that p > 0.001 for a Wilcoxon signed-rank test comparing the method at hand against ours.
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