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SUMMARY
Latin Americans are underrepresented in genetic studies, increasing disparities in personalized genomic
medicine. Despite available genetic data from thousands of Latin Americans, accessing and navigating
the bureaucratic hurdles for consent or access remains challenging. To address this, we introduce the Ge-
netics of Latin American Diversity (GLAD) Project, compiling genome-wide information from 53,738 Latin
Americans across 39 studies representing 46 geographical regions. Through GLAD, we identified heteroge-
neous ancestry composition and recent gene flow across the Americas. Additionally, we developed GLAD-
match, a simulated annealing-based algorithm, to match the genetic background of external samples to our
database, sharing summary statistics (i.e., allele and haplotype frequencies) without transferring individual-
level genotypes. Finally, we demonstrate the potential of GLAD as a critical resource for evaluating statistical
genetic software in the presence of admixture. By providing this resource, we promote genomic research in
Latin Americans and contribute to the promises of personalized medicine to more people.
INTRODUCTION

Latin Americans, as an ethnic label, encompass diverse popula-

tions across the Americas with a distinct ancestral composition
Cell Genomics 4, 100692, Novem
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resulting from admixture between various global populations.1

As such, treating Latin Americans as a homogeneous group

oversimplifies their genetic diversity and hinders efforts to

improve health and clinical treatment. With a population of 656
ber 13, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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million (8.5% of the world’s population),2 Latin Americans repre-

sent a significant demographic, particularly in the United States,

where they comprise 18% of the population and are the fastest-

growing group.3 However, these populations remain under-

studied and underserved in biomedical research and risk being

left behind by the precision medicine revolution. For instance,

Latin Americans represent only about 0.38% of participants in

genome-wide association studies (GWASs) performed.4

Several essential efforts have been made to understand Latin

American (LAm) genetic history and identified genetic variants

associatedwith complex traits.5–26 However, most of these sam-

ples are thinly spread across many projects, with few meta-ana-

lyses (e.g., Hispanic/Latino Anthropometry Consortium 27) or ini-

tiatives to obtain the >100,000 individuals (e.g., the Mexico City

Prospective Study28) necessary to have statistical power com-

parable to other population groups (e.g., Europeans29 and East

Asians30,31). To address the underrepresentation of LAms in

genomic studies, we have developed the Genetics of Latin

American Diversity database (GLADdb), a resource to explore

LAm population structure patterns and support epidemiological

studies by providing summary statistics for a subset of individ-

uals after genetic matching. In this context, we defined an LAm

population as a group of people with heritage from Spanish-

speaking or Portuguese-speaking countries in the Americas.

We consider that ‘‘heritage’’ encompasses various aspects,

from culture and geography to genetics.

We built GLADdb by gleaning LAm individuals through dbGaP

(Database of Genotypes and Phenotypes) and whole-genome

sequencing (WGS) projects across the Americas. GLADdb in-

cludes over 53,000 unrelated individuals, either genotyped and

imputed or sequenced, representing 46 geographic groups,

labeled based on administrative divisions such as country, state,

or city (Figure 1A; Tables S1 and S2). With GLADdb, we ad-

dressed two major goals regarding LAm genomics: (1) in popu-

lation genetics, we uncovered recent, fine-scale patterns of

distant relatedness and differentiation across the Americas,

providing insights into regions with genetic underrepresentation,

and (2) in genetic epidemiology at two levels: (a) by developing

GLAD-match, a web tool for matching the genetic background

of GLADdb individuals with external pools of samples, providing

additional power to discover genotype-phenotype associations,

and (b) by demonstrating howGLADdb can be utilized for testing

statistical genetic software in diverse LAm cohorts.

First, we started by exploring distant genetic relatedness

among LAm countries. Several studies have focused on deter-

mining the sources and timing for admixture events that led

to the current genetic composition in some LAm coun-

tries.6,11–13,16,32–34 However, understanding LAmgenetic diversity

goes beyond the initial continental admixture. It involves bottle-

necks, founder effects, andmigration into and along theAmericas,

especially concerning fine-scale population structure within the

continental sources (i.e., Indigenous American [IA], European

[EUR], and African [AFR] groups). We explored population struc-

ture and recent migration among LAm regions by analyzing iden-

tity-by-descent (IBD) sharing and local ancestry patterns.

Second, we addressed issues about data availability when per-

forming large-scale analyses in LAm populations. Population

stratification is a major concern in GWAS studies as it can lead
to spurious association signals. Moreover, association studies in

LAmpopulations face additional challenges, such as smaller sam-

ple sizes than Europeans and other populations. We introduce

here GLAD-match, a matching procedure to share summary sta-

tistics based on GLAD individuals to overcome these issues. A

matching procedure identifies individuals with similar genetic

backgrounds with external data, mitigating genetic control infla-

tion and minimizing spurious associations arising from population

structure.35,36 A similar strategy was used in GWASs to identify

and increase the number of control individuals.37GLAD-matchex-

plores the principal-component space derived from LAm individ-

uals in GLADdb cohorts, into which we project external samples

and match them to GLADdb individuals with no individual-level

genotype data transfer needed. From the selected GLADdb indi-

viduals, we generate and return summary statistics of genome-

wide genotype frequencies and aggregate local ancestry compo-

sition to increase the sample size and power of the end-user study

for association analyses (i.e., chi-squared test). We demonstrated

the effectiveness of GLAD-match compared to another matching

algorithm,PCAmatchR,36 using genomic control as a proxy for the

quality of matched individuals. Since GLADdb consists of cases

and controls for different phenotypes, we also use phenotype fil-

ters to select individuals who are useful as controls. We imple-

mented all these features through an interactive web portal

(glad.igs.umaryland.edu).

Finally, we demonstrate the potential of GLADdb as a critical

resource for evaluating the performance of statistical genetic

software in the presence of admixture. We do so by comparing

three polygenic risk score (PRS) algorithms for estimating PRS

in admixed individuals in a scenario where the ancestries corre-

sponding to the GWAS summary statistics do not match the

target cohort. PRS, the linear summation of risk variants

weighted by their GWAS effect size, are highly impacted by the

European-ancestry bias underlying much of the available

GWAS data, and their transferability across populations remains

a critical limitation of the approach.38,39 GLADdb is uniquely sit-

uated to support methods’ development efforts that help ensure

cross-population transferability of statistical genetic applica-

tions. GLADdb fills a crucial role by collaboratively combining

all available LAm individuals with genomic resources and func-

tions as an ever-evolving and growing database for genetic di-

versity in LAm individuals worldwide.

RESULTS

Data description and quality control
Ourmain workflow is described in Figure S1 and STARMethods.

Briefly, we have explored >268,000 samples by gathering data

from 39 dbGaP cohorts and other WGS projects that include

US Hispanics/LAm individuals5–8,13,40 (Table S1). For the inclu-

sion criteria, we gathered individuals self-described (GLAD-SD)

as ‘‘Latino’’ or ‘‘Hispanic’’ and ADMIXTURE-defined individuals

(GLAD-AD). The latter criterion was applied only to US cohorts

with no ethnicity information. It was used to identify possible

LAm individuals using ADMIXTURE analysis,41 retaining any indi-

viduals with >2% IA ancestry (see STAR Methods). For each

genotyped cohort (Table S1), we imputed all GLAD-SD and

GLAD-AD individuals using the Trans-Omics for Precision
Cell Genomics 4, 100692, November 13, 2024 3
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Figure 1. Dimensionality reduction of genetic data and ROH for more than 53,000 unrelated LAms from the GLAD database

(A) Geographic distribution of GLADdb cohorts. Countries represented in GLADdb are highlighted with colors.

(B) PCA of the entire dataset based on high-quality imputed SNPs (Rsq >0.9) showing the sampling spread of LAms. Principal components 2 and 5were plotted to

show the axis of genetic diversity that explains the European-African (EUR-AFR) differentiation (PC2) and the diversity of Indigenous American ancestries from

Mexico to Peru (PC5). All principal components are plotted in Figure S9.

(C) Distribution of genome-wide amount of ROHs for LAm groups and reference populations included in GLADdb. The upper part of the plot shows continental

reference populations, and the lower part details the distribution in Peru and Brazil. Populations are sorted in a north-to-south pattern. This analysis was restricted

to ROH segments >1 Mb. For patterns in ROH segments >8 Mb, see Figure S13. CEU, Utah residents with northern and western European ancestry from CEPH

collection; ESN, Esan in Nigeria; EUR, European individuals; FIN, Finnish in Finland; GBR, British from England and Scotland; GWD,Gambian inWestern Division-

Mandinka; IBS, Iberian populations fromSpain; LWK, Luhya inWebuye, Kenya; MSL,Mende in Sierra Leone; NAT, Indigenous American individuals; TSI, Toscani

in Italia; USA HI, United States, Hawaii; USA NY, United States, New York; YRI, Yoruba in Ibadan, Nigeria.
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Medicine (TOPMed) Imputation server42 and kept imputed vari-

ants with Rsq >0.9. After imputation quality control (QC), we

kept 43,269 individuals (nGLAD-SD = 25,627 and nGLAD-AD =

17,642), which were combined into a single dataset with

sequencing data from the TOPMed Project5 (27,088 individuals)

and 1000 Genomes Project high coverage40 (345 individuals).

The merged dataset included 3,248,494 biallelic variants, retain-

ing variants displaying high Rsq (>0.95) and empirical Rsq (>0.8)

values (see STARMethods and Figures S2–S6). Higher values of

empirical Rsq underscore the high quality of the imputation pro-
4 Cell Genomics 4, 100692, November 13, 2024
cess. To remove the family structure in GLADdb, we inferred

kinship coefficients using IBD segments on the complete data-

set, keeping 53,738 unrelated individuals (see STAR Methods).

Moreover, to demonstrate the applicability of imputed data for

haplotype-based analysis, we performed an IBD analysis on a

subset of GLAD cohorts, comparing genotyping-only and

imputed-only datasets and examining their overlap (see STAR

Methods and Figures S4, S7, and S8). Our results highlighted

that utilizing exclusively imputed data for IBD analysis did not

introduce bias for segments exceeding 4 cM. This underscores
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the robustness of GLADdb, a combination of genotyping and

imputed data, for haplotype-based methods.

Population structure and levels of genetic diversity
within LAm groups
Using our unrelated dataset and ancestry-reference groups

(Table S3), we explored the patterns of diversity and differentia-

tion throughout the Americas using principal-component anal-

ysis (PCA), uniform manifold approximation and projection,

and local ancestry analyses (Figures 1B and S9–S12). These re-

sults highlighted some important points. Individuals cluster ac-

cording to ancestry and not technology or other batch effects

(Figures S10 and S11). Notably, GLAD-AD individuals cluster

well with other GLAD-SD individuals, which validates our inclu-

sion criteria (Figure S11). By coupling principal-components

dispersion with ancestry proportions (Figure S12), we reaffirm

the heterogeneous ancestry distribution among LAm individuals

with some groups such as those in the United States and Brazil,

displaying a majority admixture of EUR and AFR ancestries

(Figures S12B and S12C). In contrast, groups in Peru, Mexico,

and Guatemala predominantly exhibit IA ancestry (Figure S12D).

Regarding sample sizes, the best-represented regions in

GLADdb included the United States, Mexico, the Dominican Re-

public, Costa Rica, Brazil, and Peru.

Although our population structure analyses identified a wide di-

versity of LAm groups, these groups originated from continental

progenitors that suffered a significant drop in effective population

size during the colonial period of the Americas.43–45 This resulted

in a higher level of consanguinity and enrichment of long runs of

homozygosity observed in some LAm groups (e.g., CLM [Colom-

bians in Medellin, Colombia] and PEL [Peruvians in Lima, Peru]

from 1000 Genomes Project) compared to the Finnish,44 a popu-

lation notably shaped by a strong founder effect. Based on demo-

graphic information available for the cohorts,weorganizedGLAD-

SD individuals into 46 self-described LAm groups, consistent with

geographic labels based on administrative division level (e.g.,

country-, state-, or city-level information) (Table S2). In addition,

we included 12 IA populations from the Peruvian Genome Project

as well as 5 EUR and 5 AFR populations from the 1000 Genomes

Project (see STAR Methods).

We explored the levels of diversity in each group by inferring

runs of homozygosity (ROH) (Figure 1C; see STAR Methods).

As expected, individuals from Africa showed lower values for to-

tal ROH compared to individuals from Europe and Indigenous

groups from Peru. In the Americas, Brazilian regions and Afro-

Peruvians showed the lowest level of total ROH compared to

other LAm regions. However, Peruvian regions, Mexico, and

Guatemala showed the highest levels of ROH. This is consistent

with a highest proportion of IA ancestry observed in Peru,

Mexico, and Guatemala (>60%; Table S2). Interestingly, Central

American and Caribbean populations showed the highest den-

sity of ROH—>8 Mb (Figure S13)—suggesting that consanguin-

ity is more common in these samples.

Fine-scale population structure revealed by IBD
network
To obtain a fine-scale picture of population structure among

LAm groups, we built a sample-pair genome-wide total IBD ma-
trix using all IBD segments >5 cM shared among unrelated indi-

viduals from LAm groups (n = 51,670). Clusters in this matrix,

based on hierarchical clustering (Figure 2) and Louvain algorithm

(Figure S14), are mainly consistent with geographic labels, with

strong intra-cluster sharing among individuals from Puerto

Rico, the Dominican Republic, andCosta Rica. Given the sample

size and genetic diversity, finer-scale population structure is

observable in clusters representing the United States/Mexico,

Peru, and Brazil. To reveal the substructure, we employed an

IBD network-based community detection algorithm, Info-

map,46,47 to further analyze relatedness patterns. We selected

the top 20 IBD network-based communities that accumulated

70% of GLADdb individuals (other communities each have

<270 individuals). Several of these communities (labeled as

CA1–20 and ordered from largest to most minor) showed enrich-

ment of individuals from a particular country, such as Costa Rica

(99.6%, IBD community CA5), Puerto Rico (98%, IBD commu-

nity CA1), Dominican Republic (95.0%, IBD community CA4),

Cuba (89.8%, IBD community CA6), Colombia (89.4%, IBD com-

munity CA13), and Chile (84%, IBD community CA22) (Figure 3).

In contrast, individuals from Mexico, Peru, and Brazil were

grouped in several communities (Mexico: 7, Brazil: 5, Peru: 12

communities enrichingR1%of individuals in the country). These

within-country communities were represented by individuals

from particular states or cities, reflecting the extensive sampling

performed in these countries (Figure 3). Furthermore, when we

analyzed networks for short (Figure S15) and long (Figure S16)

IBD segments, we revealed less differentiation in the long-

segment network, suggesting higher gene flow between com-

munities in the most recent time frame.

Long-distance relatedness among LAm groups
To explore recent migration among 46 LAm regions, we

restricted our analyses to IBD segments >21.4 cM, representing

segments transmitted by shared common ancestors within the

past seven generations corresponding to post-colonial times48

and after the admixture process. We reasoned that during this

period, the sharing of larger IBD segments could originate pre-

dominantly from gene flow among LAm regions. At the interre-

gional level (Figure 4), we detected higher levels of sharing be-

tween Caribbean groups (i.e., Puerto Rico and Dominican

Republic) with New York, California, and Hawaii groups. Specif-

ically, New York cohorts include several groups of individuals

with self-described Caribbean origin. Another tight sub-network

of sharing is observed in Brazil (Figure S17), where the southeast

region (S~ao Paulo, Rio de Janeiro, and Minas Gerais states) has

major connections with other Brazilian populations. Interestingly,

there are IBD-sharing connections between Uruguay and south-

ern Brazil. At the intraregional level, Afro-Peruvians from Ica,

Peru showed the highest IBD sharing (Figure S17).

Considering themulti-way admixed origin of LAmpopulations,

we devised a statistic (ancestry-specific IBD score [asIBDscore])

that quantifies the level of relatedness among two admixed pop-

ulations for a particular ancestry (AFR, EUR, or IA) (Figure 4). We

computed the asIBD score (see STAR Methods) by coupling the

IBD and local ancestry inferences. Our asIBD score explains the

relationship of asIBD sharing with respect to the global ancestry

of the populations. We detected the highest asIBDscore for the
Cell Genomics 4, 100692, November 13, 2024 5



Figure 2. Clustering of total IBD matrix of unrelated individuals from GLADdb

(A) Heatmap of the square root of sample-pair total IBD shared among unrelated individuals sampled from LAm countries or the United States within GLADdb.

Each pixel represents a pair of individuals; the x and y axes indicate individual IDs sorted by unsupervised hierarchical clustering. Annotations within the heatmap

represent the most enriched geographic labels (countries or cities) in the indicated blocks. Labels with ‘‘USA-NY-country’’ correspond to self-described US-

Hispanic living in New York with a specific country of origin.

(B) Individual-level annotations for the heatmap. The annotations include (1) labels based on agglomerative clustering in the 1st vertical bar, (2) self-described

ethnicity in the 2nd bar, and (3) sampling country (combined indicators in the 3rd bar and country-specific indicators in the 4th–14th bars). Each row in these bars

corresponds to an individual. Note that the row orders in all label bars are shared with those of (A).

(C) Frequency of labels (log scale) and color keys for agglomerative clustering (bottom), self-described ethnicity (center), and sample country (top), respectively.

Note that the ‘‘NA’’ label refers to individuals not assigned any country, self-described ethnicity, or cluster.
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IA IBD sharing between Caribbean populations (i.e., Puerto Rico

and the Dominican Republic) with New York (Table S4). Interest-

ingly, the Puerto Rico IBD sharing with California and Hawaii

showed AFR and IA with the highest value asIBDscore with

respect to EUR, suggestingmore heterogeneity for the European

ancestry (Table S4). The Brazilian populations have higher values

of asIBD for the IA ancestry in south and southeast populations,

indicating a more homogeneous composition of IA ancestry in

those regions (Table S4). In a network for IBD sharing between

Peru-Ica and Peru-La-Libertad, the EUR ancestry showed the

highest value for the asIBD (Tables S2 and S4).

Supporting external studies through the GLADdb
matching algorithm and statistical genetic software
benchmarking
One of the ultimate goals of GLADdb is to support GWAS and

admixture mapping studies by providing summary statistics

(i.e., allele and haplotype counts) of a subset of control individ-

uals from GLAD that match the genetic background of external

samples. We addressed this goal by developing a genetic

matching algorithm, GLAD-match. Our method, based on near-

est-neighbor simulated annealing matching, shown in Figure 5A

and outlined in STAR Methods, employs local search to find the

optimal cohort from a set of candidates. The algorithm oper-

ates on a principal-component space in which the external

user-provided query cases can search for controls without
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needing individual genotypes. The algorithm computes vari-

ance-weighted Minkowski distance pairwise between query

cases and potential controls, selects the nearest neighbors as

candidate controls, samples a set of matches from the candi-

dates, and iteratively resamples and refines the set of matches

using simulated annealing, optimizing for the genomic control

statistics l.49,50

We performed the following experiment to evaluate our

matching algorithm and the extent to which GLAD cohorts can

provide valid control sets. Using 1000 Genomes populations

and some GLAD cohorts as cases in which the pseudo-pheno-

type belongs to the query cohort (see STAR Methods), we ran

a greedy bipartite matching baseline used by PCAmatchR,36,51

and our matching algorithm and returned summary statistics

(i.e., alternative allele frequency, genotype counts, and haplo-

type ancestry counts by segment) for various control set sizes.

Then, for each pair of cases and controls, we ran a GWAS for

which the genomic control l statistics are reported in Table 1

and more extensively in Figure 5B. For the analyzed cohorts,

which represent a variety of admixed groups, the matched con-

trols yield genomic controls close to 1, suggesting that GLAD

can provide proper controls for a variety of cohorts, and our

matching algorithm shows slight improvements for larger

and more varied query cohorts. These improvements narrow

progressively as the number of matches required increases

(Figure 5C).



Figure 3. IBD network community detection

We infer the community structure using the Infomap algorithm based on a matrix of IBD segments >5 cM.

(A) Top 20 IBD network communities. Only individuals with connections >30 are included in the layout calculation for visualization purposes. The community

labels, such as CA1 and CA2, are named according to the IBD version used and the rank of the community sizes, with CA1 representing the largest community

when using all IBD segments, including short (5–9.3 cM) and long (>9.3 cM) segments.

(B) Average IBD sharing among the top 30 inferred communities (ordered by agglomerative clustering; the same order is followed in C and D).

(C) Distribution of IBD shared among individuals in each community.

(D) Enrichment of IBD community membership in the country of origin (i.e., proportions of community labels for individuals born in a given country). Note that for

individuals without exact birth country information, broader geographic labels were used when available, such as Central America and South America. To

visualize the dynamics before and after the Spanish colonization of the Americas, two different IBD networks were built based on IBD short (Figure S15) and long

segments (Figure S16), respectively, which revealed distinct patterns of detected communities.

Article
ll

OPEN ACCESS
In addition to control matching, GLADdb is an optimal

resource for benchmarking statistical genetic software in com-

plex, heterogeneous cohorts with awide range of available traits.

We demonstrated this potential by comparing several popular

PRS algorithms (Clumping + Thresholding using PRSice-2,52

PRS-CS,53 and PRS-CSx54) using a subset of GLAD-SD

(Table S5; STAR Methods) with type 2 diabetes (T2D) status,

height, or body mass index (BMI) data under a hypothetical sce-

nario where LAm GWAS data are not available (Table S6). The

GLAD-SD subset includes LAm cohorts with different population

histories and ancestry proportions (e.g., Afro-Caribbeans, Brazil-
ians, and Peruvians). Although the Bayesian PRS-CS method, in

general, outperformed PRSice-2, the inclusion of non-European

GWAS data using PRS-CSx yielded the largest increase in PRS

predictive performance (Figures 6A–6C and S18). PRS-CSx

improved single-ancestry PRS predictive performance (e.g.,

East Asian PRS from PRS-CSx versus PRS-CS or PRSice-2)

in nearly every instance (Table S7). Combining the posterior

effect sizes estimated by PRS-CSx further improved models

(Figures 6A–6C; Table S7). Note that the best approach for

combining PRS information varied by cohort, likely reflecting

cohort heterogeneity (Figure S19). Model performance, as
Cell Genomics 4, 100692, November 13, 2024 7



Figure 4. IBD analyses of Latin American groups

We explored the relationship among LAm regions by inferring the average IBD shared among regions (A) and an asIBDscore for AFR (B), EUR (C), and IA an-

cestries (D). Dots represent LAm regions. Interregional sharing, including <5 pairs, was removed. For IBD sharing (right plot), we removed the intrapopulation

sharing in Peru-Ica due to the higher sharing and to improve visualization (for full sharing patterns, see Figure S13).

Article
ll

OPEN ACCESS
measured by partial R2, was negatively associated with mean

AFR ancestry (�0.02 per SD AFR ancestry, p = 0.005; Figure 6D).

While the percentage of improvement achieved when leveraging

non-European GWAS data can be as high as 80% over the

Clumping + Thresholding model, the R2 of each PRS still can

be modest. For example, in the Alzheimer disease cohort from

the Caribbean, the T2D PRS-CSx model improved prediction

by nearly 80%, but the R2 of that model was only 0.03 on the

observed scale (Figure 6D).

DISCUSSION

LAms are underrepresented in genetic and epidemiological

research, hindering our knowledge of their genetic diversity

and environmental factors. This limitation impacts personalized

medicine and our understanding of complex traits.55 GLADdb

aims to tackle the underrepresentation of genomic data by gath-

ering genome-wide data of LAm populations into a single

resource. Through GLADdb, we have two main contributions

to LAm genomics: (1) population genetics: we elucidated popu-

lation structure and gene flow across LAm regions, and (2) ge-

netic epidemiology: we developed an algorithm and an online
8 Cell Genomics 4, 100692, November 13, 2024
portal to provide summary statistics from control individuals

from GLADdb with a genetic makeup similar to that of external

samples. Also, by assembling a collection of LAm cohorts with

different population histories, we created a unique tool for eval-

uating the performance of statistical genetic software in the pres-

ence of admixture and other complexities.

For population genetics, continental migrations were the initial

sources of LAm diversity. However, other processes have

shaped this diversity and relationships across geographic re-

gions (e.g., internal migration48). Using ROH and IBD inferences,

we explored intra- and interpopulation relationships in Latin

America. Notably, we observed that Peruvians, despite higher

homozygosity, exhibit differentiated groups associated with

geographical regions.6,7 Using a similar approach described by

Baharian et al.,48 we analyzed long IBD segments (greater than

21.4 cM) to capture the shared ancestry within the last seven

generations. Long-IBD-based analysis in LAm regions high-

lighted recent migration between regions.

We detected two main networks of IBD sharing: the

Caribbean–United States (New York, California, and Hawaii)

and the Brazilian intragroup sharing. In 20th century Latin Amer-

ica, migrations followed a rural-to-urban or outside-the-country



Figure 5. Nearest-neighbor simulated annealing matching algorithm and results

(A) Visual overview of the algorithm.

(B) Comparison with baseline bipartite matching algorithm (x axis), where points below the line y = x indicate our algorithm outperforming the baseline (small box

highlights high-density region).

(C) Effect of a number of matches on improvement over the baseline.
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Table 1. Comparison of genomic control results (l statistics) when returning 500 control individuals fromGLAD using greedy bipartite

matching and the nearest-neighbor simulated annealing matching algorithm

Source

1,000 genomes populations GLAD cohorts

MXL,

n = 60

CLM,

n = 92

PEL,

n = 84

PUR,

n = 104

HCHS SOL,

n = 6,558

MESA,

n = 1,016

SIGMA,

n = 1,145

LARGE-PD,

n = 1,456

Greedy bipartite

matching

genomic

control

0.9443 ±

0.0008

1.0953 ±

0.0021

0.9549 ±

0.0012

0.9952 ±

0.0019

0.9970 ±

0.0057

1.0158 ±

0.0155

1.0727 ±

0.0072

1.0302 ±

0.0165

Nearest-neighbor

simulated annealing

matching algorithm

0.9391 ±

0.0001

1.0899 ±

0.0010

0.9495 ±

0.0009

0.9880 ±

0.0004

0.9615 ±

0.0043

0.9841 ±

0.0044

1.0470 ±

0.0063

1.0066 ±

0.0061

Genomic controls in the table are the result of a pseudo-GWAS for a dummy binary phenotype representing the belonging to the query cohort. HCHS

SOL, Hispanic Community Health Study/Study of Latinos;MXL,Mexican Ancestry in Los Angeles, CA, USA; PUR, Puerto Rican in Puerto Rico; SIGMA,

Slim Initiative in Genomic Medicine for the Americas.
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tendency due to regional socioeconomic disparities.56 Notably,

in Puerto Rico, during the early 1900s, a migration policy was

enacted in response to its social and economic problems.57 Ha-

waii, the Dominican Republic, and Cuba were the primary desti-

nations during the first stage of this diaspora, followed by a

strong migration to New York during the late 1940s.58 Socioeco-

nomic differences characterized each migration stage.59,60 For

example, many individuals who migrated from Puerto Rico to

Hawaii were recognized as jibaros,60 which are countryside peo-

ple who traditionally farm the land. However, Puerto Ricans who

migrated to New York represented a cross-section of economic

and social classes.59 By inferring the ancestral background of

IBD segments, we found that the Puerto Rico-Hawaii sharing is

characterized by predominant AFR and IA sharing compared

to the predominant IA sharing between Puerto Rico and New

York. These contrasting patterns reflect the differential composi-

tion of the two stages ofmigration. Interestingly, ancestry-biased

migrations like this are not uncommon in the United States, hav-

ing been observed as far back as the Great Migration.48 Brazil is

another example of recent migration due to economic factors.

During the 1950s, southeastern Brazil, represented by the states

of Rio de Janeiro, S~ao Paulo, and Minas Gerais, experienced

huge economic growth that triggered a massive migration to

these regions.61 Our IBD analyses showed strong connectivity

among and around these southeastern regions (Rio de Janeiro

and S~ao Paulo). Moreover, we detected connectivity between

southern Brazilian regions and Uruguay, reflecting their recent

shared history because Uruguay was annexed to Brazil before

its independence,62 and its demographic composition included

a significant proportion of Brazilians at that time.63

For genetic epidemiology, our genotype-matching algorithm

and subsequent provision of control summary statistics meet a

real need in the research community. Groups exploring the ge-

netic architecture of traits in LAm cohorts will be able to increase

their sample sizes without further straining budgets. While there

are initiatives that significantly increase the representation of

LAm subjects in genomics, access to those data remains a

concern. In some cases, navigating the bureaucratic maze rep-

resents a real barrier, while in other cases, the data are proprie-

tary. By constructing the first version of GLADdb, we acquired

and aggregated LAm data from across 39 cohorts. In addition,

our matching and data transfer processes only require summary

statistics (genotype counts and principal components), thus
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reducing the exposure of sensitive data. While others have found

additional means to abstract external query samples,35 we have

utilized individual summaries in the form of principal component

values, similar to giving PCA plots in manuscripts, which allows

us to improve the matching for groups with substantial popula-

tion structure, such as LAm groups. This is more abstracted

than what is allowed for imputation servers5 because we never

have access to individual-level genotypes, nor can we recon-

struct them from the subset of principal components included.

This means that GLADdb is sufficiently privatized for any cohort

consent where PCAs can be shared via publication or imputation

can be done through the Michigan or TOPMed imputation

servers. Also, our matching algorithm will provide a better set

of specific controls that match the genetic background of query

samples, reducing the issues due to population structure and

finally performing a statistical test that does not require covari-

ates, such as a chi-squared test.

In addition to supporting genetic studies through control

matching, GLADdb presents a valuable resource for evaluating

the performance of genetic epidemiology software for methods

development and benchmarking. Such software needs to be

evaluated in the presence of admixture in addition to the more

homogeneous cohorts. This is particularly evident for PRS esti-

mation, where the impact of long-standing biases in GWAS

data is well documented.38,39,64 In our test case, we evaluated

three popular PRS algorithms: Clumping + Thresholding imple-

mented in PRSice-2, PRS-CS, and PRS-CSx. We found that

PRS-CSx, which canmodel multiple GWAS populations simulta-

neously, significantly improved predictive performance over sin-

gle ancestry methods. This was true despite not using GWAS

data from any LAm cohorts for this example. Variability in model

performance likely reflected population heterogeneity across the

different cohorts, and model performance was negatively asso-

ciated with mean AFR ancestry. The sample sizes of the AFR

ancestry GWAS cohorts used for this study were smaller by an

order of magnitude than the East Asian and EUR ancestry

GWAS cohorts. It is clear that well-powered, diverse GWAS is

critical for equitable PRS performance. In the meantime, meth-

odological innovation is required to improve cross-population

portability for GWAS traits lacking adequate representation.65

In addition to PRS-CSx, several methods such as LDPred-funct

and PolyPred include functional data, and TL-Multi utilizes trans-

fer learning.66–68 The robustness of existing and new PRS



Figure 6. PRS in select cohorts from GLAD-SD

(A) Comparison of heightmodel performance as percentage of improvement over a EUR-ancestry GWASClumping + Thresholding PRS.Models include PRS-CS

using EUR-ancestry GWAS, PRS-CSx using EUR and East Asian-ancestry GWAS, and PRS-CSx using EUR, East Asian, and AFR-ancestry GWAS. All models

were compared using the correlation between the prediction and the trait.

(B) Comparison of BMI model performance.

(C) Comparison of T2D model performance.

(D) Total R2 of best PRS model by AFR ancestry. Cohorts are labeled by color; traits are labeled by shape. Partial R2 was calculated by squaring Pearson’s r

followed by subtracting the full model (PRS + covariates) from the base model (covariates only, see STAR Methods). AFR ancestry proportions were estimated

using ADMIXTURE.
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methods to admixture can be evaluated using the heteroge-

neous cohorts represented in GLADdb.

Limitations of the study
While GLADdb offers valuable insights, it does have limitations.

First, ADMIXTURE-defined LAms are restricted to individuals

with more than 2% IA ancestry. This definition could be very

restrictive, considering some LAm groups might have no IA an-

cestries (i.e., European descendants in Brazil). Still, it ensures

that the maximum number of individuals is collected without

strong bias. Second, GLADdb is restricted to case-control

studies without covariate control. To enhance the capabilities

of GLAD, we are expanding its scope to encompass a wider
range of phenotypes, including age and BMI, as potential cova-

riates. This expansion will facilitate the provision of summary sta-

tistics for continuous variables. Third, regarding the absence of

covariates, it’s important to highlight that this limitation is not

solely attributable to the sharing approach but is due to the avail-

ability of phenotypic data in the original cohorts. The heteroge-

neity of the external sample, while present, does not pose a sig-

nificant challenge during the matching process. We have

successfully identified matched individuals within heteroge-

neous cohorts, such as LARGE-PD. However, it is important to

stress that allele and haplotype counts will still be derived from

this diverse pool of matched individuals. Thus, we recommend

a separate matching process when appropriate.
Cell Genomics 4, 100692, November 13, 2024 11
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In LAmgenomics, another challenge lies in the underrepresen-

tation of IA ancestries in public datasets, primarily consisting of a

few isolated populations that may introduce limitations in global

and local ancestry inferences. IA ancestry closely relates to local

Indigenous groups in admixed LAm populations, as several

studies have shown.6,11,16 We used a reference panel of Indige-

nous Peruvians and Guatemalans to address IA ancestry chal-

lenges. These populations have larger effective population sizes

compared to other native groups,69 reducing issues related to

higher levels of genetic drift. In this way, we can get around the

problem of IA inferences in Brazilians or US individuals with

some level of IA ancestry (i.e., individuals with ancestry related

to tribal nations in which genetic studies have not been allowed).

Still, better ethically aware representation in genomics is

preferred. Furthermore, GLADdb highlights better-represented

regions like Brazil, Mexico, and Peru, but ethnic diversity remains

unbalanced (predominantly EUR ancestry). Urgent inclusion of

regions like Bolivia and Paraguay, as well as diverse ethnicities

(AFR and Asian ancestries in the Americas), is imperative.

In conclusion, through GLADdb, we highlighted the heteroge-

neous ancestry composition across Latin America and inferred

ancestry differences in recent gene flow events. Also, by sharing

summary statistics, we contribute to improving global equity in

genomic research, specifically in epidemiological research in

which GWAS is performed routinely. This is one more step

to ensuring that health disparities arising from genetic studies do

not becomepervasive in admixed and non-Europeanpopulations.
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Data and code availability

No data were generated for this study. The code utilized for this study is pub-

licly available on GitHub at the following:

d IBD analysis: https://github.com/umb-oconnorgroup/ibdtools. All orig-

inal code has been deposited at Zenodo and is publicly available at

https://doi.org/10.5281/zenodo.13851024 as of the date of publication.
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the date of publication.
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d GLADdb: https://github.com/umb-oconnorgroup/gladprep and https://
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5281/zenodo.13851635 as of the date of publication.

CONSORTIA

National Institute of Neurological Disorders and Stroke (NINDS)

Stroke Genetics Network (SiGN) Consortium: Stephen J. Kittner,
12 Cell Genomics 4, 100692, November 13, 2024
Braxton D. Mitchell, and Jordi Jimenez-Conde. TOPMed Popu-

lation Genetics Working Group: Sebastian Zoellner. Latin Amer-

ican Research Consortium on the Genetics of Parkinson’s Dis-

ease (LARGE-PD): Emilia Gatto, Grace Letro, Jorge Luis

Orozco, Carlos Velez-Pardo, Marlene Jimenez-Del-Rio, Fran-

cisco Lopera, Patricio Olguin, Andrew Sobering, Alex Medina,

Daniel Martinez, Mayela Rodriguez, Sarael Alcauter, Alejandra

Medina, Mario Cornejo-Olivas, Angel Medina Colque, Julia

Rios Pinto, Ivan Cornejo Herrera, Edward Ochoa-Valle, Nicanor

Mori Quispe, and Angel Viñuela.
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à Pesquisa do Estado de Minas Gerais) RED 00314-16, Programa Nacional
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python-igraph Csardi and Nepusz47 https://python.igraph.org/en/stable/

GCTA Yang et al.81 https://yanglab.westlake.edu.cn/software/

gcta/

PRSHelpDesk This study https://doi.org/10.5281/zenodo.13851588

PRSice-2 Choi and O’Reilly52 https://choishingwan.github.io/PRSice/

PRS-CS Ge et al.53 https://github.com/getian107/PRScs

PRS-CSx Ruan et al.54 https://github.com/getian107/PRScsx

PCAmatchR Brown et al.36 https://github.com/machiela-lab/

PCAmatchR

gladprep This study https://doi.org/10.5281/zenodo.13851635
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Data description
For this research, we defined a Latin American population as a group of people with heritage from Spanish-speaking or Portuguese-

speaking countries in the Americas. We chose this definition because "heritage" encompasses various aspects, from culture and

geography to genetics. Furthermore, our definition does not include the Indigenous populations because this ethnicity label some-

times has a country-specific legal background.

With this delimitation, we gathered datasets for the GLADdb by combining accessible genomic information from Whole-Genome

Sequencing (WGS) and microarray genotyping chip sources. We requested and received access to 39 dbGaP cohorts, including the

eMERGE,82 PAGE,83 SIGMA,9 and LIMAA70 projects (Table S1) and theWGSprojects in TOPMed.5 Especially regarding the TOPMed

cohorts incorporated into this study, we obtained approval from both TOPMed’s institutional review boards and the corresponding

institutional review boards of each TOPMed cohort study.

Other important sources were the EPIGEN,13 LARGE-PD,8 and Peruvian Genome Project (PGP).6 We have explored over 268K

samples in detail to find 70,702 Latin American subjects for this initial set.

METHOD DETAILS

Figure S1 shows our general workflow. For each non-WGS dataset (Table S1), we converted their genome coordinates (liftover) from

the original reference (NCBI36/hg18 or GRCh37/hg19) to the genome reference GRCh38/hg38 using Picard.71 After a first liftover run,

we used the strand flip option of PLINK72 on the rejected variants and performed a second liftover run. Furthermore, variants were

filtered using PLINK for 5% missingness, a p-value less than 1x10�6 on the Hardy Weinberg exact test (HWE), keeping only biallelic

autosomal variants with a minimumminor allele frequency (MAF) of 1%. Samples were filtered for 5%missingness and heterozygos-

ity exceeding three times the standard deviation from themean. Also, a linkage disequilibrium (LD) pruned dataset was created using

PLINK’s indep-pairwise algorithm using the parameters 50 10 0.1.

For each dataset for which we acquired genomic information and appropriate consent, we evaluated self-described demo-

graphic variables such as an ethnic designation of Hispanic/Latino. We included the entire cohort if the primary study design

was focused on Latin American individuals, e.g., SIGMA.9 For the remaining datasets, many without demographic information pro-

vided via dbGaP, we identified possible Latin American individuals using genetic clustering analysis.41 We merged each of these

remaining datasets (the LD pruned data) with a custom panel of 361 individuals to assess genome-wide ancestry proportions for

European, African, East Asian, and Indigenous American ancestries. This custom panel included 100 each for European, African,

and East Asian from the 1000 Genomes Project high coverage data40 (Table S3). In addition, we included 61 unrelated, previously

estimated as near 100% Indigenous American high-coverage genomes from the PGP.6 Each dataset was combined with this

reference panel; then, we ran a supervised ADMIXTURE analysis.41 These results were then evaluated for admixture proportions,

and any sample found to have greater than 2% Indigenous American ancestry was extracted and included for additional analyses.

These samples were then designated as ADMIXTURE-defined, which will persist in our evaluations of the database as to their utility

as matches or exclusions.

After we collected all self-described and ADMIXTURE-defined individuals in each dataset, we imputed the non-LD pruned data

against the TOPMed Imputation server.42 The TOPMed imputation panel contained over 90K individuals and was shown to accu-

rately impute Latin Americans.5 After imputation, for each cohort, we selected genotyped and high-quality imputed variants based

on the Rsq threshold (Rsq >0.9). Rsq represents the squared correlation between imputed and true genotypes. As true genotypes

remain unobserved, estimating Rsq relies on the concept of poorly imputed genotype counts shrinking toward their expected pop-

ulation allele frequencies. After Rsq filtering per cohort, we merged all datasets, including the non-imputed TOPMedWGS data, and

removed variants with missing information in more than 0.1% of the final dataset using bcftools73:
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bcftools filter -e ’F_MISSING >0.001’ ${mergedGLAD} -O b -o $QC1

and normalized and kept biallelic SNPs with the following command line:

bcftools norm -m +any -s $QC1 | bcftools view -m2 -M2 -v snps | bcftools sort -O b -o $GLAD

Our initial freeze of GLADdb consists of 3,248,494 biallelic SNPs (Rsq >0.9) and 63,589 individuals (R0.9 dataset).

To assess the imputation quality variants included after merging, we compared the distribution of two imputation metrics, Rsq

(for all genotyped and imputed variants) and Empirical Rsq statistics (for genotyped variants) included on GLAD for each non-

WGS dataset (Figures S2–S26). Empirical Rsq (EmpRsq) reflects the correlation between the true genotyped values and the imputed

dosages obtained by hiding all known genotypes for the specific SNP. Higher values of this correlation reflect the higher imputation

accuracy.

Our initial threshold for Rsq was 0.9, but after merging, most cohorts kept a distribution of variants between 0.95 and 1, retaining

very high-quality variants (Figures S2–S6). Notably, all cohorts showed EmpRsq values higher than 0.8, and most of the cohort

included variants with EmpRsq higher than 0.96.

Importantly, GLADdb includes 31,523 individuals with non-ambiguous geographical information (Table S2). This means that we

have country-level or, in some cases, state or city-level information like Peru, Brazil, and the USA. For the latter three groups, we

did not include individuals without state-level information. A particular case is the Rio Grande do Sul state in South Brazil. Two of

the three cohorts sampled in this state corresponded to specific cities (Porto Alegre and Pelotas) and were considered independent

groups. To support the clustering of individuals of different projects into groups of similar geographical regions (e.g., USA-Wisconsin,

Chile, Brazil-S~ao Paulo), we performed an FST analysis. We calculated the FST among individuals sampled by different projects but

of the same sample region. No regional cluster showed an Fst value above 0.07 (Table S2). Finally, these 31K individuals were orga-

nized into 46 regions (Table S2). We used this information for ROH and IBD analyses. Furthermore, this clustering was supported by

our IBD clustering (See below).

To avoid any phase issues during the merging process, we infer the haplotype phase for the complete GLADdb using SHAPEIT

ver474 using the TOPMed freeze9 dataset5 (130K individuals) as a reference panel. We ran SHAPEIT with the following parameters:

shapeit4 –input $GLAD –map $map –thread 60 –region chr${chr} –reference $TOPMEDRef –output $Phased_GLAD –log pha-

sed_chr${chr}.log –mcmc-iterations 10b,1p,1b,1p,1b,1p,1b,1p,10m.

Identity-by-descent and relatedness analyses
Before running haplotype-based inferences on GLADdb, we assess the quality of IBD (Identity-By-Descent) analyses using imputed

data by identifying the overlapping between the IBD inferences on genotyping (original data) and imputed data.

By selecting five cohorts with different ancestry profiles.

(1) EPIGEN: Includes 3 Brazilian cohorts with predominant European and African genome-wide ancestry.

(2) Peruvian Genome Project: Includes 641 individuals with predominant Indigenous American genome-wide.

(3) Uncovering the Genetic Architecture of Colorectal Cancer with Focus of Rare and Less Frequent Variants: This study includes

a cohort that includes individuals from Hawaii and other US states.

We performed the following experiment: We ran IBD inferences using hap-ibd75 on genotyped variants included on GLADdb for

each cohort. A second run of IBD was performed on imputed variants selected on the following criteria.

(1) A qualified, imputed variant should be physically close (in a 0.2 cM window) to and highly linked (LD r2 R0.8) with the corre-

sponding genotyped variant. LD patterns were determined for each cohort.

(2) If multiple imputed variants are present, the one with the highest linkage is selected; if none is found, the genotype variant is

excluded for both runs.

Using these criteria, we generated genotyped and imputed datasets with the same SNP density and similar site frequency spec-

trum. After IBD inferences and removal of IBD in low-SNP density regions (<3 SNPs per cM), we calculated the overlapping of IBD

segments inferred from genotyped variants (used as true segments) with those from imputed variants (used as inferred segments)

within each pair of haplotypes of different individuals in the form of false positive and false negative ratios.84 We call a false positive

the portion of an inferred segment that is not overlapped by true segments from the same sample pair and a false negative the portion

of a true segment that is not overlapped by inferred segments.

For IBD segments greater than 4 cM, our analyses showed false positive and negative rates lower than 4% (Figure S7). The highest

level of false positives and false negatives is observed for small segments (<4 cM). Interestingly, these rates for the 3–4 cM intervals

are observed in EPIGEN - Salvador and the Peruvian Genome Project. Predominant African and Indigenous American ancestries,

respectively, characterize these cohorts. These ancestries have a poor representation on imputation panels.

Moreover, we determined the relationship between total IBD between pairs inferred on genotyped and imputed data

(Figure S8). We demonstrated that for all cohorts except PGP, the range of the differences between both IBD distributions (i.e.,

IBD amount Genotyped = IBD amount Imputed) is minimal (between �1 and 1cM) for more than 80% of the pairs (after excluding pairs

that do not share IBD with genotyped and imputed data at the same time).
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This comparison between genotyped and only imputed data represents the worst-case scenario. Our analyses suggest that

imputed data from individuals with predominant Indigenous American ancestry have a poor inference for IBD-based methods. Since

our GLADdb includes a combination of imputed and genotyped variants, we expected lower rates of error for IBD inferences. Also,

we restricted our downstream analysis to IBD with a length greater than 5cM for lower error rates.

After demonstrating the feasibility of haplotype-basedmethods on imputed data, we perform IBD inferences for the entire GLADdb

together with HapMap genetic maps (GRCh38) as input for inferences of IBD segments using hap-ibd.75 For hap-ibd, we set the pa-

rameters ‘‘min-seed = 3’’ and ‘‘min-output = 3’’ to reduce the rate of false positiveness; defaults were used for all the other param-

eters. Given IBD coverage is dramatically increased by the paucity of SNP markers, we defined low SNP density regions as 1-cM

windows with a number of SNPs less than 30 and processed all IBD segments overlapping with these regions by splitting them

and removing the parts within the low SNP density regions. The processed IBD segments were then used as input for ancestry-spe-

cific downstream analysis. For non-ancestry-specific analyses, we further merged and flattened the processed IBD segments for

each sample-pair when two segments were either overlapping or close (gap no longer than 0.6cM and the number of phasing-infor-

mative discordant markers no more than 1).85 The flattened and merged IBD segments were kept if the segment lengthR 5cM. The

genome-wide total IBD length of all segments shared by each sample pair was then calculated and organized into an IBDmatrix, with

each element representing the relatedness between a pair of individuals. For agglomerative clustering, we transformed the matrix

into a dissimilarity matrix by the formula X = (max-min)/(X-min+1e�9). The IBD post-processing steps, including encoding, removing

low SNP density regions, decoding, sorting, merging, filtering, and matrix-building, were implemented in a C++ toolkit ibdtools

(https://github.com/umb-oconnorgroup/ibdtools) to accelerate the computation for large IBD datasets, for instance, hundreds of bil-

lions of IBD segments.

We estimated the kinship coefficient for each pair of individuals in GLADdb with IBDkin.76 After kinship coefficient inferences, we

pruned for relatedness in GLADdb using NAToRA77 to exclude the minimum number of related individuals while removing the main

kinship relationships in the dataset. We used 0.0442 as the kinship coefficient threshold, which is the lower bound for the theoretical

kinship coefficient expected for a 3rd-degree relationship.

Continental population structure
PCA and UMAP

To explore population structure, first, we used SNPRelate78 to generate an LD-pruned dataset and a matrix of relatedness using the

snpgdsLDpruning and snpgdsIBDKING functions, respectively. Then, principal component analysis was performed using PCAir79 on

LD pruned data using the KING matrix, keeping variants with MAF higher than 1% and kin.thresh and div.thresh parameters equal

to 2�9/2 and -2�9/2, respectively.

We kept the top 50 components. To help with cluster visualization, we reduced the 50 principal components to 2 dimensions by

applying the UMAP algorithm, using the umap-learn package,86 with n_neighbors set to 10 and min_dist set to 0.5.

Runs of homozygosity (ROH)

We inferred the ROH segments for our 46 Latin American groups and 24 reference populations to explore the level of homogenization

in each group. For each group, we used PLINK to apply an LD filter ( –indep-pairwise parameters 50 10 0.9) and to perform ROH

analysis (–homozyg flag). Two runs of ROHwere performed using 1 and 8Mb as the minimum threshold for ROH segment detection.

Processing and plotting scripts are available at https://github.com/umb-oconnorgroup/GLAD_DemographicAnalysis.

Local ancestry inferences

We ran local ancestry inference using RFMix ver280 on GLADdb. We inferred local ancestry for the phased dataset considering two

ExpectationMaximization runs and eight generations since admixture. For the ancestry reference panel, we selected 982 individuals,

including 250 Europeans, 250 East Asians, 250 Africans, and 232 individuals with predominant Indigenous American ancestry

(Table S2). Europeans, Africans, and East Asian reference populations are part of the 1000 Genomes Project high coverage. Individ-

uals with predominant Indigenous American ancestry include Indigenous Americans from the Peruvian Genome Project6,7 and indi-

viduals with predominant Indigenous American ancestry (above 99% of Indigenous American ancestry) from Guatemala (Table S2).

Distant genetic relatedness
IBD-community detection

For community detection, we calculated an IBD matrix by summing up all IBD segments with length within a specific range (>5cM,

5–9.3 or >9.3cM) across the genome for each pair of individuals and set all elements with values <12 cM to 0 in this matrix to reduce

the density of non-zero elements in the matrix. The resulting symmetrical matrix was used as a weighted-adjacency matrix to build a

bidirectional relatedness network. We used the infomap algorithm implemented with the python-igraph47 package to infer the com-

munity structure of the relatedness network. We kept individuals within the top 20 communities and with a degreeR 30 connections

and used the Frutcherman Reingold layout87 for visualization purposes. Community enrichment in a given birth country is defined as

the largest proportion of community labels for individuals born in the country. The number of communities enriched in a birth country

is determined by counting the communities that have >1% enrichment in this country. Moreover, to explore other clustering strate-

gies, we also performed community detection using the Louvain clustering algorithm via the find_partition function of the louvain-

igraph package with the partition type of ModularityVertexPartition.88,89
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IBD sharing among Latin American regions

To explore the recent relationship among Latin American regions, we focused on IBD segments greater than 21.4 cM.We calculated

the IBD sharing at intra and interregional levels. For intraregional sharing, we summed the total amount of shared IBD and divided it by

the number of pairs: N(N-1)/2, where N is the total number of individuals included for that region. For interregional sharing, we

summed the total amount of shared IBD among individuals of populations 1 and 2 and divided it by N1xN2, where N1 and N2 are

the total numbers of individuals included for populations 1 and 2 involved in the sharing, respectively.

Ancestry-specific IBD

Due to themulti-way admixed origin of Latin American populations, IBD (segments greater than 21.4 cM) and local ancestry analyses

provide an opportunity to detect ancestry-specific signatures related to the similarity among individuals in a region (within-region

analysis) or recent migration (across-region analysis) along the Americas.

We implemented a Python algorithm calledGAfIS (‘‘Getting Ancestry For IBD Segments’’) that uses RFMIX outputs to identify local

ancestry labels for an IBD segment shared by a pair of individuals under a certain probability threshold. As a probability threshold for

local ancestry inferences in GAfIS, we set 90% for a genomic region being of the K ancestry. For this analysis, we included our pro-

cessed IBD segments to reduce the proportion of false positives. Moreover, if an IBD segment contained several ancestries, we split

the segment into segments corresponding to independent ancestries for each pair of individuals.

After ancestry identification of the IBD segments, we filter out ancestry specific-IBD segments based on the following criteria.

(1) The ancestry profile of one of the individuals for the IBD region was unknown because the local ancestry probability was lower

than 90%.

(2) Both individuals have different ancestry labels of the IBD segment.

After those filters, we kept individuals with demographic information and calculated an ancestry-specific IBD score (asIBD score)

within and across the 46 Latin American groups. Our asIBD score is defined in the following equations.

Within regions

Pn
i

Pn
i

IBDanc K

Nregion i 3

�
Nregion i � 1

�
2

3 ɑ2
anc K region i 3 L

(Equation 1)

Across regions:

Pn
i

Pn
j

IBDanc K

Nregion i 3Nregion j 3 ɑanc K region i 3 ɑanc K region j 3L
(Equation 2)

Where:

anc K = African, European, or Indigenous American ancestries.

IBD anc K: The total amount of ancestry K IBD shared between a pair of individuals from regions i and j.

N region i: Total number of individuals from region i.

N region j: Total number of individuals from region j.

ɑ anc K region i: Global ancestry proportion for Ancestry K in region i.

ɑ anc K region j: Global ancestry proportion for Ancestry K in region j.

L: Total size of the genome that was included for IBD analysis.

In both equations, in the numerator, for a specific ancestry, we summed the total amount of IBD per ancestry for each pair of in-

dividuals from the same region (Equation 1) or between regions i and j (Equation 2). To control for sample size and ancestry propor-

tions, for Equation 1, we divide the total amount of shared IBD by the product of the total number of combinations of individuals and

the square of ancestry proportion. For Equation 2, we divide by the product of the sample size for each region and the product of the

global ancestry proportion K for each region, respectively. To get a value relative to the total size of the genome, we included the

genome size that was analyzed in the IBD inference in both equations. Finally, we removed IBD sharing signals that include less

than 5 pairs. Codes and pipeline to estimate the asIBD score are available at: https://github.com/umb-oconnorgroup/GLAD_

DemographicAnalysis.

Polygenic risk scores
Description of PRS cohorts

We utilized the following studies participating in GLAD.

(1) Columbia University Study of Caribbean Hispanics and Late-Onset Alzheimer’s disease (phs000496).

(2) Slim Initiative inGenomicMedicine for the Americas (SIGMA): Diabetes inMexico Study (phs001388) eMERGENetwork Phase

III: HRC Imputed Array Data (phs001584).
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(3) Early Progression to Active Tuberculosis in Peruvians (phs002025).

(4) EPIGEN-Brasil (Bambui, Pelotas, and SCAALA).

These studies all ascertained one or more of the following traits: height, body mass index (BMI), and/or type 2 diabetes (T2D). See

Table S5 for a complete description of cohorts.

Ancestry proportions, relationship inference, principal components, and imputation

Within each cohort, PCs were calculated using PC-Air to utilize as covariates. Related individuals were resolved to the 3rd

degree using a kinship matrix generated in Identity-by-descent and relatedness analyses section. Genotyped data from each

cohort were separately merged with the 1000 Genomes Project (1KGP).40 Global ancestry proportions were estimated using

ADMIXTURE,41 a K of 5, and 20 replicates. For PRS estimation, imputed variants were filtered for a minimum imputation Rsq of

0.9 and a MAF of 0.01. Both imputed and genotyped data were down-sampled to Hapmap Phase 3 variants as required by PRS-

CS53 and we kept the same variants for all cohorts. Phenotype data was harmonized across cohorts, though all analyses were con-

ducted on a per-cohort basis.

GWAS summary statistics

Genome-wide association statistics were obtained from the GWAS Catalog,90 Biobank Japan31 (BBJ), and UK Biobank29 (UKBB).

African-ancestry GWAS summary statistics were combined using a random-effects meta-analysis using the GAP package in R to

improve the sample size. See Table S6 for a description of the summary statistics used for this study.

Heritability estimation

Per-cohort additive heritability for each trait was estimated using GCTA,81 adjusting for sex, age, age,2 and PCs 1–10. For each set of

GWAS summary statistics, heritability was estimated using LD score regression,91 using the appropriate 1KGP super-population for

calculating LD scores.

Polygenic risk score calculation

Pruning/Thresholding PRS:We used PRS calculated with PRSice-252 as the representative pruning and thresholding (P + T) method.

For P + T, we trained the r2 parameters (r2 thresholds of 0.2, 0.4, 0.6, and 0.8), window size (+/� 250 kb, 500kb, 750kb, 1000 kb), and

p-value thresholds (iterated by PRSice-2) in one cohort (eMERGE) and validated the parameters in the other cohorts.

BayesianMixture PRS:We used PRS estimated with PRS-CS53 as the baseline Bayesianmixture method. For PRS-CS, we trained

the phi (f) parameter (phi = 1e�06, 1e�04, 1-e02, and 1e+00) in one cohort (eMERGE, as this cohort included information for all

tested traits) via a small grid search and validated it in the other cohorts. In addition, we also evaluated the fully Bayesian

pseudo-validation method (phi = auto) for obtaining phi.

Multi-ancestry PRS using PRS-CSx: We leveraged PRS-CSx54 to compute a multi-ancestry PRS, which simultaneously fits mul-

tiple sets of GWAS summary statistics whilemodeling population-specific LD, resulting inmore accurate posterior effect sizes for any

relatively underpowered GWAS. PRS-CSx outputs a PRS corresponding to each GWAS population and an inverse variance meta-

analysis of the posterior effect sizes. We trained the best linear combination of each single-population PRS in one cohort using

the mixing weights method proposed by Márquez-Luna et al.92,93 (Equations 3 and 4) with validation in other cohorts. Prior to

combining, each PRS is scaled (mean 0, standard deviation 1). In addition, we also evaluated weighting PRS by ancestry proportions

(Equation 5), weighting by ancestry proportions after collapsing East Asian and Indigenous American ancestries (Equation 6), and

regressing on ancestry proportions prior to model fitting. We compared these linear combinations to the PRS generated from the

inverse-variance meta-analysis of PRS-CSx posterior effect sizes.

PR Si = aPRSEASi
+ ð1 � aÞPR SEURi

; (Equation 3)

PR Si = a1 PR SEASi
+ a2 PR SEURi

+ a3 PR SAFRi
;where a1 + a2 + a3 = 1; (Equation 4)

PR Si = PR SEASi

�
pEASi

�
+ PR SEURI

ðpEURiÞ+PR SAFRi

�
pAFRi

�
; (Equation 5)

PR Si = PR SEASi

�
pEASi

+ pNATi

�
+ PR SEURI

�
pEURi

�
+PR SAFRi

�
pAFRi

�
; (Equation 6)

where a, a1, a2, and a3 represent mixing weights, PR SAFRi
, PR SEURI

, and PR SEASi
represent a PRS calculated using African, Euro-

pean, and East Asian ancestry GWAS, respectively, for individual i. pEASi
, pAFRi

, pEURi, and pNATi
represent the East Asian, African,

European, and Indigenous American ancestry proportions for individual i.

For BMI, height, and T2D, GWAS summary statistics from East Asian, European, and African populations are publicly available (see

Table S6). In addition, we were able to train the full range of parameters thanks to multiple independent Latin American cohorts con-

taining data for these traits. We first compared pruning and thresholding (P + T), PRS-CS, and PRS-CSx models. We then evaluated

PRS-CSx based multi-ancestry models, comparing linear combinations (the best-performing linear combination model for each

cohort) and inverse-variance meta-analyses of PRS-CSx posterior effects. These multi-ancestry models were derived from East

Asian and European GWAS (referred to as SUM2 and META2) or derived from East Asian, European, and African GWAS (referred

to as SUM3 and META3). Finally, we compared these multi-ancestry models against the best single ancestry PRS (EUR2 and

EUR3 estimated using PRS-CSx).
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Algorithm 1. Greedy Control Match

Input:m - number of matches, dist - distance metric, E - q3e embeddingmatrix of the query, ℇ - d3e embeddingmatrix of the database, (q is the

number of query genotypes, d is the number of dataset genotypes, and e is the embedding dimension).

Output: M satisfying M4ZW½1;d�; jMj = mnjMj = d

M)B

while jMj<m^jMj<d do

X = argminX ðPq
i = 1distðEQ;i ;ED;xi Þ❘ xi ˛X3Z; jXj = q;1 % xi %dÞ

if m � jMjRq then

M)MWX

else

while jMj<m^jMj<d do

x � U ðXÞ
M)MWfxg
X)X \ fxg

end while

end if

end while

return M
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PRS model evaluation

All models were evaluated using the 10-fold cross-validation framework outlined by Pain et al..94 In this approach, the primary metric

is the Pearson correlation between the predicted and true values with a standard error of SEr = ð1 � r2 Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn � 2Þp
, where r is the

Pearson correlation and n is the sample size. Correlations were compared using the two-sided William’s test implemented in the

psych R package that accounts for the non-independence of the model predictions. R2 was calculated as the square of Pearson’s

r; partial R2 was estimated by subtracting the R2 of the base model (only covariates) from R2 of the full model (covariates and PRS). In

general, the base model included age, age,2 sex, and PCs 1–10 except for cohorts with a categorical age variable (eMERGE for T2D).

In the Pelotas cohort, as a birth-year cohort, age and age2 were not included as all subjects were the same age. We tested the as-

sociation of mean ancestry proportions of the cohorts with model performance using linear regression, adjusting for the GWAS trait

(R2� scaled ancestry proportion + trait).

Matching
Both the baseline bipartite matching51 algorithm and the nearest neighbor simulated annealingmatching algorithm operate on a prin-

cipal components space composed of the first 50 components computed using 246,799 LD-pruned SNPs from GLADdb. The

external-user-provided query is also embedded into the PCA space with a saved transformation matrix, and pairwise distances

are computed using a variance-weighted Minkowski distance metric. Once a suitable matching set has been found, we return sum-

mary statistics to the external user, including alternate allele frequency, genotype counts, and haplotype ancestry counts by

segment.

The baseline algorithm is outlined in Algorithm 1 and consists of iteratively applying scikit-learn’s95 bipartite matching implemen-

tation until enough controls have been found.

Given a desired control cohort size m and hyperparameters a, b, g, and n, the nearest neighbor simulated annealing matching al-

gorithm, outlined in Algorithm 2, proceeds as follows. The computed pairwise distances between the query and GLADdb PCA em-

beddings are used to find the a nearest neighbors of each query genome from the potential controls, which we then merge into a

candidate set. We sample m controls from the candidate set and do so b times to generate b control cohorts. We use the genomic

control l, calculated between a control cohort and the query, to evaluate the b control cohorts. The l values are then used to select

the optimal starting control cohort, and a function of their standard deviation is used to initialize our simulated annealing temperature.

To evaluate the performance of our algorithm compared to the bipartite matching (PCAmatch), we performed an empirical test us-

ing several cohorts with a different ancestral background (Table 1). We identified controls using our algorithm and PCAmatch. We

created a dummy binary phenotype that defined query individuals as cases and matched individuals as controls. Then, a pseudo-

GWAS was performed with the dummy phenotype, and finally, we estimated the genomic inflation parameter and compared which

method provided the lowest.

GLADdb
We developed an online portal where investigators both 1) find controls and 2) interact with and visualize GLAD cohorts. In the first

use case, investigators can provide summary statistics from their cases andwematch and provide summary statistics as controls. As

GLADdb samples were ascertained for various phenotypes, options are provided so that samples with known phenotypes are

removed from consideration (e.g., in a Parkinson’s Disease (PD) case study any cases with PD are not included as potential controls)

as well as the option to remove ADMIXTURE-defined individuals. No individual-level genotype data is communicated in either
e8 Cell Genomics 4, 100692, November 13, 2024



Algorithm 2. Simulated Annealing Control Match

Input:m - number of matches, dist - distance metric, eval - evaluation metric, E - q3e embedding matrix of the query, ℇ - d3e embedding matrix

of the database,G - s3q32 genotype tensor of the query, G - s3d32 genotype tensor of the database, n - number of simulated annealing iterations,

a - number of nearest neighbors to consider, b - number of starting configurations to choose from, g - number of individuals per iteration to swap, (s

is the number of SNPs, q is the number of query genotypes, d is the number of dataset genotypes, and e is the embedding dimension).

Output: M� satisfying M�4ZW½1;d�; jM�j = mnjM�j = d

C)B 8 Define set of candidate matches with nearest neighbors

for i)0 to q do

K)ZW½1;d�
For j)0 to a do

C)CWfargmink distðEi ;ℇkÞg
K)K \ fkg

end for

end for.

M)B 8 Select best starting match set from several random trials

for i)0 to b do

M)B

X)C

while jMj<m^jMj<d do

x � U ðXÞ
M)MWfxg
X)X \ fxg

end while.

M)MWfMg
end for.

M�)argminXðevalðX;G;GÞ❘X ˛MÞ
M)M� 8 Run simulated annealing

C)C \ M

s = stdðfevalðXÞ❘X ˛MgÞ
t0 = � s

logðsÞ
for i)0 to n do

t = t0
1+logð1+iÞ

X)M

for j)0 to g do

x � U ðXÞ
c � U ðCÞ
X)ðX \ fxgÞWfcg
C)ðC \ fcgÞWfxg

end for

if evalðXÞ<evalðMÞnexp
�
evalðMÞ�evalðXÞ

t

�
>U ½0;1� then

M)X

if evalðMÞ<evalðM�Þ then
M�)M

end if

end if

end for.

Article
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direction. For the second use case, we provide a visualization portal wherein users view GLAD samples and cohorts in a variety of

embedding spaces (PCA, UMAP). The visualizations are built with the Plotly library, enabling in-browser interaction, zooming, and

filtering. The control matching page enables filtering by self-identified ethnicity, PHS numbers, and some phenotypic traits. The

external user is asked to prepare and anonymize their data using a Dockerfile provided at github.com/umb-oconnorgroup/gladprep.

Figure S20 contains screenshots from the portal. The online portal is hosted on virtual machines, with a separate computer cluster

handling the computation required by the matching service.
Cell Genomics 4, 100692, November 13, 2024 e9
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