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Plain language summary

The MED13L Foundation strategic research plan

The Strategic Research Plan (SRP) serves as a guide for patient advocacy groups 
working to find treatments for rare disorders. The MED13L Foundation collaborated 
with COMBINEDBrain to create a specific SRP for MED13L Syndrome to direct clinical 
trial readiness. Once completed, the SRP becomes a tool for the MED13L Foundation, 
researchers, clinicians, and the community. It helps set priorities and guides goals. A 
summary of the plan, presented as a roadmap, provides a quick overview of existing 
tools and what else needs to be done to prepare for clinical trials. The ultimate goal is to 
discover therapeutics that improve the lives of those affected by MED13L Syndrome.
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Abstract:  A strategic research plan (SRP) serves as a compass for the patient advocacy 
organizations driving the therapeutic options for their rare disorder. The MED13L Foundation 
commissioned the SRP in 2022 through COMBINEDBrain, a consortium of patient advocacy 
organizations of rare neurodevelopmental disorders, working toward clinical trial readiness. 
The MED13L Foundation SRP is an objective evaluation of MED13L literature including clinical 
and basic science knowledge interwoven with an assessment of preclinical trial readiness tools 
necessary for achieving therapeutic interventions. Clinical evaluation is conducted through a 
review of the literature documenting symptoms and variant information for each individual with 
MED13L syndrome. Data is collated and presented as a summary, providing any unique genotype–
phenotype, as applicable. Scientific literature is reviewed in the same manner, identifying areas of 
opportunity to expand knowledge of MED13L syndrome. Researchers and clinicians responsible 
for growing the understanding of MED13L syndrome are interviewed and information is shared 
to create an open and collaborative network. Preclinical trial readiness tools are largely framed 
through Food and Drug Administration guidelines for the development of therapeutics from bench 
to bedside. Finally, the Foundation infrastructure and community engagement are assessed 
providing areas of strengths and opportunities to elevate the bond formed to drive patient-
centered research forward. Completed, this SRP becomes a living resource for the MED13L 
Foundation to set priorities, share with researchers and clinicians, and provide direction to reach 
their organizational goals, including therapies for their community affected by MED13L syndrome.
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Background for strategic research plan
Defined as a neurodevelopmental syndrome in 
2013, MED13L syndrome (MED13L) is a rare 
multisystem disorder.1 While broad in pheno-
type, primary clinical characteristics include 
developmental delay, intellectual disability, rec-
ognizable facial features, mobility issues, and 
behavioral difficulties.1,2 Lesser prevalent symp-
toms but potentially more impactful, include sei-
zures and congenital heart defects.1 The latter 
served as a basis for uncovering this genetic-
based disorder.3,4

First characterized in 2003, MED13L, the medi-
ator complex subunit 13-like, was known as 
PROSIT240, a protein similar to THRAP2 (thy-
roid hormone receptor-associated protein 2), 
located on chromosome 12 (12q24).3,4 Initially 
thought to be solely responsible for severe con-
genital heart defects, specifically dextro-looped 
transposition of the great arteries (d-TGA), 
researchers theorized that these cardiac defects 
contributed to the neurodevelopmental manifes-
tations.3,4 However, in 2013, Asadollahi, fol-
lowed by Adegbola et al. in 2015, redefined the 
clinical presentation previously linked to congen-
ital heart defects as primarily a neurodevelop-
mental phenotype driven by pathogenic variants 
in MED13L.1,2

Shortly after clinical recharacterization, the 
MED13L Foundation (Foundation) was estab-
lished in 2016 by a single family as a support 
group for the newly diagnosed. By 2021, the 
Foundation refocused its mission on discovering 
therapeutics for those affected by MED13L syn-
drome. With stakeholder input, the Foundation 
identified several research priorities including 
building a collaborative clinical and scientific 
community, investing in drug repurposing, 
advancing basic scientific knowledge of MED13L, 
and engaging the community.

Following the 2022 inaugural Scientific and 
Family Meeting, the MED13L Foundation 
quickly assembled a diverse medical and scientific 
advisory board. Members included scientists with 
a deep knowledge base of MED13L and the 
mediator kinase module (MKM), as well as 

clinicians tied to the MED13L community or a 
broader background in neurogenetics. Efforts are 
currently underway to expand advisory board 
membership beyond MED13L syndrome to 
include experts in mitochondrial diseases, other 
MKM genes, common signaling pathways, and 
clinicians experienced in outcome measure 
assessment for rare diseases. These early and inte-
gral relationships fueled efforts for funding basic 
science experiments, as well as allowing for early 
interaction with the Centers for Disease Control 
for issuance of the coveted ICD-10 (International 
Classification of Diseases, 10 revision code) for 
MED13L syndrome (Q87.85). The success of 
the first in-person meeting showcased the power 
of togetherness and grassroot efforts to propel 
research forward.

The MED13L Foundation also collaborates with 
the France-based MED13L Syndrome 
Association. Both influence the local community 
affected by MED13L syndrome to enroll and 
engage in research through data collection plat-
forms and biorepository opportunities. These 
partnerships also facilitate knowledge sharing and 
international collaboration among leading clini-
cian-researchers in the field.

In 2023, the MED13L Foundation focused on 
developing a strategic research plan (SRP) to 
address its research priorities. The SRP evaluated 
the current landscape of MED13L research, 
reviewed published literature, and identified 
opportunities for collaboration and funding. This 
living document includes detailed reports and a 
summary roadmap and is regularly updated with 
new resources, clinical opportunities, and recom-
mendations to propel the MED13L community 
toward clinical trial readiness (Figure 1).

About MED13L syndrome
MED13L syndrome is caused by a variety of 
pathogenic variants including, large gene dele-
tions, nonsense, missense, and small genomic 
insertions and deletions.1,2 Variants are primar-
ily de novo, autosomal dominant, and consid-
ered to be loss-of-function (LoF); thus, 
MED13L syndrome is historically considered a 
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haploinsufficiency syndrome.1,2,8 Newer data 
suggests that patients harboring missense vari-
ants present with a more severe phenotype.9,10 
These findings propose that select missense vari-
ants may impart a pathogenic gain-of-function 
(GoF) or dominant-negative effect, but the 
mechanism is not understood.9,10 Additionally, 
there are a small number of patients with full 
gene duplications with a reported “mild pheno-
type.”1 Mosaicism has also been documented in 
the literature with variable phenotypes.2,11–14 
Finally, it should be noted that pathogenic vari-
ants in all genes related to the MKM, except for 
cyclin C, are associated with neurodevelopmen-
tal disorders.2,8,9,15 Interestingly, MED12, 
MED13, and MED13L also present with car-
diac defects in addition to developmental delay 
and unique musculoskeletal abnormalities.15,16

Diagnosis, incidence, and prevalence
Early identification of physical characteristics, 
coupled with access to more comprehensive 
genetic testing tools, is necessary for early and 
accurate diagnosis.9,10,17 Asadollahi et  al. first 
took advantage of newer genetic technology in the 
mid-2000s to identify copy number variants and 
reframe MED13L syndrome as a neurodevelop-
mental disorder.1,17 Since then, MED13L syn-
drome has been documented as a top 10 genetic 
pathogenic de novo cause of intellectual delay 
and disability, accounting for approximately 0.5% 
of the population in multiple iterations of the 
Deciphering Developmental Disorder cohorts.18,19 
This places its prevalence in line with other known 
autism-based neurodevelopmental disorders such 
as synaptic Ras GTPase-activating protein 1 
(SYNGAP1), syntaxin-binding protein 1 

Figure 1.  The MED13L foundation strategic roadmap.5–7 The roadmap serves as a summary of progress 
regarding the necessary preclinical trial tools and resources developed as part of the larger SRP. Each 
forward-moving arrow represents a broad category of needs, from diagnosis to regulatory tasks, essential for 
optimal clinical trial readiness. Each box above and below the arrows represents a set of tools and resources 
that align with these categories. The resources may flow across arrows and do not fully represent all that must 
be achieved to reach clinical trials or therapeutic development. Additionally, tools and resources may apply 
to many rare disorders or be specific to a particular disorder. An engaged and active community is crucial 
throughout the entire process. Early and intentional investment in individuals affected by MED13L syndrome is 
key to developing effective therapeutics.
EEG, electroencephalogram; FDA, Food and Drug Administration; ICD-10, International Classification of Diseases, 10th 
revision; iPSCs, induced pluripotent stem cells; SRP, strategic research plan.
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(STXBP1), and sodium voltage-gated channel 
alpha subunit 2 (SCN2A).18–20 Clinicians and 
researchers estimate the prevalence calculated 
between 2 and 6 in 100,000 births.21,22 With 
about 100 published cases, this suggests that 
MED13L syndrome is significantly underdiag-
nosed.9,10,23 To enhance known diagnosis rates, 
the Foundation is focusing on increasing utiliza-
tion of their ICD-10 code (Q87.85).22 
Additionally, it is postulated that missense vari-
ants, more likely to be variants of unknown sig-
nificance (VUS), occur at a 2:1 ratio versus 
protein-truncating variants.22,24 By supporting 
reclassification efforts from VUS to pathogenic or 
likely pathogenic variants, the Foundation can 
also improve the known population.

MED13L syndrome clinical symptoms
The hallmark symptoms of MED13L syndrome 
are global developmental delay and intellectual dis-
ability, which occur in all evaluated cases.2,10,25–27 
Seventy-one percent (65/92) of reported individ-
uals are categorized as moderate intellectual dis-
ability.2,8–11,14,25,28,29 Less than 10% of cases 
reported are classified as mild and approximately 
15% are considered severe.2,8–11,14,25,28,29 Minimal 
or absent speech and impaired motor capabilities 
dominate the presentation of global developmental 
delay, with 99% (81/82) and 98% (80/82) of individu-
als presenting with minimal/absent speech or impaired 
motor capabilities, respectively.2,8–11,14,25,28,29 It  
is postulated that hypotonia is responsible for 
motor dysfunction.2,8–10,25,27 Additionally, indi-
viduals present with musculoskeletal malforma-
tions, particularly in the face, hands, and 
feet.2,8–11,14,25,28,29 Recognizable facial features 
include broad prominent forehead, bulbous nasal 
tip, broad depressed nasal bridge, large open 
mouth appearance, up slanting palpebral fissures, 
low set ears, and jaw/chin abnormalities (micro, 
pro, or retrognathia).9,25 While autism or autism 
spectrum disorder (ASD) has contributed to top 
published behavioral symptoms, it should be 
noted that behavioral symptoms are not  
consistently captured with about 40% of  
cases making no note of behavior-based  
changes.2,8,10,11,13,25,30–32 Finally, visual abnor-
malities are reported in 31 individuals, with stra-
bismus being a primary contributor.2,9,13,25,28,32

When it comes to behavioral symptoms, individu-
als with MED13L syndrome have been reported 
to exhibit a variety of aberrant behaviors. This 

includes autism and autistic traits, self-harm, tan-
trums, aggression, and frustration.2,8–10,13,25,28,31–33 
Interestingly, individuals with MED13L syndrome 
are also described as having a social, friendly, and 
pleasant demeanor.11,27,33 Of those reported, just 
over 60% (38/63) of individuals are documented 
to have behavioral concerns.2,8–10,13,25,28,31–33 
Symptoms are not well characterized or docu-
mented in the literature. There could be a poten-
tial correlation between objective magnetic 
resonance imaging (MRI) abnormalities and 
behavioral symptoms. However, an analysis is dif-
ficult to conduct due to the inconsistent collec-
tion of MRIs and behavioral phenotypes.

MRIs are potentially important for understanding 
pathology, symptom presentation, and perhaps 
biomarkers. Various MRI abnormalities are 
reported in 33 of 62 individuals.2,8–10,25–27,29 The 
most commonly reported abnormalities include 
ventriculomegaly (n = 9), white matter abnormali-
ties (n = 7), myelination defects (n = 6), and cor-
pus callosum thinning or agenesis 
(n = 5).2,8–10,25–27,29 Abnormalities are not mutu-
ally exclusive and do not appear to be more prev-
alent in any one variant type.8–10,29,33 Data linking 
MRI aberrations, such as corpus callosum 
changes, are associated with neurodevelopmental 
phenotypes such as cognition, speech, coordina-
tion delays, and seizures.34 Additionally, a recent 
publication correlated fetal ventriculomegaly and 
cortical overgrowth showing a connection 
between ASD, including neurodevelopmental 
delay, focus issues, and maladaptive behav-
iors.35,36 While it is plausible that MRI abnormali-
ties in MED13L publications are contributing to 
hallmark symptoms, there is no clear connection 
given the small and variable presentation noted.

Unfortunately, electroencephalograms (EEGs)  
are even less frequently published for MED13L 
syndrome. Only 9 of the 21 EEGs evaluated 
were reported as abnormal.2,8,26,27,32,33,37 Of the 
nine abnormal EEGs, five have no associated sei-
zure symptoms.2,8,26,27,32,33,37 There is no particu-
lar repetitive pattern identified among 
individuals,2,8,26,27,32,33,37 and the number is too 
small to draw conclusions. Likewise, seizure 
presence is not considered a hallmark symptom 
of MED13L syndrome. Documented seizure 
presence is about 22% (15/68) in publica-
tions.2,8,10,27,32,37,38 Of these, 17 individuals with 
missense variants are evaluated, with 10 having 
seizures.10,39 Most seizure types are not 
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characterized, though absence seizures (n = 3) are 
most common.8,32,38 The average age of individu-
als with reported seizures is 12 years.2,8,10,27,32,37,38 
compared to the average age of 8 years in all 
reported individuals with MED13L syn-
drome.2,8–11,14,25–29 It is relatively unknown when 
seizure presence was first detected in these cases. 
However, if absence seizures are common and 
later in onset, then the subtlety of symptoms 
could contribute to low reporting.40 Contributing 
to this knowledge base, a recent abstract from 
Simons Searchlight data across 28 genes 
described caregiver-reported data for treated sei-
zures and severity.41 Of 55 MED13L syndrome 
caregivers, treated seizures are reported in 15% 
and were refractory in 2%. This suggests a low 
occurrence rate or a later onset not captured in 
this study as the median age evaluated was 8 years 
of age.41 Taken together, potential critical bio-
markers and disease processes tied to MRIs or 
EEGs may present an opportunity for the 
Foundation to explore through consistent data 
collection and assessment.

Other less characterized symptoms are gastroin-
testinal issues,8–10,13,14,17,28,42 metabolic abnormal-
ities,1 and frequent childhood infections.2,9,25,32 
Additionally, once considered the defining symp-
tom of MED13L syndrome, congenital cardiac 
defects are present in about 20% (22/94) of 
individuals.3,8–10,17,26,27,31,38

While a strong genotype-phenotype correlation 
does not currently exist, individual missense vari-
ants located around exons 15 through 17 and 
exons 25 through 31 appear to show more severe 
motor delay, seizures, autism, and other behavio-
ral issues.9,10,39 One publication focused on mis-
sense variants showed that of the nine individuals, 
there was a higher likelihood of absent speech 
(5/9 vs 5/21), absent ambulation (4/9 vs 1/21), 
seizures (5/9 vs 1/26), and autistic features (5/8 vs 
5/21) compared to protein-truncating variants.10 
The reasons for the clustering of missense vari-
ants in these specific areas are not completely 
understood. However, extrapolating from 
MED13 data, it is possible that these regions 
experience phosphorylation dysfunction, affect-
ing the polarity and hydrophilicity characteristics 
of proline, serine, and threonine residues10,39 
(Table 1).

MED13L syndrome mechanism
MED13L is a subunit of the MKM, which con-
tains four subunits: CDK8/CDK19 (cyclin-
dependent kinase 19), cyclin C, MED12/MED12L, 
and MED13/MED13L.43 Each of the MKM subu-
nits are present in a 1:1 ratio and the association of 
CDK8/CDK19, MED12/MED12L, and MED13/
MED13L are mutually exclusive.44 The larger 
Mediator is a 26-subunit complex that regulates 
RNA polymerase II transcription genome-wide.45 
Upon binding, the MKM alters the Mediator 
structure and function in ways that remain incom-
pletely understood. Notably, MED13L shares 
roughly 50% sequence identity with its paralog 
MED13. Both proteins contain numerous intrinsi-
cally disordered domains, LXXLL motifs, and a 
medPIWi region43–45 (Figure 2).

While Figure 2 describes a possible mechanism 
for haploinsufficiency, the dominant-negative 
mechanism remains unconfirmed. Smol et al., as 
well as Hamada et  al., have investigated this 
potential mechanism.10,39 Researchers tested this 
theory in a mouse model by creating customized 
C-terminal antibodies. Outcomes produced a 
similar protein compared to wild type of the 
p.Pro866Leu variant as well as reduced number 
and length of dendrites.39 In the same study, 
researchers provided evidence that missense 

Table 1.  Summary of symptoms associated exon-specific documented 
missense variants in MED13L syndrome.

Variant Phenotype Exon location

p.Pro866Leu10,39 ID, ASD, Seizure, hypotonia, severe 
motor delay

15

p.Pro869Ser10 ID, seizures, severe motor delay 15

p.Cys1131Tyr10 Severe motor delay 17

p.Ser2163Leu10,39 ID, ASD, seizures, hypotonia 29

p.Ser2177Tyr10 ID, ASD, seizures, hypotonia 31

p.Thr2162Met10,39 ID, moderate speech and motor delay 29

p.Gly1899Arg10 ID, moderate speech and motor delay 26

p.Ser2002Leu10 ID, speech and motor delay, 
hypotonia

27

ASD, autism spectrum disorder; ID, intellectual disability.
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variants in the serine-rich region of the C-terminal 
(e.g., Ser2163Tyr) likely have both a gain and a 
LoF, displaying a hypomorphic state.39 On the 
whole, there remains much basic biology to dis-
cover about this highly unstructured, redundant, 
yet seemingly unique gene. Additionally, without 
reliable and sensitive antibodies, confirming these 
functional studies remains elusive.

Treatment strategies
Treatment strategies for genetic-based diseases 
are contingent on several properties. The size of 

the gene, the function (gain, loss, and dominant-
negative), the location, frequency, and variant 
type, human development expression, and the 
likeness of it to other genes.5 This section 
describes potential approaches to treatment based 
on what is known about these factors.

Curative intent treatment strategy
Full gene replacement strategies for MED13L 
syndrome are limited given the size of the gene. 
Adeno-associated viruses (AAVs) profile have the 
capacity to introduce up to ~4.5 kilobases (kbs) of 

Figure 2.  Proposed mechanism of MED13L compared to MED13L haploinsufficiency (created with BioRender). 
Left side: Under normal conditions, one of the functions of MED13 is to link the MKM to the Mediator 
Complex46,47; presumably, MED13L has a similar function given that biochemical and mass spectrometry 
data show Mediator association with MED13 and MED13L.48,49 MED13L has specifically been shown to 
regulate Wnt, FGF, and Rb/E2F pathways.44,50,51 Additionally, upon induction of stress or a loss of the nuclear-
tethering of MED13L, cyclin C has been shown to exit the nucleus and interact with mitochondrial fission 
machinery, promoting organelle fragmentation/fission.51–53 Right side: It is hypothesized that in MED13L 
Haploinsufficiency Syndrome, the transcriptional process related to the mediator complex interaction 
with RNA polymerase II may be disrupted. Cyclin C is aberrantly released into the cytoplasm, increasing 
susceptibility to cell death through mitochondrial fragmentation, decreased oxygen consumption as well as 
decreased ATP production.50,53

FGF, fibroblast growth factor; MKM, mediator kinase module; Rb/E2F, retinoblastoma tumor suppressor; Wnt, wingless-type 
integration type.
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single-stranded DNA.54 This approach is not fea-
sible for MED13L syndrome given the coding 
sequence is over 9 kbs.55 There are, however, dif-
ferent therapeutic approaches to explore where 
gene size is not a limitation.

The use of antisense oligonucleotides (ASOs) is a 
viable strategy to treat disorders of haploinsuffi-
ciency, GoF, or dominant-negative.56,57 ASOs are 
small, single- or double-stranded oligonucleo-
tides that can be designed to increase stability, 
target binding, or improve cell uptake for GoF, 
LoF, or dominant-negative diseases. However, 
the ASO design differs by the variant’s functional 
consequences.56,57 Challenges for ASO design 
remain despite years of development experience. 
Barriers to ASO optimization include therapeutic 
window, ideal tissue target and administration, 
and protein dosage sensitivity to name a few.56,57 
All of which are considerations for optimizing in 
MED13L syndrome.

A more gene-agnostic approach could be pursued 
for LoF variants; in particular, exploring technol-
ogies such as mRNA amplification, tNRA sup-
pressor therapy, or readthrough.58–61 For example, 
molecular strategies that promote protein transla-
tion in the context of stop codons could be a via-
ble treatment strategy for individuals with 
nonsense variants.60,61 Use of mRNA amplifica-
tion can provide a broader approach by upregu-
lating the wild-type copy of MED13L in those 
with haploinsufficiency.58 This could be an effec-
tive strategy for over 70% of the MED13L syn-
drome population.

One CRISPR (clustered regularly interspaced short 
palindromic repeats) based therapy has already 
proven successful in a patient-derived fibroblast 
model.53 Chang et  al. applied Cas12a iCAP 
genome editing to a patient-derived truncating 
fibroblast sample, replacing exon 20. Researchers 
demonstrated a dramatic rescue of the MED13L 
cellular phenotype, including relocalization of 
cyclin C to the nucleus, stabilization of mitochon-
drial DNA, and increased ATP (Adenosine 
triphosphate) production and oxygen consump-
tion.53 While it is unknown what the impact of 
this rescue was on the larger transcription activa-
tion/suppression effects of the MKM dissociation 
mechanism, the use of this technique could pro-
vide benefits beyond mitochondrial rescue.

In addition to the use of CRISPR rescue described 
for mitochondrial dysfunction, cis-regulation 
therapy constructed as a “dead” Cas9 (CRISPR-
associated protein 9) connected to a transcrip-
tional activator could upregulate wild-type 
MED13L. Coined as CRISPR activation 
(CRISPRa), enodgenous promoters or enhancers 
are leveraged to restore expression in haploinsuf-
ficiency disorders, such as SCN1A (sodium volt-
age-gated channel alpha subunit 1) or Dravet 
syndrome.62 Here researchers were able to 
improve epiplesy in a heterozygous Scn1a mouse 
model. Complimentary data to support the use 
for MED13L syndrome was presented in a 2022 
abstract in Rennes, France.63 Evaluating the dif-
ferences in early cortical neuron development in a 
MED13L knock-out organoid versus a wild-type 
organoid showed a clear difference in the devel-
opment of mature cortical neurons and function-
ing glutamatergic and GABAergic neurons in 
MED13L KO (knockout) organoids.63 The KO 
model also generated increased expression to 
neuroretinal cells.63 These preliminary results 
demonstrating neuron dysfunction in organoids 
provide opportunity to leverage endogenous pro-
motors or enhancers of MED13L to rescue early 
developmental phenotypes in a proof-of-concept 
model of MED13L syndrome.62,63

Drug repurposing strategy
Current potential treatment strategies for 
MED13L syndrome have focused, thus far, on 
finding repurposed Food and Drug Administration 
(FDA)-approved drugs or other small molecules 
that impact MED13L. Comparative toxicog-
enomic dataset (CTD) outlines dozens of differ-
ent compounds known to interact with 
MED13L.64 Additionally, the MED13L 
Foundation has partnered with Transcripta Bio 
(formerly Rarebase) and the University of 
Alabama-Birmingham (UAB) to leverage institu-
tional-specific technology to identify available 
therapeutic options that directly or indirectly 
interact with MED13L. University of Alabama-
Birmingham uses its mediKarnren computational 
analysis platform to search published literature 
based on the following concepts65–69: (1) drugs/
compounds that upregulate expression of 
MED13L, MED13, MED12, and MED12L, (2) 
preserve cyclin C in the nucleus,53 (3) Wnt (wing-
less-type integration type) pathway including the 
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following genes: WNT7A, LRP5 (low density 
lipoprotein related protein), FRZB (frizzled-
related protein), PCDHB15 (protocadherin), 
PCDH17 (protocadherin), SFRP4 (secreted friz-
zled-related protein), FZD9 (frizzled),38 (4) 
decreasing mitochondrial fission: MFN1 (mitofu-
sion-1) (↑), MFN2 (mitofusion-2) (↑), DNM1L 
(Dynamin-1-like protein) (↓)53 (Table 2). The 
impact and rescue of the mitochondrial mecha-
nism is being further studied through a 
Foundation-issued grant to the Randy Strich Lab 
and Rowan University (https://med13l.org/
research-hub/grant-awards/).

Drug development resources
Based on several years of ongoing guidance from 
the FDA,6,7,78,79 the MED13L Foundation is 
working to establish a toolkit for researchers, cli-
nicians, and the community. Drug development 
relies on proof-of-concept studies conducted in 
animal and cell models of disease.80 Patient-
derived cell models, as well as animal models, are 
necessary for establishing disease pathology and 
opportunities for therapeutic rescue. Additionally, 

a more recent FDA guidance references the inclu-
sion of patient/caregiver-reported outcomes to 
complement that of a formal Natural History 
Study. When available, patient/caregiver-reported 
outcomes should be facilitated with the use of 
validated assessment tools.78

Biorepositories, cell and animal models

Cell models
The MED13L Foundation has developed a 
Foundation-owned biorepository in addition to a 
Simons Searchlight biorepository. Both reposito-
ries contain a variety of patient samples, including 
plasma, whole blood, serum, peripheral blood 
mononuclear cell, induced pluripotent stem cell, 
and fibroblasts. These samples are available to 
researchers around the world through 
COMBINEDBrain (https://combinedbrain.
org/biorepository) or Simons Foundation Autism 
Research Initiative (SFARI; https://www.sfari.org/
resource/ips-cells/). In total over 50 affected indi-
viduals, siblings, and parents have donated to these 
biorepositories.

Table 2.  Examples of available drug compounds with proposed mechanistic impact on MED13L (direct and 
indirect).

Compound Data source Target Impact on MED13L

Clofibrate70,71/
Bezafibrate72

CTD/UAB Drp1 Effect MED13L expression/Improves 
mitochondrial fission and function

Lithium73 UAB Drp1 Inhibition of mitochondrial fission through 
downregulation of Drp1

Verapamil74 UAB FRZB Suppresses Wnt/β-catenin signaling, valuable 
in missense variants that upregulate MED13L

Nutraceuticals/Supplements

PSE75 UAB LRP5 The oral administration of PSE, a dietary 
cholesterol-lowering agent, had an effect on 
the expression levels of the Wnt signaling 
receptor

EPA and DHA76 UAB MFN2 Recovery of mitochondrial function by 
increasing Mfn2 expression

Ginkgo biloba77 UAB Drp1 Reduced mitochondrial fission

The table outlines specific drugs or alternative compounds that interact with MED13L directly by upregulating or 
downregulating expression or through indirect mechanisms such as preservation of mitochondrial dysfunction, 
interaction with the Wnt pathway, or other distinct known downstream paths as outlined. CTD, comparative toxicogenomic 
dataset; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; PSE, plant sterol esters; UAB, University of Alabama-
Birmingham.

https://journals.sagepub.com/home/trd
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Animal models
There are a handful of in vivo models for 
MED13L syndrome with published outcomes 
(Table 3). Utami et  al. developed a Danio rerio 
(zebrafish) model by knocking down med13b, the 
zebrafish equivalent to MED13L.38 More than 
95% of embryos had underdeveloped heads, 
microphthalmia, and curved body axis, recapitu-
lating the human phenotype.38 Conclusions 
drawn were that MED13L is responsible for neu-
ral crest development and differentiation. This 
included key signaling pathways for brain, skele-
tal muscle, heart, and facial structure, correlating 
to human fibroblast growth factor (FGF) and 
Wnt deregulation.38

Additionally, Hamada et  al. used a C-terminal 
polyclonal antibody (1998–2207 aa) to demon-
strate changes in nuclear isolation in Mus muscu-
lus embryos confirming persistent cytoplasm 
presence in postnatally differentiated neural crest 
cells.81 When repeated, MED13L protein was 
observed to accumulate in cytoplasmic hip-
pocampal neurons. Hamada noticed continued 
co-localization of MED13L with both presynap-
tic and postsynaptic markers.81 This demonstrates 
something fairly unique to MED13L, which is its 
cellular localization changes with developmental 
period and tissue/cell type. Additional GFP 
(green fluorescent protein)-tagged embryonic 
models were also created to characterize cortical 
neuron development using different patient-
derived variants.39 Using the same custom 
C-terminal MED13L antibody, researchers 
described the functional impact on developing 
neurons as well as changes in the localization of 

MED13L compared to wild type39 (Table 3). 
Additional confirmation to better understand the 
roles of MED13L transcripts, as well as the devel-
opment and validation of N-terminal antibodies 
in patient-derived models must be performed to 
further substantiate these initial experiments.

Finally, an M. musculus (mouse) model created 
by the Grueter Lab recently showed that both 
MED13 and MED13L were necessary for cardio-
myocyte functionality.82 In addition to physical 
cardiac deficits leading to mortality, mRNA 
sequencing confirmed that the Wnt pathway was 
upregulated, but RNA polymerase II-dependent 
transcription remained unchanged.82 This con-
firms the necessity of both MED13 and MED13L 
proteins for cardiomyocyte functionality82 (Table 
3). Through a MED13L Foundation grant, the 
Grueter Lab at University of Iowa is expanding 
M. musculus models to examine the broader phe-
notype of MED13 and MED13L Syndromes 
(https://med13l.org/research-hub/grant-awards/).

Biomarkers and outcome measures
In addition to cell and animal models, it is essen-
tial for consistent measurable biomarkers. It is 
estimated that 20% of individuals with MED13L 
syndrome have seizures.2,8,10,27,32,37,38 Additionally, 
the literature cites about 30 individuals with 
abnormal MRIs.2,8–10,25–27,29 However, the rate at 
which these patients have disease-specific EEG or 
MRI features remains unclear. Disease-specific 
EEG signatures are often used as biomarkers for 
epileptic encephalopathies and could be further 
explored in MED13L syndrome.83,84 Similarly, 

Table 3.  Existing in vivo models for MED13L syndrome.

Animal Genetic model Outcome

Danio rerio (zebrafish)38 med13b (knockdown) Neural crest dysregulation

Mus musculus (mouse)81 Med13l N-terminal (1–668) 
Knockdown

MED13L nuclear and cytoplasmic 
neuronal co-localization

Mus musculus, embryonic 
(mouse)39

p.Pro866Leu
p.Ser2163Leu
p.Thr2162M
p.Gln1922*

Dominant-negative
Hypomorphic
Reduced function
Loss-of-function

Mus musculus (mouse)82 Med13 + Med13l Cre-Lox 
alphaMHC (double KO)

Decreased ejection fraction, 
cardiomyopathy, increased mortality

https://journals.sagepub.com/home/trd
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MRIs have also been used in predictive endotypes 
of gene-based autism disorder.36 Both research 
EEGs as well as prior MRIs were collected as part 
of the 2022 Simons-sponsored research and fam-
ily conference. Analysis could provide a unique 
insight into MED13L syndrome.

Other molecular, metabolomic, or proteomic bio-
markers are being investigated, leveraging the rich 
biospecimen repository. Given the transcriptional 
impact of MED13L on the large mediator com-
plex, it could, in theory, provide insight into 
expression patterns.44,50 Additionally, a recent 
publication using patient-derived fibroblasts 
showed accelerated aging and early senescence in 
fibroblasts containing the MED13L variant.23 
This could indicate a larger epigenetic process 
and potential biomarker. The mitochondrial bio-
genesis mechanism also offers additional bio-
marker exploration.52,53

Disease phenotyping

Disease concept studies
Disease concept studies are a literature summary 
reviewing a specific disorder combined with per-
sonal interviews of those affected by the disorder. 
To undergo a formal concept study, caregivers, 
healthcare professionals, and educators familiar 
with the disorder are interviewed using open-ended 
questions to obtain additional details into symp-
toms, management, and caregiver and individual 
impacts of daily life.85 To take on a formal disease 
concept, a draft must be completed by reviewing 
the available literature, compiling a list of symp-
toms, collating and establishing key features of the 
disorder, and noting ones that may be important 
for future tracking.85 A formal disease concept 
study is underway in collaboration with the Rutgers 
University Genetic Counseling program and 
COMBINEDBrain. Preliminary information 
should be available by late 2024 or early 2025 
(https://combinedbrain.org/conceptual-models/).

Data collection platforms
MED13L is a gene of interest for Simons 
Searchlight, an international online platform that 
studies over 150 genes causing rare neurodevel-
opmental disorders with known comorbid condi-
tions of autism. Updated analyses of select surveys 
are provided quarterly online (https://www.

simonssearchlight.org/research/what-we-study/
med13l/). Similarly, the Foundation is partnering 
with RARE-X for patient/caregiver-entered data 
collection, which ensures the patient data is 
owned and managed by the individuals and lead-
ers of the Foundation (https://rare-x.org/about/). 
The MED13L Syndrome Association is primarily 
using GenIDA (Genetic of Intellectual Disability 
and Autism Spectrum Disorders), a French-
based platform to collect longitudinal caregiver-
reported data.86 GenIDA, like Simons Searchlight, 
is an internationally based online collection plat-
form targeted to neurodevelopmental diseases 
with underlying autism. A recent publication 
highlighted the collaboration between The 
MED13L Syndrome Association and key opinion 
leaders, Dr. Jamal Ghoumid, Dr. Roseline 
Caumes, and Dr Thomas Smol. Of the 44 docu-
mented individuals with MED13L, 47% of them 
were French, demonstrating the need for collabo-
ration with researchers, clinicians, and patient 
advocacy organizations.86

MED13L is also a gene of interest in the Brain 
Gene Registry (BGR), a national repository of 
detailed information on individuals with variants 
in genes thought to be involved in intellectual and 
developmental disabilities.87 The BGR collects a 
battery of assessments which is a composite of 
cognitive, adaptive, motor/sensory, autism, psy-
chiatric, neurological, and past medical history 
surveys to support reclassification of VUS. The 
BGR will also source electronic medical record 
data if the affected individual is enrolled at one of 
the collaboration sites.87 Given the focus on VUS, 
this can be particularly useful to support the reas-
signment of VUS in the MED13L community.

Summary
The intent of this SRP is to serve as the founda-
tional roadmap for the path to therapeutic inter-
ventions for those affected by MED13L 
syndrome. Consequently, the MED13L 
Foundation is investing and collaborating in basic 
science, clinical research, and community engage-
ment. For basic science, the Foundation is devel-
oping necessary resources for researchers, 
including antibodies, assays, and -omic studies 
for biomarkers. By providing grant funding for 
mitochondrial studies and mouse model develop-
ment, researchers aim to establish a consistent 
rescuable phenotype.
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Gaps identified in the roadmap (Figure 1) are pri-
oritized for the near future. The community is 
engaged in providing critical biospecimens for 
research and providing caregiver-entered infor-
mation in data collection platforms. The next 
phase involves identifying family priorities and 
holding regular convenings of families, clinicians, 
and researchers. This will promote long-term 
engagement to set the stage for a formal Natural 
History Study. Additionally, the Foundation is 
focused on collaborating worldwide to engage an 
international base, including The MED13L 
Association and other international families, to 
grow the community.

An SRP requires regular review and updates 
based on new publications, increased availability 
of MED13L Foundation resources, and invest-
ments in the community. The benefit for a mostly 
volunteer nonprofit organization in developing an 
SRP unique to their disorder is providing an 
objective framework of the tools to navigate the 
road to accessible therapeutic options.
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