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Abstract
Background  Mass spectrometry-based quantitative proteomics has a demonstrated utility in increasing the 
diagnostic yield of mitochondrial disorders (MDs) and other rare diseases. However, for this technology to be widely 
adopted in routine clinical practice, it is crucial to accurately estimate delivery costs. Resource use and unit costs 
required to undertake a proteomics test were measured and categorized into consumables, equipment, and labor. 
Unit costs were aggregated to obtain a total cost per patient, reported in 2023 Australian dollars (AUD). Probabilistic 
and deterministic sensitivity analysis were conducted to evaluate parameter uncertainty and identify key cost drivers.

Results  The mean cost of a proteomics test was $897 (US$ 607) per patient (95% CI: $734-$1,111). Labor comprised 
53% of the total costs. At $342 (US$ 228) per patient, liquid chromatography coupled tandem mass spectrometry 
(LC-MS/MS) was the most expensive non-salary component. An integrated analysis pipeline where all the standard 
analysis are performed automatically, as well as discounts or subsidized LC-MS/MS equipment or consumables can 
lower the cost per test.

Conclusions  Proteomics testing provide a lower-cost option and wider application compared to respiratory chain 
enzymology for mitochondrial disorders and potentially other functional assays in Australia. Our analysis suggests that 
streamlining and automating workflows can reduce labor costs. Using PBMC samples may be a cheaper and more 
efficient alternative to generating fibroblasts, although their use has not been extensively tested yet. Use of fibroblasts 
could potentially lower costs when fibroblasts are already available by avoiding the expense of isolating PBMCs. A 
joint evaluation of the health and economic implications of proteomics is now needed to support its introduction to 
routine clinical care.
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Background
Genomic sequencing has revolutionized diagnostics by 
detecting pathogenic variants in a single test, and thus 
ending diagnostic odyssey, avoiding unnecessary inter-
ventions, and restoring reproductive confidence for fami-
lies [1–4]. One of the current challenges in the genomic 
diagnostics field, however, is assessing the functional 
impact of genetic variants in the approximately 80% of 
patients with rare disease suspected to have a genetic 
origin [5]. Hundreds to thousands of variants are typi-
cally identified following genome (GS) and exome (ES) 
sequencing, with a smaller number (sometimes tens to 
hundreds) of variants of uncertain significance (VUS) 
potentially needing follow up through functional assays 
[6]. Due to these challenges, approximately half of sus-
pected rare disease patients remain undiagnosed despite 
undergoing GS or ES [7, 8].

Disease agnostic untargeted functional genomics 
approaches such as transcriptomics and proteomics have 
advantages over single biochemical tests for the upgrade 
of VUS as they can provide functional information, 
including the impact of VUS on gene expression, protein 
function, and gene-protein interactions for thousands of 
genes at once. We [9–15] and others [16, 17] have suc-
cessfully applied proteomics to the detection of mito-
chondrial disorders caused by variants in genes encoding 
subunits, assembly factors, or other cellular machinery 
required for the function of mitochondrial respiratory 
chain (RC) complexes.

We recently demonstrated that proteomics can effec-
tively replace RC enzymology (RCE) [15]. In Australia, 
RCE is the only functional test for mitochondrial disease 
(MD) that is offered as a National Association of Testing 
Authorities (NATA)-accredited clinical test. However the 
use of proteomics in this context avoids the use of inva-
sive biopsies from tissues such as muscle, liver, and heart, 
provides greater sensitivity than RCE, and its untargeted 
nature means it has a high potential for use in other rare 
diseases where the affected gene is expressed in an avail-
able specimen.

As evidence of the effectiveness of functional genom-
ics approaches emerges, the costs and cost-effectiveness 
of these technologies must be evaluated to inform their 
clinical implementation [18, 19]. To this extent, micro-
costing studies of genomic diagnostic tests that [i] report 
detailed and complete procedures, [ii] provide transpar-
ency in the sources and methods to estimate resource 
use and unit costs, and [iii] that assess the uncertainty 
of their parameters, are necessary to provide a compre-
hensive evaluation of cost-effectiveness estimates [20]. 
This paper presents a micro-costing study conducted to 

estimate the economic cost of a Mass Spectrometry (MS) 
based quantitative proteomic diagnostic test for provid-
ing functional evidence to pathogenic variants in undiag-
nosed MD patients.

Methods
Study design
This study builds on the findings of our published system-
atic literature review of micro-costing genomics diagnos-
tics [20], and aims to develop a micro-costing framework 
to estimate the cost of delivering proteomics diagnostic 
tests from a laboratory provider perspective.

Setting and patient populations
This study collected resource utilization information 
to estimate the cost of an MS-based quantitative pro-
teomics diagnostic test delivered by the Australian Undi-
agnosed Disease Network (UDN-Aus). The UDN-Aus is a 
collaborative project from a network of genetic clinicians 
and scientists in Australia that provides expert genetic 
testing services for individuals with rare disorders, and is 
a conduit for patient recruitment to various research pro-
grams that aim to increase the diagnostic rate for patients 
with undiagnosed genetic disorders. Such conditions 
include malformations of cortical development, epileptic 
encephalopathies, other presumed monogenic neurode-
velopmental disorders and potential novel dysmorphic 
syndromes.

Resource use identification
A workflow process (Fig.  1) for MS-based quantita-
tive proteomics using cell-based samples such as blood 
derived peripheral blood mononuclear cells (PBMCs) or 
skin fibroblasts was developed in consultation with the 
project lead (DAS) and the lead research fellow (DH) of 
the RDMassSpec  (Mass-Spectrometry based Functional 
Genomics Platform for solving Rare Genetic Disorders) 
platform. The workflow covered all steps of proteomics 
analysis from sample reception and isolation, protein vol-
ume measurement, mass spectrometry analysis, bioinfor-
matics, and reporting. The main analysis focused on the 
costs of using PBMCs from EDTA blood samples. Simi-
lar to fibroblasts samples, PBMCs allow for the detec-
tion of over 5,000 intracellular proteins [21, 22], whereas 
fluids such as plasma (~ 500) [23], CSF (~ 1500) [24] or 
urine (~ 1,300 proteins) [25] are generally enriched in 
extracellular proteins and suffer extreme dynamic range. 
Resource utilization data were collected for each step 
of the workflow, including consumables (plasticware, 
reagents, buffers, protein assay kits), equipment (centri-
fuges, incubators, mass spectrometers), and labor (task 
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time). A brief description of the clinical proteomics pro-
cess, as well as a detailed summary of the resource units 
for consumables, equipment, and labor (Supplementary 
Tables 1–6) are provided in the supplementary materi-
als. The costs of establishing fibroblast cell lines and for 
blood collection in the case of PBMCs analyses, including 
sample preparation, handling, processing, transport, and 
shipping are reported separately (Supplementary Table 
7). Resource use in sampling was obtained at a UDN-Aus 
affiliated institution, and costs were based on agreed-
upon pathology work orders from partner laboratories.

Resource use measurement
Resource volumes for consumables and equipment in 
a 24-sample batch of proteomics tests were obtained 
through expert consultation. This batch size represents 
the maximum capacity for current operations. The batch 
includes 6 control samples and allows for processing 6 
patients (requiring 3 sample replicates per patient). Time 
estimates for labor were provided by the laboratory per-
sonnel based on average processing times between Feb-
ruary and June 2023.

PBMC isolation and the protein quantification (BCA) 
and digestion steps were conducted through sample 
batching; hence resource and labor estimates were 
derived for a 24-sample batch. On the other hand, the 
LC-MS/MS analytical steps were performed per sample, 
resulting in resource use and unit costs calculated on a 
per-sample basis and later reconciled with the batch 
quantity. A similar approach was taken for bioinformat-
ics, reporting, and data archiving, which are performed 
at a per-patient level (3 replicates per patient), with labor 
and equipment use adjusted for the number of patients 
per batch.

Resource use for bioinformatics use was based on bio-
informatician time and the use of high-performance 
computing equipment for LC-MS/MS data analysis. 
Bioinformatician time included maintenance, trouble-
shooting, automation tool development, ad-hoc analysis 
scripts, and data security management.

The estimates of labor use for the LC-MS/MS steps 
were obtained from the head (NW) and staff (C-SA) of 
the Mass Spectrometry and Proteomics Facility. The 

process uses the Orbitrap Exploris™ 480 mass spectrom-
eter coupled with an UltiMate 3000 nanoHPLC platform 
(Thermo Fisher Scientific, Inc.). The labor estimates 
include time spent calibrating the equipment, loading 
gradients, running QC samples, instrument cleaning, 
and troubleshooting activities (Supplementary Table 2). 
For reporting activities, resource use was based on the 
time spent by laboratory personnel for report generation, 
review, dispatch to the genetics team and data archiving.

Sample throughput and resource use valuation
An estimated maximum annual throughput of 986 rare 
disease patients (equivalent to 164 batches) was esti-
mated. This estimate considered a 75% equipment uti-
lization rate and it was used for all stages to reflect 
the processing capacity of the RDMassSpec platform. 
Approximately 2% of patient cases were expected to 
require re-analysis at the bioinformatics stage. Labor 
time for re-analysis was factored in based on the esti-
mated proportion of cases requiring it.

To enhance transparency and replicability, published 
rates from manufacturers were used to determine the 
costs of consumables and equipment (Supplementary 
Tables 3–7). Consumable costs were calculated by mul-
tiplying mean per-unit costs by the number of units used 
in the testing process. In cases where only multiple use kit 
costs were available, the total cost was evenly distributed 
among all items in the package. Equipment costs were 
obtained by dividing the annual cost of each item by the 
estimated annual sample output, resulting in a cost per 
sample. The 75% equipment utilization rate was informed 
by previous micro-costing studies [26, 27], and it consid-
ered necessary maintenance and repair requirements.

Personnel costs were determined from the 2021–2025 
Victorian public sector enterprise agreement for medi-
cal scientists, pharmacists, and psychologists (Victorian 
Hospitals’ Industrial Association, AG2022/4538). Step-
wise costs were obtained by multiplying the estimated 
minute rate suitable for the grade of the staff performing 
the tests, by the equivalent number of minutes devoted to 
each task. For data archiving, a file size of 9 GB was esti-
mated per patient, assuming 5-year storage. These costs 
were calculated based on the estimated file size and the 

Fig. 1  Proteomics analysis workflow.Source: RDMassSpec platform, Bio21 Institute
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cost per GB of digital storage from the University of Mel-
bourne’s Compute and Data Infrastructure resource price 
estimator. The final cost estimates were calculated by 
multiplying the resource use estimates with their respec-
tive unit costs and then aggregating them to obtain the 
total cost estimate.

Additional considerations
A 5 or 10 -year time horizon was chosen based on equip-
ment lifetime estimates from the laboratory staff. Equip-
ment acquisition costs were spread over the lifespan 
using straight-line depreciation and a 5% discount rate. 
Equipment sharing of pipettes, centrifuges and incuba-
tors was considered for the protein quantification and 
column digestion stages to reflect practice and avoid dou-
ble costing of items. Maintenance costs for the LC-MS/
MS equipment were based on manufacturer’s annual 
service contract rates. Overhead costs, including facil-
ity maintenance, cleaning, electricity, bulk gas and A/C 
utilization for the LC-MS/MS platform, were factored in 
by adding a 20% supplement to the total costs. A simi-
lar approach has been utilized in previous micro-costing 
studies of genomic sequencing [26, 28, 29] to account for 
overhead costs such as cleaning, facility administration 
costs and electricity.

Analysis
All unit costs and the results of the analyses were esti-
mated in 2023 Australian dollars (AUD$1 = USD$0.6682 
as per the Reserve Bank of Australia’s (RBA) exchange 
rate in July 2023). A probabilistic analysis was conducted 
using 10,000 Monte Carlo simulations to capture the 
uncertainty of unit costs [30]. The costs of equipment, 
consumables and labor were collected as point estimates 
of mean use, with maximum/minimum value ranges pro-
vided where feasible. Each range was fitted to a gamma 
distribution via the method of moments [30] (Supple-
mentary Table 8), and then used to draw 10,000 random 
values for each input using the rgamma function from 
the R Statistical Software (v4.1.2; R Core Team 2021). 
The mean value of the distribution served as the point 
estimate and a 95% confidence interval limit defined the 
upper and lower bounds.

One-way deterministic sensitivity analyses explored 
variations in key inputs and their impact on total costs. 
These included varying equipment utilization rates 
(50%-100), the overheads rate (10–30%), lower costs of 
consumables (-25%) and of the mass spectrometer and 
associated equipment (-25%), as well as different dis-
count rates (1.5% and 5%), annual testing capacities (500 
and 1,500 patients per annum), and the inclusion of sam-
ple reception costs, both for fibroblasts and PBMCs. A 
scenario analysis evaluated the variations in total costs 
at throughput levels between 100 and 1500 patients per 

year. Finally, a two-way sensitivity analysis evaluated joint 
changes in the annual throughput capacity alongside 
lower costs of the mass spectrometer or the bioinformat-
ics processing time per patient.

Exclusions
Costs related to start-up, general laboratory equipment 
(e.g., benchtops, fridges) pipeline development, quality 
control, training, and counselling before and after test-
ing were excluded. Costs incurred by long term data 
storage, databanks, and ongoing research discovery were 
excluded as they are not typically included in hospital 
operating costs. In Australia, test procedures requiring 
research activities are ineligible for public funding [31].

Results
The mean cost of a MS-based quantitative proteomic 
diagnostic test, including overheads, was $897 (95% CI: 
$734-$1252) [US $607 (95% CI: $485-$783)] per patient. 
Labor, consisting primarily of a technical scientist per-
forming sample processing tasks as well as doctoral level 
scientists performing data analysis and reporting activi-
ties, was the main cost component at $396 (95% CI: $280-
$560) [US $273 (95% CI: $188-$410)], or 53% of the total 
costs before overheads. Equipment costs, accounting 
for approximately 28% of costs or $209 (95% CI: $156-
$269) [US $137 (95% CI: $96-$186)] per patient, were 
the secondary cost contributors. Consumables totaled 
$143 (95%CI = $111-$190) [US $96 (95% CI: $73-$131)], 
accounting for around 19% of the total costs before over-
heads. A detailed breakdown of costs per stage is pre-
sented in Table 1.

Most labor costs are attributed to the bioinformat-
ics and reporting stages, where 215 min of labor time is 
dedicated to data analysis and reporting of activities. The 
LC-MS/MS stage was also a substantial contributor to 
labor costs, primarily driven by troubleshooting activi-
ties of variable complexity that require up to 12 h of labor 
time per case.

Around 62% of the equipment costs are derived from 
the acquisition and annual service/maintenance con-
tract of the Orbitrap Exploris™ 480 MS platform ($135). 
High performance computing costs represented less 
than a dollar per patient ($0.60). These costs considered 
the acquisition of a dedicated 30-core computing system 
with the capacity of analyzing over 50,000 samples per 
year. The 5-year data archival and storage costs of $8 per 
patient (Table 1) were also notable contributors to equip-
ment costs.

In the case of consumables, 34% of costs, or $49 per 
patient (Table 1), originated in the spin column digestion 
stage, which includes the use of S-Trap™ micro columns 
as well as plasticware (tubes and pipette tips). With an 
estimated cost of $45 per patient (Table  1), the PBMC 



Page 5 of 10Santos Gonzalez et al. Orphanet Journal of Rare Diseases          (2024) 19:443 

isolation step represented 31% of consumable costs, with 
around $30 coming from the use of SepMate™-15 (IVD) 
columns and the Ficoll® Paque Plus gradient. In addition, 
at $42 per patient (Table 1), the LC-MS/MS step was the 
third largest contributor to the cost of consumables, due 
to the Acclaim™ PepMap™ 100 analytical and trap col-
umns ($30 per patient), which require a high replacement 
rate to comply with clinical laboratory accreditation 
standards.

Sensitivity analysis
The results of the one-way deterministic sensitivity anal-
ysis are presented in Table 2. Reductions of 10% or 25% 
in data analysis and bioinformatician times led to a 2% 
and 4% fall in costs, respectively. Applying either a 10% or 
30% rate for overheads resulted in a net change in costs 

of 8%; nonetheless, these changes did not impact on the 
costs of consumables, equipment, or labor. Using a 50% 
equipment utilization rate increased total costs by 14%, 
whilst a 100% utilization decreased costs by 6%, due to 
the impact of these changes in the per-sample cost of 
equipment. Discounting equipment costs at rates of 1.5% 
and 3.5% had a minor effect on total costs (Table 2). An 
annual output of 500 patients tested (around 50% of the 
estimated capacity) increased total costs by 32%. On 
the other hand, if annual testing reached the maximum 
estimated capacity of 1,500 patients for one LC-MS/
MS platform, costs would fall by 11% (Table  2). Lower-
ing the costs of consumables or the Orbitrap Exploris™ 
480 MS and associated equipment by 25% reduced total 
costs by 4% and 5%, respectively. Finally, costs increased 
by 14% if blood sample reception costs were considered 

Table 1  Cost of proteomics testing per patient
Stage Consumables Equipment Labor Total (AU$)
PBMCs isolation $45 $1 $8 $54 (35–93)
Protein quantification –
Bicinchoninic acid (BCA) assay

$7 $2 $12 $21 (16–30)

Spin Column Digestion $49 $2 $10 $62 (43–88)
Liquid Chromatography with tandem mass spectrometry (LC-MS/MS) $42 $192 $109 $342 (253–482)
Bioinformatics - $4 $122 $126 (77–188)
Reporting - $0.3 $135 $135 (69–237)
Data archiving - $8 - $8 (3–15)
Total cost excluding
Overheads (95% CI)

$143
(111–191)

$209
(156–269)

$396
(280–560)

$748
(611–926)

Proportion of total cost 19% 28% 53% -
Total cost including 20% overheads (95% CI) $897 ($734-$1,111)

Table 2  Results of the deterministic one-way sensitivity analysis
Parameter (base case value) Variation Cost (incl. 

overheads)
95% CI % Change 

vs. base 
case

Base Case Analysis - $897.00 ($734-$1111) -
Data analysis & bioinformatician 
time − 98 min per patient

25% Less Bioinformatics Time $859.00 ($700-$1070) -4%

10% Less Bioinformatics Time $883.00 ($721-$1100) -2%
Overheads 20% Overheads 10% $824.00 ($674-$1021) -8%

Overheads 30% $973.00 ($794-$1211) 8%
Equipment Utilization 75% 50% Equipment Utilization $1,020.00 ($849-$1241) 14%

100% Equipment Utilization $840.00 ($682-$1054) -6%
Equipment discount rate − 5% 1.5% Equipment Discount Rate $867.00 ($707-$1087) -3%

3.5% Equipment Discount Rate $883.00 ($718-$1102) -2%
Sample throughput − 986 patients 
per annum

500 (~ 50% less) $1,185.00 ($1003-$1413) 32%
1500 (52% more - capping at 52% increase as it approaches the 
maximum annual capacity of one Orbitrap)

$796.00 ($638-$1005) -11%

Orbitrap Exploris™ 480 mass spec-
trometer – Cost of $980k AUD

25% Lower costs of the Orbitrap Exploris 480 MS $861.00 ($701-$1082) -4%

Consumable costs 25% Lower Consumable Costs $854.00 ($695-$1065) -5%
Use of PBMCs Use of Fibroblasts (including line establishment and culture), 

and excluding PBMCs isolation costs from the workflow)
$1,428.00 ($1216-$1680) 40%

Sample reception costs considered 
separately

Sample reception costs included $1,020.00 ($840-$1252) 14%
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in the analysis, whereas a considerable 40% increase was 
obtained if fibroblasts samples are used, primarily due 
to the elevated costs of generating fibroblasts from skin 
biopsies.

The scenario analysis (Fig.  2) indicated that at a 
throughput of 100 patients per annum, the estimated 
cost per patient is $3,510 (95%CI = $3145-$3922), 291% 
higher than in the base- case. The figure goes down 
to $1,185 per patient (95%CI = $103-$1413) when the 
annual output reaches 500 patients per year. Total costs 
per patient go below $1,000 when the estimated annual 
output surpasses 800 patients, going from $966 (95%CI = 
$799-$1190) at an output of 800 patients, to $796 (95%CI 
= $638-$1005) at an annual throughput of 1,500 patients 
(Fig.  2). These figures represent reductions in costs 
per patient of 8% and 11%, respectively. A detailed pre-
sentation of all the results from the scenario analysis is 
included in Supplementary Table 9.

The results of the two-way sensitivity analysis (Supple-
mentary Fig. 1 and Table 10) indicated slightly lower costs 
per patient at all throughput levels with 10% lower bioin-
formatics time. Reductions of 25% in the costs of LC-MS/
MS equipment or consumables resulted in noticeable 
lower costs per patient at all throughput levels.

Discussion
This study reports a detailed micro-costing analysis of 
Mass Spectrometry-based quantitative proteomics diag-
nostic tests for MDs and potentially other rare diseases. 
The workflow developed for our model presents the end 
to end costs from receipt of EDTA blood samples, to 
reporting and data archiving. The total cost of a test was 

estimated at $897 (US $607) per patient in the baseline 
calculations. Labor costs accounted for the largest por-
tion (53%) of the total costs before overheads, followed 
by equipment and consumables. At $342 per patient (US 
$228), the LC-MS/MS stage was the major cost compo-
nent, driven by the Orbitrap Exploris™ 480 MS and asso-
ciated equipment costs.

Proteomics offers a practical alternative to targeted 
protein assays like western blotting and functional tests 
such as RCE in detecting primary mitochondrial disor-
ders as it facilitates the measurement of multiple proteins 
encoded by subunits, assembly factors, or other cellular 
machinery necessary for the functioning of mitochon-
drial RC complexes. However, whilst MD is a type of 
rare disease that can be caused by mutation in over 350 
genes [32–35], RCE is not gene specific as mutations in 
different genes can cause defects in the respiratory chain. 
Furthermore, RCE often involves invasive biopsies from 
tissues like muscle, liver, and heart, which require general 
anesthesia along with its costs and risks.

We have shown that proteomics is more sensitive for 
the detection of primary mitochondrial disorders in less 
invasive specimens such as skin derived fibroblasts or 
Epstein-Barr virus transformed lymphoblastoid cells 
from blood [7, 9–13, 36, 37]. For example, a study by Hel-
man et al. (2021) [11] used integrated RNA sequencing 
and quantitative proteomic analysis to identify the under-
lying cause of disease in fibroblasts from two siblings 
after uninformative ES and GS. The multi-omic analysis 
confirmed a deep intronic variant in NDUFB10 as the 
cause of the suspected MD. The increased sensitivity of 
proteomics over RCE was evident as proteomics could 

Fig. 2  Scenario analysis. The plot displays the estimated costs per patient at throughput levels between 100 to 1500 patients per year. The dashed blue 
line presents the annual output estimated for the base case analysis (986 patients per annum)
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readily detect a specific mitochondrial defect in fibro-
blasts where RCE was uninformative. This is likely due 
to the statistical power arising from the measurement 
of multiple proteins representing each complex, under-
pinned by the quantification of multiple peptides. More-
over, the unbiased nature of proteomics and its emerging 
utility in secondary and non-mitochondrial disorders [11, 
12, 38, 39], lends itself to unexpected findings, for exam-
ple identification of mitochondrial phenocopies, and the 
dissection of complex structural rearrangements and 
copy number variants [40].

Integrating RNA sequencing and quantitative pro-
teomic analysis has proven useful in identifying the 
causes of suspected MDs when ES and GS were uninfor-
mative [11]. This approach could potentially extend the 
diagnostic yield of MDs by 16% over GS or ES alone [6]. 
The potential diagnostic yield of proteomics alone under 
similar circumstances is not yet known, though in a study 
of 121 ES or GS unsolved patients suspected of MD, 
Kopajtich et al. (2021) [41] combined RNA sequencing 
with proteomics on fibroblasts, with a combined yield of 
22%, while Hock et al. (2024) [15] used a panel of fibro-
blasts from genetically diagnosed MDs to demonstrate 
that proteomics could detect the specific defect in 88% 
of cases. The latter also benchmarked proteomics against 
RCE, which had a yield of 79%, but the untargeted nature 
of proteomics led to the additional diagnosis of several 
individuals that were GS or ES unsolved, including what 
turned out to be a non-mitochondrial disorder. Noting 
the time, inconvenience and expense needed to obtain 
skin fibroblasts, the authors also demonstrated the utility 
of PBMCs in providing functional proteomic evidence to 
enable variant upgrade with similar turnaround times to 
ultra-rapid genomic analysis. A recent study by Starosta 
et al. (2024) [42] also demonstrated the value of rapid 
proteomics in informing genomic analysis for critically ill 
infants. Rapid diagnosis can lead to substantial cost sav-
ings by reducing hospital stays, a key driver of costs for 
infants in critical care units [43–45].

The findings from this study provide valuable insights 
into the economic costs associated with proteomics diag-
nostics. The results from the base case analysis indicate 
that the cost of a proteomics diagnostic test is below the 
indicative price for respiratory chain enzymology (RCE) 
in Victoria of AUD $1130-$1525 (US $755-$1019) per 
tissue sample (Victorian Clinical Genetics Services, 
Parkville, Australia), noting that the cost of RCE does not 
include the additional costs associated with patient sam-
ple collection. In addition, our analysis indicates that the 
use of PBMCs is cheaper and more time effective than 
generation of fibroblasts, albeit not yet extensively tested 
[21, 22], with potentially lower costs when fibroblasts are 
readily available, as the costs involved in isolating PBMCs 
would be avoided. Furthermore, the presented workflow 

and estimates are reflective of resource use necessary 
for a proteomics test, making the model transferrable 
to emerging applications as the broader utility of pro-
teomics in secondary and non-mitochondrial disorders is 
demonstrated.

Nevertheless, a high level of expertise is required to 
interpret the results accurately, which may limit the avail-
ability of MS-based quantitative proteomics diagnostic 
tests to organizations where highly skilled staff are avail-
able. This also represents high labor costs as presented 
in the current study. Furthermore, the potential of non-
informative or inconclusive results [46], as well as the 
need for ongoing validation and standardization of the 
techniques present current challenges for widespread 
adoption.

In addition, like most biochemical tests used in the 
diagnosis of rare diseases, proteomics tests rely on blood 
or tissue samples, where not all genes of interest may be 
expressed. This may lead to negative/inconclusive results, 
needing multiple sample types from the patient or fur-
ther investigations to confirm pathogenicity [6]. Further-
more, the accurate quantification of proteins at low levels 
of abundance remains a difficult task in quantitative pro-
teomics analysis [47]. However, these activities have the 
possibility of being streamlined by implementing stan-
dardized protocols and utilizing automation technologies 
[47, 48]. As presented in the analysis, lower bioinfor-
matics and data analysis times can cut labor costs and 
improve efficiency, resulting in reduced costs per patient.

Certain limitations are acknowledged in our study. The 
process workflow was developed in a research environ-
ment and may not be directly applicable to clinical set-
tings. This was addressed by estimating resource use and 
utilizing salary scales and seniority levels for staff, that 
reflect the expected labor and process requirements, 
such as the rate of calibrating and replacing of equip-
ment, under standardized and accredited procedures in 
a clinical diagnostics environment. The sample batching 
reflects current processing capacity and might not accu-
rately represent forthcoming developments in technology 
and laboratory workflows. This was addressed by explor-
ing the impact of multiple throughput levels on total 
costs in the sensitivity and scenario analysis. Similarly, 
the use of a 20% overheads rate was based on studies 
costing GS and ES and may underestimate the electricity, 
temperature control and gas supply requirements of MS-
based proteomics analysis. However, rates of 10% and 
30% for overhead costs were explored in the sensitivity 
analysis, with their impact on cost estimates presented in 
the results.

Finally, there are no established guidelines or stan-
dards to conduct micro-costing studies. We guided our 
approach using the findings of a recent systematic litera-
ture review to ensure transparency and rigor in our cost 
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analysis [20], such as the identification and inclusion of 
all relevant cost components and clear reporting of data 
sources and assumptions. The study also incorporates 
parameter uncertainty through probabilistic analysis, 
which models the variability and fluctuations associated 
with the cost inputs, further enhancing the robustness of 
the results.

Our findings have potential implications for policy-
makers, given that federally funded GS and ES testing of 
rare disease patients was introduced in 2020 in Australia. 
Despite the lower than predicted utilization during the 
initial three years [49], service uptake is projected to rise 
following coordinated efforts to improve access. It is esti-
mated that over 4,000 individuals in Australia undergo 
genomic testing each year due to rare diseases, which 
affect up to 2 million individuals in Australia [50]. Quan-
titative proteomics diagnostic tests have potential appli-
cations in secondary MD as well as non-MD monogenic 
diseases [12, 38, 39], offering the possibility of a diag-
nosis to the approximately half of rare disease patients 
whose cases remain unresolved after GS or ES. From the 
potential pool of 2,000 patients, not all patients would 
undergo additional functional testing due to a lack of 
clinical suspicion, use of alternative methods, or financial 
constraints. Under a conservative approach, we can esti-
mate that between 100 and 500 of these patients would 
undergo proteomics testing per year, potentially increas-
ing as the clinical benefit and funding pathways for the 
tests are established. Based on our analysis, this would 
represent a cost of $3,510 (US $2,345) per patient if the 
annual throughput is 100 patients, and $1,185 (US $792) 
per patient for an annual throughput of 500 patients 
tested. Furthermore, future growth in capacity presents 
potential reductions in costs, which can be further low-
ered through an integrated analysis pipeline and bulk dis-
counts on equipment and consumable costs.

Conclusions
Around 50% of individuals with suspected mitochon-
drial and other rare diseases remain undiagnosed, often 
requiring functional validation of variants identified by 
genomic sequencing approaches. At an estimated average 
cost of $897 (US $607) per test, untargeted proteomics 
is a potentially underutilized approach that can provide 
functional data on thousands of proteins in a single test 
to increase the diagnostic yield of rare diseases at a lower 
cost compared to current functional assays. An evalua-
tion of the economic implications of the tests, changes in 
diagnostic outcomes, health-related quality of life as well 
as a valuation of their benefits are now needed to demon-
strate its cost-effectiveness to inform their clinical imple-
mentation in Australia and worldwide.
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