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Abstract 

The exploration of chemical space holds promise for developing influential chemical entities. Molecular representa-
tions, which reflect features of molecular structure in silico, assist in navigating chemical space appropriately. Unlike 
atom-level molecular representations, such as SMILES and atom graph, which can sometimes lead to confusing 
interpretations about chemical substructures, substructure-level molecular representations encode important 
substructures into molecular features; they not only provide more information for predicting molecular properties 
and drug‒drug interactions but also help to interpret the correlations between molecular properties and substruc-
tures. However, it remains challenging to represent the entire molecular structure both intactly and simply with sub-
structure-level molecular representations. In this study, we developed a novel substructure-level molecular represen-
tation and named it a group graph. The group graph offers three advantages: (a) the substructure of the group graph 
reflects the diversity and consistency of different molecular datasets; (b) the group graph retains molecular structural 
features with minimal information loss because the graph isomorphism network (GIN) of the group graph per-
forms well in molecular properties and drug‒drug interactions prediction, showing higher accuracy and efficiency 
than the model of other molecular graphs, even without any pretraining; and (c) the molecular property may change 
when the substructure is substituted with another of differing importance in group graph, facilitating the detection 
of activity cliffs. In addition, we successfully predicted structural modifications to improve blood‒brain barrier perme-
ability (BBBP) via the GIN of group graph. Therefore, the group graph takes advantages for simultaneously represent-
ing molecular local characteristics and global features.

Scientific contributionThe group graph, as a substructure-level molecular representation, has the ability to retain 
molecular structural features with minimal information loss. As a result, it shows superior performance in predicting 
molecular properties and drug‒drug interactions with enhanced efficiency and interpretability. 

Introduction
Artificial intelligence (AI) plays a crucial role in vari-
ous aspects of preclinical stages of small-molecule drug 
development, including virtual screening, molecular 

property prediction, structure‒activity relationship anal-
ysis and lead optimization [1, 2]. Molecular representa-
tions, which reflects the features of molecules in silico, 
serve as inputs for AI models and significantly affect the 
performance and application of related algorithms [3–6].

Atom-level molecular representations such as sim-
plified molecular input line entry system (SMILES), 
atom graph, and structural coordinate, which directly 
illustrating molecular structural features, have supe-
rior performance in forecasting molecular properties, 
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drug‒drug interactions and molecular generation [7–9]. 
However, atom-level molecular representations overlook 
the important effects of molecular substructures such 
as functional groups or pharmacophores, often failing 
to capture atoms within important substructures in the 
interpretation of quantitative structure‒activity relation-
ships (QSAR) or quantitative structure‒property rela-
tionships (QSPR) [10, 11], which is confusing in term of 
chemistry. Meanwhile, SMILES-based representations 
would not reflect the learned parameters of explainable 
artificial intelligence, making them unreliable in inter-
pretability [12]. Substructure-level chemical fingerprints 
such as extended connectivity fingerprints (ECFP) and 
molecular access system (MACCS), bridging molecu-
lar substructure characteristics with molecular global 
features [13], are usually used for QSAR, QSPR and 
similarity searches. However, they do not consider the 
connections between substructures. Rataj et  al. devel-
oped a matrix of occurrences and connections between 
substructures as a chemical fingerprint (SCFP) and 
demonstrated that the performance of molecular activ-
ity prediction can be enhanced by adding substructural 
connections to molecular fingerprints [14]. Cai et  al. 
reported that the FP-GNN, which combines a graph neu-
ral network of atom graph (GNN) with a fully connected 
neural network of mixed chemical fingerprints (FPN), 
performed the best in the prediction of molecular prop-
erties, whereas the pure FPN performed the worst [15]. 
The results revealed that substructure-level chemical fin-
gerprints lost some molecular structural information that 
was retained in the atom graph.

Molecular formulas depict how atoms and bonds 
build molecules, akin to how graphs use nodes and 
edges to map networks. In the atom graph, atoms are 
the nodes, with bonds as edges. Compared to the con-
fusion caused by different SMILES representations of 
the same molecular structure, molecular graphs offer 
greater interpretability, as they represent molecu-
lar structures in a unique and unambiguous way [12]. 
Molecular substructure graphs go a step further by 
treating substructures as nodes and links between sub-
structures as edges, enabling a more detailed explora-
tion of both molecular substructure characteristics and 
global features [16]. Molecule fragmenting algorithms, 
such as the breaking of retrosynthetically interesting 
chemical substructures (BRICS), the retrosynthetic 
combinatorial analysis procedure (RECAP) or CCQ 
(www. chema xon. com), are provided to obtain sub-
structures in molBLOCKS [17]. Methods such as eMol-
Frag retain the connections between substructures 
that fragmented by the BRICS and build substructure 
graphs [18, 19]. However, owing to the lack of bonds 
that can be fragmented by BRICS, many molecules fail 

to form substructure graphs via BRICS; to address this, 
there are certain methods for identifying more break-
able bonds for molecular fragmentation.

The substructures obtained by BRICS are further 
decomposed by cutting the self-defined cleavable bonds 
in the MGSSL [20]. The sixteen types of cleavable bonds 
in BRICS are extended to 49 in MacFrag [21]. pBRICS 
further decomposes molecules into smaller substructures 
by extracting the Bemis‒Murcko framework and match-
ing fragments from a comprehensive library of fragments 
after BRICS [22]. However, BRICS cannot fragment mol-
ecules into common substructures such as functional 
groups, usually resulting in a large substructure vocabu-
lary. Even in advanced BRICS, the size of the vocabulary 
may be 1–10 times the size of the dataset, which possibly 
results in a high-dimensional chemical space [20].

Self-defined molecule fragmentation overcomes the 
limitations of BRICS. JTVAE uses self-defined rules to 
transform a molecule into a substructure junction tree 
[23–25], and the size of the substructure vocabulary is 
one tenth that of MGSSL. HierVAE decomposes a mol-
ecule into substructures by cutting all the bridge bonds, 
producing a substructure vocabulary that holds 1%-10% 
of the size of the dataset; however, HierVAE uses a ter-
tiary structure to represent the molecular structure, 
resulting in low efficiency [26]. Pharmacophore graph 
regard common pharmacophores as substructures [27], 
and functional groups (FGS) graph extract molecular 
functional groups that affect chemical properties as sub-
structures [28]. Once combined with an atom graph, a 
substructure junction tree, a pharmacophore graph and a 
FGS graph could enhance the performance of molecular 
property prediction by providing supplementary infor-
mation about local molecular structures. Nevertheless, 
the single substructure junction tree, pharmacophore 
graph and FGS graph perform worse than the atom graph 
in molecular property prediction, indicating the loss of 
essential molecular structural information in the sub-
structure junction tree, FGS graph and pharmacophore 
graph [29, 30].

Graph neural networks (GNNs) are designed to embed 
graph features through neighborhood aggregation or 
message passing. The graph isomorphism network (GIN) 
is considered capable of closely approximating the theo-
retical upper bound of GNNs expressiveness because it 
is as powerful as the Weisfeiler–Lehman (WL) test for 
distinguishing nonisomorphic graphs [31]. The good per-
formance of the GIN has also been confirmed by many 
studies [32]. In this study, we developed a molecular 
substructure graph by self-defined molecule fragmenta-
tion and called it a group graph. The GIN of the group 
graph was applied in the prediction of downstream 
tasks to evaluate the performance of the group graph as 
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an effective molecular representation. The group graph 
shows the potential in several fields as follows:

• The substructures in the group graph reflect the 
diversity and consistency of different molecular data-
sets, providing a tool for analyzing molecular data-
sets.

• All substructures had no overlapping atoms and were 
linked by single bonds, indicating the potential of the 
group graph for molecular generation.

• A group graph can also be encoded as a node table 
and adjacent matrix, such as an atom graph, making 
it simple to adapt to other graph models.

• The GIN of the group graph outperformed that of 
the atom graph and other substructure graph in the 
prediction of molecular properties and drug‒drug 
interactions without any pretraining. Moreover, the 
runtime of the GIN of the group graph decreased by 
approximately 30% compared with that of the atom 
graph, suggesting that the group graph is a reduced 
molecular graph with minimal molecular structural 
information loss.

• The GIN of the group graph captured the substruc-
ture to interpret the change in molecular properties. 
The results revealed that the importance of differ-
ent substructures changed in 80% of the molecule 
pairs containing activity cliffs. In addition, structural 
modifications aimed at improving blood‒brain bar-
rier permeability (BBBP) were successfully predicted 
by QSPR based on group graph. Therefore, a group 
graph can be used for QSPR, QSAR and lead optimi-
zation.

Materials and methods
Active groups
To facilitate identification in molecules, traditional func-
tional groups were broken into charged atoms, halogens 
and small groups containing only double or triple bonds. 
For example, the ester group in this study was decom-
posed into two active groups, carbonyl and oxygen. 
Unlike MACCS keys, which view all rings as independent 
substructures, only aromatic rings are considered inde-
pendent substructures in our study because of their dis-
tinctive effects on molecular properties [33]. Other rings 
would be fragmented if they were matched by a broken 
functional group pattern. Details of traditional functional 
groups and broken functional groups pattern are shown 
in Figs. S1–S2. The broken functional groups and aro-
matic rings are two parts of the active groups.

Construction of the group graph
As shown in Fig.  1, there are 3 steps for constructing a 
molecular group graph.

(a) Group matching. First, all aromatic atoms are found 
in a molecule via the open-source package RDKit 
2020.9 (https:// www. rdkit. org/); then, aromatic 
atoms that are bonded to each other are grouped 
together as aromatic rings. Second, the atom IDs 
of broken functional groups in a molecule are 
obtained via pattern matching. These data provide 
all the atom IDs of the active groups in the mole-
cule. Third, bonded atoms from the remaining non-
active groups can be grouped together as fatty car-
bon groups.

Fig. 1 Construction of the group graph of PubChem id 23568 (SMILES: CCOc1ccc2ccccc2c1C(=O)NC1C(=O)N2C1SC(C)(C)C2C(=O)O)

https://www.rdkit.org/
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(b) Substructure extraction. Active groups such as 
N, O, C=O, S, and C1=CC=C2C=CC=CC2=C1 
(SMILES of groups) and fatty carbon groups 
such as C, CC, and CC(C)C are extracted from 
PubChem id 23568 according to their atom IDs 
and then put into the substructure vocabulary. Two 
substructures have links if they are bonded in the 
original atom graph. Bonded atom pairs between 
substructures are viewed as attachment atom pairs. 
For example, substructure C:17=O:18 is bonded 
with N:19 by atom 17 and atom 19, so (17, 19) is 
the attachment atom pair between C:17=O:18 and 
N:19.

(c) Substructure linking. A group graph is obtained 
by viewing substructures as nodes, links between 
substructures as edges, and features of attachment 
atom pairs as features of edges.

Datasets in substructure vocabulary analysis
The GDB-17 dataset contains molecules with C, N, O and 
F following simple chemical stability and synthetic feasi-
bility rules (https:// gdb. unibe. ch/ downl oads/) [34]. We 
separated molecules with 9, 10, 11, 13, and 17 atoms from 
the original GDB-17 dataset to create datasets GDB9, 
GDB10, GDB11, GDB13 and GDB17. Furthermore, five 
substructure vocabulary are given and analyzed from 
selected 100,000 molecules of these five datasets.

Natural products are well-known for their diverse sub-
structures, so a natural product dataset (https:// www. 
npatl as. org/) was selected to obtain a substructure vocab-
ulary for analysis of the features of substructures in the 
group graph [35].

Datasets for the prediction of molecular properties 
and drug‒drug interactions and performance evaluation 
metrics
Nine datasets from MoleculeNet were used for the pre-
diction of molecular properties (Table  1) [36]. There 
were six regression datasets, including two quantum 
chemical datasets, namely, QM7 and QM8, and three 

physicochemical datasets, namely, ESOL, FreeSolv and 
Lipo. The performance of the ESOL, FreeSolv and Lipo 
was evaluated via the root mean square error (RMSE), 
and the performance of QM7 and QM8 was evaluated via 
the mean absolute error (MAE). There were four classi-
fication datasets, including two bioactivity and biophys-
ics datasets, HIV and BACE, and two physiology and 
toxicity datasets, BBBP and ClinTox. The performance 
of classification tasks was evaluated by the area under 
the receiver operating characteristic curve (ROC-AUC). 
These nine datasets were split into training/testing data-
sets via fivefold cross validation (5-CV). To make a rig-
orous comparison, the same split was used for different 
models. In this study, optimization of models to the GIN 
of the atom graph in nine tasks was used to evaluate their 
performance in the prediction of molecular properties, 
and the optimization is described in Eq. 1:

In each classification task and regression task, Oc and 
Or represent the optimization of the models to the GIN 
of the atom graph; Pc

a and Pr
a represent the performance 

of the GIN of the atom graph; Pc and Pr represent the 
performance of the models; and the average optimization 
is the average of the optimization of the models in nine 
tasks.

Two binary classification tasks, BIOSNAP [37] and 
DrugBankDDI [38], were used for drug‒drug interaction 
prediction. The datasets were split into training/testing 
sets at a ratio of 4:1, and 12.5% of the training data were 
selected as the validation set. To conduct a precise com-
parison, the data split of the GIN of the group graph was 
consistent with that of ReLMole.

Baseline models of the molecular graph and chemical 
fingerprint
To compare the performance of the group graph with 
that of other molecular representations in the prediction 

(1)
Oc =

(Pc − Pa
c )

Pa
c

× 100%

Or =
(Pa

r − Pr)

Pa
r

× 100%

Table 1 Datasets for the prediction of molecular properties (MPs) and drug‒drug interactions (DDI)

Regression tasks for MP prediction Class tasks for MP prediction Class tasks for DDI 
prediction

Task name ESOL FreeSolv Lipo QM7 QM8 BACE BBBP ClinTox HIV BIOSNAP DrugBankDDI

Task num 1 1 1 1 12 1 1 1 1 1 1

Sample 1127 642 4200 6830 21,786 1513 2037 1478 41,127 42,040 443,046

Vocab 190 98 470 202 563 162 459 478 2879 1487 576

Metrics RMSE RMSE RMSE MAE MAE ROC_AUC ROC_AUC ROC_AUC ROC_AUC ROC_AUC ROC_AUC 

https://gdb.unibe.ch/downloads/
https://www.npatlas.org/
https://www.npatlas.org/
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of molecular properties and drug‒drug interactions, sev-
eral molecular graph models and random forest models 
based on extended-connectivity fingerprint with ratio 4 
(ECFP4) were used. The detailed model information is as 
follows:

DMPNN: Messages associated with bonds instead of 
atoms were used in a directed message passing neural 
network (MPNN) for the prediction of molecular prop-
erties [39]. The codes of the DMPNN also provided a 
random forest model based on ECFP4 as a benchmark 
model.

Random forest: The codes of random forest (RF) based 
on ECFP4 came from the DMPNN. Default hyperparam-
eters, such as 500 trees, were selected in the RF model for 
the prediction of molecular properties.

GIN (motif-pretraining): Known as MGSSL, it builds 
a substructure graph called the motif tree and then 
employs atom embeddings that learned by the GIN of the 
atom graph to generate the motif tree, so the GIN of the 
atom graph was pretrained via this self-supervised gen-
eration, and the pretrained GIN of the atom graph was 
applied for the prediction of molecular properties [20].

GIN (atom graph): Without pretraining, the MGSSL 
only retains the GIN of the atom graph. The raw GIN of 
the atom graph from the MGSSL was also applied for the 
prediction of molecular properties.

GIN (group graph): A similar GIN model with the 
MGSSL was applied to the group graph without pretrain-
ing for the prediction of molecular properties and drug‒
drug interactions.

GIN (FGS graph): This model fragments the molecule 
into traditional functional groups to obtain a functional 
groups (FGS) graph, and the GIN of the FGS graph is 
used for the prediction of molecular properties [28].

GIN (FGS-pretraining): The GIN of the FGS graph was 
pretrained through contrastive learning (CL) between 
the molecular embedding obtained by the GIN of the 
FGS graph and the molecular chemical fingerprint. The 
GIN of the FGS-pretraining was applied for the predic-
tion of molecular properties and drug‒drug interactions.

SimNN: Some features related to drug‒drug similari-
ties were input into the neural network for the prediction 
of drug‒drug interactions [40].

DeepDDI: A deep neural network based on task-spe-
cific structural similarity profiles of each drug‒drug pair 
was proposed for the prediction of drug‒drug interac-
tions [41].

CASTER: The latent vectors of drug‒drug pairs were 
embedded in features of the substring distribution 
obtained via an encoder‒decoder framework, and then 
the latent vectors of drug‒drug pairs were input into a 
neural network for the prediction of drug‒drug interac-
tions [42].

PertrainGNN: The atom context was predicted to pre-
train a GNN of the atom graph, and then the pretrained 
GNN of the atom graph was applied for the prediction of 
drug‒drug interactions [43].

Graph isomorphism network (GIN) of the atom graph, FGS 
graph and group graph
An atom graph was characterized by atom features and 
bond features as the codes of the MGSSL. A FGS graph 
was characterized by group embedding and link fea-
tures as the codes of ReLMole. A group graph was char-
acterized by chemical fingerprints including molecular 
descriptors, ECFP4 or MACCS of group, and link fea-
tures. The detailed information is described in the sup-
porting information.

The GIN model was selected to obtain node embed-
dings in the atom graph, FGS graph and group graph. 
For a graph, node u is the neighbor of node v; in the kth 
layer, the representation of node v is hv

(k); hv
(k) is updated 

by aggregating all neighbors’ representations to itself, and 
the process is described in Eq. 2 [30]:

Pooling of hv
(k) of all nodes results in the acquisition of 

the molecular features (Readout). The final prediction is 
obtained by putting the molecular features into a 2-layer 
fully connected layer (MLP) (Fig. 2).

Search for matched molecular pairs with only one pair 
of different groups
Matched molecular pairs (MMPs) are defined as pairs 
of molecules with only small differences in local struc-
ture [44]. In this study, a MMP was searched out once 
the group graph of two molecules had the same group 
number and only one pair of different groups. Moreover, 
the similarity of two molecules must be greater than 0.8, 
which is defined as the maximum Levenshtein distance 
and MCS Tanimoto similarity between two molecules.

Explanation of the GIN of the group graph by comparison 
of the node importance of a matched molecular pair
The group importance of the group graph was measured by 
the gradient class activation map (Grad-CAM), which has 
been used for the evaluation of atom importance in graph 
convolutional neural networks [45]. Graph g = (X, A), where 
X represents the node features and A represents the adja-
cency matrix, which contains N nodes. For node n, the kth 
feature at the lth layer is denoted by Fk,n

l, the final score y 
for class c is calculated as yc, the Grad-CAM average class-
specific weights αk

l,c are calculated by back-propagated gra-
dients of  yc (Eq. 3), and the Grad-CAM class-specific node 

(2)
h(k)v = MLP

(k)
((

1+ ε(k)
)

· h(k−1)
v +

∑

u∈N(v)
h(k−1)
u

)
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importance LGrad-CAM
c[n] is the average LGrad-CAM

c[l,n] at 
all layers (Eqs. 4, 5):

A MMP contains molecule A with class CA and molecule 
B with CB. The group graphs of molecules A and B have N 
nodes and only differ in groups m and n. The node impor-
tance values LGrad-CAM

c [m] and LGrad-CAM
c[n] are ranked as 

x, y in ascending order within the molecule. The change of 
group importance x and y (E) were evaluated via the fol-
lowing equation (Eqs. 6, 7):

(3)α
l,c
k =

1

N

N
∑

n=1

∂yc

∂Fl
k ,n

(4)LcGrad−CAM[l, n] = ReLU

(

∑

K

α
l,c
K Fl

k ,n(X ,A)

)

(5)LcGrad−CAM[n] =
1

L

L
∑

l=1

LcGrad−CAM[l, n]

(6)E =

(

x − y
)

N
· (CA − CB) CA �= CB

(7)E =

(

x − y
)

N
CA = CB

Equations (6) and (7) guarantee that a positive E signi-
fies increased group importance, whereas a negative E 
signifies decreased group importance. Taking error into 
account, the group importance decreased if E was less 
than -0.3; group importance was changeless if E was less 
than 0.3 and greater than -0.3; and group importance 
increased if E was greater than 0.3.

Contributions of nodes in the group graph and the atom 
graph to BBBP
After being trained via BBBP, the models of the GIN of 
the group graph and atom graph were saved, the readout 
layer was removed from the trained GIN, and the output 
of the MLP layer was used to compute the contributions 
of nodes in the group graph and atom graph to BBBP.

Results and discussion
Data formats of group graphs in silico
Like an atom graph, a group graph can also be encoded 
as a nodes table and adjacent matrix. These data can 
be stored via open graph representation tools such as 
PyTorch Geometric [46] and Deep Graph Library [47], 
enabling the easy transfer of group graphs to different 
graph models.

The node table and adjacent matrix of the atom graph 
and group graph of molecule A are shown in Fig. 3A and 
B. Atoms and groups are labeled by the unique node ID 
in the node tables of the atom graph and group graph. 

Fig. 2 Architecture of the GIN of the atom graph, functional groups (FGS) graph and group graph
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Both the horizontal axis and the vertical axis represent 
node IDs in the adjacent matrix, and 1, 2, and 3 in the 
adjacent matrix of the atom graph indicate single bonds, 
double bonds or triple bonds between two atoms, respec-
tively, whereas (ID 1, ID 2) in the adjacent matrix of the 
group graph represents two atom IDs of the attachment 
atom pair between two groups. The atom of ID 1 comes 
from the group with a horizontal node ID, and the atom 
of ID 2 comes from the group with a vertical node ID. In 

total, there are 13 nodes and 24 edges in the atom graph 
and 7 nodes and 12 edges in the group graph of molecule 
A. In summary, a decrease in the number of nodes and 
edges in the group graph indicates the ability of the group 
graph to simplify the molecular graph.

Three group graphs of molecules B, C and D, the geo-
metric isomers of molecule A, are shown in Fig.  3C–E. 
Molecule B is the chiral isomer of molecule A, and the 
chiral mark of atom 1 [C@@H] is transferred to [CH]

Fig. 3 Graph containing the node table and adjacent matrix of the geometric isomer. A Atom graph of molecule A (SMILES: CC(c1cc(O)ccc1O)
N(C)C); B Group graph of molecule A; C Group graph of molecule B (SMILES: C[C@@H](c1cc(O)ccc1O)N(C)C; D Group graph of molecule C (SMILES: 
CC(c1cccc(O)c1O)N(C)C); E Group graph of molecule D (SMILES: CC(c1ccc(O)c(O)c1)N(C)C)
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C in the group graph (Fig. 3C). [CH] loses an atom-chi-
ral type but remains atom-chiral location, so the group 
graph remains partial stereochemistry. However, it has 
similar performance with isomeric group graph that 
remains whole stereochemistry in molecular property 
prediction (Fig. S3, Table  S2-S3), so the group graph 
with partial stereochemistry is used in this study. In the 
adjacent matrix, attachment atom pairs (1,2) (4,5) (8,9) 
of molecule A (Fig.  3B), attachment atom pairs (1,2) 
(6,7) (8,9) of molecule B (Fig. 3D), and attachment atom 
pairs (1,2) (5,6) (7,8) of molecule C (Fig. 3E) capture the 
isomeric ortho-para-position, ortho-meta-position, 
and meta-para-position between C1=CC=CC=C1 and 
two O. By displaying geometric isomers differently, a 
group graph effectively differentiates similar molecular 
structures.

Comparison of the substructures in the group graph 
and other substructure graphs
Substructures in substructure graphs should have a lim-
ited size, or the dimension of the molecular represen-
tation would be too large, resulting in a complex and 

inefficient model. Therefore, the substructures of the 
group graph were compared with the substructures of 
the substructure graph built by BRICS [19] and HierVAE 
[26].

We counted the substructures number per molecule 
in the dataset by dividing the total number of substruc-
tures by the size of the dataset. Figure 4A shows that the 
substructures number per molecule became increasingly 
larger, in the group graph and the substructure graph of 
HierVAE, as the atoms number per molecule increased, 
suggesting that the group graph and the substructure 
graph of HierVAE can reflect the molecular complex-
ity of the dataset. However, in the substructure graph of 
BRICS, the substructures number per molecule is close 
to one, demonstrating that most molecules could not be 
broken by BRICS. The substructures number per mol-
ecule is greater than the atoms number per molecule in 
the substructure graph of HierVAE, indicating that the 
substructure graph of HierVAE is more complex than 
an atom graph is; however, the substructures number 
per molecule in the group graph was approximately half 
of the atoms number per molecule in all GDB datasets, 

Fig. 4 Characteristics of substructures from different datasets and in three types of substructure groups. A The substructures number per molecule 
in the group graph, the substructure graph of BRICS and HierVAE, from GDB9, GDB10, GDB11, GDB13 and GDB17; B The substructure types 
in the group graph, the substructure graph of BRICS and HierVAE, from GDB9, GDB10 and GDB11; C The proportion of the substructure with same 
atoms number to size of the substructure vocabulary from natural products dataset, in the group graph, the substructure graph of BRICS 
and HierVAE; D The frequency of occurrence of substructures with same atoms number in the natural products dataset, in the group graph, 
the substructure graph of BRICS and HierVAE [33]. The proportion of the substructure with same atoms number in the substructure vocabulary 
and the frequency of occurrence of substructures with same atoms number in the dataset are explained in the supporting information
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indicating that a group graph can fragment different 
datasets and simplify a molecular graph.

The substructure types in the group graph and sub-
structure graphs of BRICS and HierVAE, from GDB9, 
GDB10 and GDB11, were compared and shown in 
Fig.  4B. The group graph has the least number of sub-
structure types, so substructures in the group graph are 
the most common, thus leading to the simplest molecular 
representation. The same substructures from three data-
sets account for less than 3% in the substructure graph 
of BRICS, but account for more than 50% in the sub-
structure graph of HierVAE and the group graph, which 
demonstrates that similar substructures are obtained in 
HierVAE and the group graph from similar datasets.

Moreover, in the group graph, substructure graph of 
BRICS and HierVAE, the proportion of substructures 
with same atoms number in substructure vocabulary 
were compared and are shown in Fig. 4C. The substruc-
tures with the atoms number greater than 20 holds 50% 
in the substructure graph of BRICS; in the substructure 
graph of HierVAE, the substructure type with the atoms 
number less than 10 holds 50% and that near 6 holds 20%, 
showing that BRICS tends to generate large substructures 
whereas HierVAE tends to generate small substructures, 
particularly with the atoms number near 6. The pro-
portion of the substructure in the group graph initially 
increases and then decreases as the atoms number in 
the substructure increases, because the substructure has 
increased variety and a decreased occurrence probabil-
ity with increasing number of atoms. In Fig. 4D, the fre-
quency of occurrence of substructures with same atoms 
number in natural product dataset is no more than 5% in 
the substructure graph of BRICS, which means that these 
substructures rarely occur between different molecules. 

Substructures within 10 atoms occur frequently in the 
substructure graph of HierVAE and the group graph, 
which means that the substructure graph of HierVAE and 
the group graph can reflect the common substructures.

In conclusion, a group graph can reflect the features of 
a molecular dataset.

Representation of the group graph for molecular 
properties
The representation of the group graph for the molecular 
properties was confirmed by predicting the molecular 
properties and drug‒drug interactions in the GIN. The 
GIN of the group graph was compared with other mod-
els, such as the GIN of the atom graph, DMPNN, GIN 
of motif-pretraining, GIN of FGS graph, GIN of FGS-
pretraining, and the random forest (RF) model based 
on ECFP4 under the same 5-CV, and their runtime was 
computed via the same hardware. The performance of 
the models on nine tasks of molecular property predic-
tion is shown in Table  2, and the optimization of the 
models for the GIN of the atom graph in each dataset is 
shown in Fig. 5A and is computed via Eq. 1, and the aver-
age optimization was used to evaluate the overall per-
formance of the models. Compared with the GIN of the 
atom graph, the DMPNN, MGSSL, FGS graph, and group 
graph each excelled in various tasks, whereas the random 
forest based on ECFP4 performed the worst, with the 
average optimization decreasing by 27.9%. The DMPNN 
and GIN of FGS graph showed medium performance, 
and the GIN of the group graph performed the best, with 
the average optimization increasing by 7.7%. In addition, 
other substructure graph including the junction tree and 
pharmacophore graph exhibited inferior performance in 
predicting molecular properties compared to the atom 

Table 2 The performance of predicting molecular properties via the GIN of the group graph and other baseline models

The average values and 95% confidence intervals from 5-CV are reported. Aver. Opti is the average optimization of models relative to the GIN of the atom graph (Eq. 1)

Tasks ESOL FreeSolv Lipo QM7 QM8 BACE BBBP HIV ClinTox Aver.Opti
Metrics RMSE ↓ MAE ↓ AUC_ROC ↑ % ↑

GIN (atom graph) 0.881
±0.062

1.31
±0.16

0.720
±0.048

66.9
±3.0

0.012
±0.0002

0.871
±0.018

0.917
±0.011

0.807
±0.016

0.732
±0.051

0

RF (morgan) 1.183
±0.035

2.15
±0.35

0.828
±0.027

125.2
±2.3

0.014
±0.0002

0.826
±0.020

0.792
±0.034

0.657
±0.009

0.526
±0.030

− 27.9

DMPNN 0.698
±0.032

1.19
±0.18

0.637
±0.037

72.3
±3.0

0.012
±0.0002

0.851
±0.020

0.906
±0.014

0.823
±0.022

0.882
±0.020

5.4

GIN (motif-pretraining) 0.790
±0.094

1.35
±0.11

0.669
±0.051

68.1
±2.6

0.012
±0.0003

0.895
±0.014

0.924
±0.016

0.838
±0.014

0.769
±0.076

2.6

GIN (FGS graph) 0.750
±0.064

1.25
±0.15

0.679
±0.022

57.0
±2.8

0.012
±0.0002

0.832
±0.004

0.891
±0.016

0.825
±0.008

0.919
±0.016

6.4

GIN (FGS-pretraining) 0.685
±0.045

1.51
±0.14

0.642
±0.023

57.6
±2.9

0.011
±0.0003

0.897
±0.015

0.923
±0.013

0.827
±0.011

0.903
±0.026

6.6

GIN (group graph) 0.666
±0.060

1.37
±0.28

0.654
±0.013

56.5
±3.4

0.012
±0.0002

0.886
±0.015

0.931
±0.006

0.821
±0.016

0.904
±0.031

7.7
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graph [28], our results testified that group graph outper-
formed atom graph, FGS graph, junction tree, and phar-
macophore graph when predicting molecular properties 
(Table S4).

Furthermore, compared with the GIN of the atom 
graph, the runtime of the GIN of FGS graph increased by 
140%, and the extra time consumption reached approxi-
mately 3 days and 1 day in motif pretraining and FGS pre-
training, respectively, whereas the group graph decreased 
the runtime by 30% (Fig. 5B, Table S5). The GIN of motif 
pretraining embeds local molecular characteristics into 
an atom graph via motif generation. The GIN of FGS-
pretraining embeds molecular local characteristics via 
contrastive learning, and the GIN of the group graph 
can directly embed molecular local characteristics with-
out pretraining because the molecular descriptors of the 
group are used as node features of the group graph. In 
conclusion, a group graph has a better and simpler repre-
sentation of molecular global properties.

Two drugs were embedded in two GINs of the group 
graph, and the embeddings of the two drugs were sub-
sequently concatenated and fed into a two-layer MLP for 
drug‒drug interaction prediction. The results of SimNN, 
DeepDDI, CASTER, PretrainGNN, and the GIN of FGS-
pretraining were taken from a published paper [28]. The 

results of the GIN of the group graph were obtained 
under the same data split with the GIN of FGS-pretrain-
ing. The performance of the GIN of the group graph with 
no pretraining and the 3-layer raw GIN was slightly bet-
ter than the GIN of FGS-pretraining in the two binary 
tasks of drug‒drug interaction prediction (Table  3). As 
shown in Fig. 2, FGS graph extracts functional groups as 
substructures to embed local molecular characteristics. 
However, common atoms would be contained in differ-
ent substructures because atoms might be matched by 
different functional group patterns (Fig. S1), resulting in 
substructures in FGS graph being embedded by related 
features, which may be a disadvantage for model perfor-
mance. Unlike FGS graph, the group graph extracted the 
most common substructures such as broken functional 
groups and aromatic rings as substructures, helping to 
highlight molecular differences and consistency.

The good performance of the group graph for the pre-
diction of molecular properties and drug‒drug interac-
tions means that the group graph can retain molecular 
structural features with minimal information loss.

Matched molecular pair analysis based on group graph
Matched molecular pair analysis (MMPA) is a common 
tool for determining the structure–activity relationship, 

Fig. 5 Performance and efficiency of the models relative to the GIN of the atom graph in molecular property (MP) prediction. A Optimization 
of the GIN of motif-pretraining, FGS graph, FGS-pretraining and group graph to the GIN of the atom graph (Eq. 1); higher optimization means 
better performance than GIN of the atom graph. B Relative runtime of the GIN of motif-pretraining, FGS graph, FGS-pretraining and group graph 
to the GIN of the atom graph. A negative relative runtime means a shorter runtime than the GIN of the atom graph
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structure–property relationship and lead optimization, 
in which the changes in molecular activities or prop-
erties were attributed to the different local structures 
of the MMP. Substructure-level chemical fingerprints 
such as ECFP4 and MACCS bridge molecular substruc-
ture characteristics with molecular activities or proper-
ties, so they are usually used for MMPA [44]. However, 
machine learning models based on substructure-level 
chemical fingerprints seem to be inferior to the GNNs 
of molecular graphs in molecular property prediction 
[48]. The group graph excels in predicting molecular 

properties and representing local structures, providing 
a distinct advantage in the MMPA.

The Matched molecular pairs (MMPs) that were identi-
fied from BBBP, BACE and HIV are shown in Table 4. The 
prediction accuracy of the MMP is similar to the accu-
racy of the whole, and a limited number of MMPs with 
different molecular activities means that the change in 
one group makes it difficult to alter the molecular prop-
erties. The group importance for the molecular prop-
erty is computed via Eqs. 3–5, and the change of group 
importance are evaluated via Eqs. 6–7.

The changes in certain substructures that result in sig-
nificant shifts in activity are referred to as activity cliffs, 
which are crucial for virtual screening [49] and cannot be 
accurately detected via atom-level molecular representa-
tions. As shown in Figs. 6 and 7, the group graph takes 
advantage of finding activity cliffs within the MMP. As 
shown in Fig. 6, MMPs, which have different groups with 
changeless importance and the same activity, account for 
74%, 88% and 81% of BBBP, BACE and HIV, respectively, 
demonstrating that molecular activity does not change 

Table 3 Performance of predicting drug‒drug interactions via the GIN of the group graph and other baseline models

The average values and 95% confidence intervals from three independent runs are reported

Tasks BIOSNAP DrugBankDDI

Metric AUC_ROC↑ PRC_AUC↑ F1↑ AUC_ROC↑ AUC_PRC↑ F1↑

SimNN 0.8530
±0.0010

0.8480
±0.0010

0.7140
±0.0010

0.7860
±0.0030

0.7530
±0.0030

0.7090
±0.0040

DeepDDI 0.8860
±0.0010

0.8710
±0.0070

0.8170
±0.0070

0.8440
±0.0030

0.8280
±0.0020

0.7720
±0.0060

CASTER 0.9100
±0.0050

0.8870
±0.0012

0.8430
±0.0050

0.8610
±0.0050

0.8290
±0.0030

0.7960
±0.0070

PretrainGNN 0.9948
±0.0002

0.9939
±0.0001

0.9607
±0.0022

0.9716
±0.0003

0.9668
±0.0004

0.9172
±0.0007

GIN(FGS-pretraining) 0.9957
±0.0005

0.9940
±0.0008

0.9795
±0.0010

0.9792
±0.0002

0.9755
±0.0006

0.9343
±0.0010

GIN(group graph) 0.9962
±0.0002

0.9950
±0.0003

0.9793
±0.0015

0.9865
±0.0004

0.9842
±0.0007

0.9498
±0.0011

Table 4 Total number, true prediction number and label type of 
the MMPs from BBBP, BACE and HIV

MMP Num True 
prediction

Label by 
0,0

Label by 
1,1

Label by 
0,1

BBBP 278 276 25 227 24

BACE 718 574 316 226 32

HIV 9246 8528 8508 19 1

Fig. 6 The relationships between the change of the group importance and the change of molecular class label, in the matched molecular pair 
containing the only two different groups and same group number, from BACE and BBBP and HIV respectively
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if the group is replaced by a group with changeless 
importance. MMPs, which have different groups with 
changed importance and different activities, are identi-
fied as containing activity cliffs, accounting for 71% and 
89% of BACE and BBBP, respectively, which means that 
molecular activity might change if one group is replaced 
by another with changed importance. Some examples of 
MMP-containing activity cliffs in BBBP and BACE are 
shown in Fig. 7, and four types of activity cliffs are iden-
tified, including aromatic nuclei, R-groups, chirality, and 
functional group replacement.

Quantitative structure‒property relationship analysis 
by group graph and atom graph
Central nervous system (CNS) disease is the second lead-
ing cause of death, and its treatment is still challenging 
due to selective permeability of the blood‒brain barrier. 
To address this issue, structural modification of blood‒
brain barrier permeability (BBBP) should be a key con-
sideration when designing CNS leads [50].

The detailed contributions of groups and atoms to 
BBBP are computed by the trained GIN of the group 
graph and atom graph (Fig.  8, Fig. S4). The modified 

substructures contribute larger to BBBP than the origi-
nal substructure according to chemical explanations [51]. 
As shown in Fig.  8A, Replacing NS(=O)(=O) (SMILES 
of original substructure) with CO (SMILES of modified 
substructure) could enhance molecular lipophilicity and 
thus improve BBBP, indicating that CO contributes more 
to BBBP than NS(=O)(=O). The rule is followed by the 
GIN of the group graph but is objected to by the GIN of 
the atom graph. Similarly, replacing C1CCCCC1O with 
C1=CC=CC=N1 could reduce the number of hydrogen 
bond donors (HBDs), thus enhancing BBBP. The fact that 
C1=CC=CC=N1 makes a larger contribution (− 3.3) in 
BBBP than C1CCCCC1O (− 30.41) also follows this rule 
in the GIN of the group graph, but the GIN of the atom 
graph does not (Fig.  8B). Substituting (F)(F)C1CC1C 
with CC1=CC=CC=C1 could reduce basicity, which 
improves BBBP, and the fact that (F)(F)C1CC1C makes 
a larger contribution than CC1=CC=CC=C1 also fol-
lows this rule in both the GIN of the group graph and the 
atom graph (Fig. 8C).

As shown in Fig. 8D and Fig. S4D, we found out mol-
ecule 516, with negative BBBP, and molecule 491, 
with positive BBBP, and then computed their group 

Fig. 7 The change of group importance in eight matched molecular pairs (MMPs) with different activity (activity cliffs), MMP containing 
the only two different groups and same group number, from BBBP and BACE respectively
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contribution. The hydroxyl group in molecule 516 is pre-
dicted to have a negative contribution (− 0.96) to BBBP. 
Additionally, its neighboring substructure, N1CCCC1, is 
also affected, and its contribution to BBBP is − 1.98. In 
contrast, N1CCCC1 has a positive contribution (1.03) in 
a similar context to that of molecule 491, except that it 
lacks a hydroxyl group (Fig. S4D). These results suggest 
that the hydroxyl group in molecule 516 is a bad group 
for BBBP. By removing the bad hydroxyl group, the modi-
fied molecule was identified in PubChem (https:// pubch 
em. ncbi. nlm. nih. gov/) and predicted to be positive for 
BBBP by the GIN of the group graph, although its prop-
erty has not be experimentally confirmed yet. Moreover, 
replacing the weak contribution of the O (0.05) in the 
COC(=O) in molecule 491 with C, the modified mol-
ecule has been experimentally confirmed as a highly 
potent k-receptor agonist with a ki of 0.67 nM [52], align-
ing with the prediction of the GIN of the group graph 
(Fig. 8D).

Overall, with the combined consideration of context 
information and important substructures, the GIN of the 
group graph determines the contribution of each sub-
structure to BBBP, providing instructions for local struc-
tural modification in quantitative structure‒property 
relationship analysis (QSPA).

Conclusions
A group graph is a substructure-level molecular rep-
resentation that captures both local molecular char-
acteristics and global structures. The substructures in 
the group graph come from two origins: one is 72 pre-
defined broken functional groups, and the other is the 
aromatic rings and fatty carbon groups that are auto-
matically extracted by an algorithm, enabling the group 
graph to adapt to unknown chemical structures. Fur-
thermore, the substructures in the group graph have 
the smallest size, which is approximately one tenth or 
one percent of the substructure graph of BRICS, allow-
ing for a group graph to cover a vast chemical space 
with reduced dimensionality. The GIN of a group graph 
has better performance in predicting molecular prop-
erties and drug‒drug interactions, with a shorter runt-
ime than other molecular graphs do, which means that 
a group graph efficiently and accurately represents 
molecular global structures.

Unlike some black-box machine learning models, 
the GIN of a group graph is interpretable. The effect of 
group transformation on molecular properties is meas-
ured by the MMPA of group graph, and activity cliffs are 
subsequently identified. Since molecular optimization 
often involves altering groups to improve key properties 
such as bioavailability, solubility, or target specificity, the 

Fig. 8 Contribution of original substructures and modified substructures to BBBP, which was measured by the GIN of the atom graph and group 
graph separately. A Modified substructures enhance lipophilicity; B Modified substructures reduce HBD; C Modified substructures reduce basicity; 
D Structural modification for improving BBBP, which is predicted by the GIN of the group graph

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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contributions of groups predicted by the GIN of a group 
graph can guide molecular optimization.
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