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Background: Parkinson’s disease (PD) is a prevalent neurodegenerative disorder characterized by the progressive loss of dopami
nergic neurons. This study aims to discover potential new genetic biomarkers for PD.
Methods: Transcriptome data from a total of 56 patients with PD and 61 healthy controls were downloaded from the Gene Expression 
Omnibus (GEO) database. Differential gene expression (DEG) analysis, weighted gene co-expression network analysis (WGCNA), 
and three machine learning algorithms (LASSO, Random Forest, SVM-RFE) were employed to identify pivotal PD-associated genes. 
Additionally, RT-qPCR experiments were conducted to validate our findings in clinical specimens. Functional enrichment analysis and 
Gene Set Enrichment Analysis (GSEA) were performed to explore the functional and pathway mechanisms of the identified genes in 
PD. Molecular docking studies revealed potential small-molecule drug targets for the key genes.
Results: The results from the three machine learning algorithms identified ELL-Associated Factor 2 (EAF2) as a key gene in PD. 
Gene expression analysis indicated that EAF2 is significantly downregulated in PD patients, and the receiver operating characteristic 
(ROC) analysis validated the diagnostic potential of EAF2. The results from RT-qPCR on clinical specimens confirmed the findings 
from public database analyses. Functional enrichment analysis suggested that EAF2 is involved in dopamine biosynthesis and synaptic 
transmission for PD pathology. Additionally, EAF2 expression correlated significantly with immune cell infiltration. Furthermore, 
molecular docking results indicated that Acalabrutinib, Tirabrutinib Hydrochloride, and Ibrutinib are potential targeted therapeutic 
agents for EAF2.
Conclusion: These findings underscore EAF2 as a novel diagnostic biomarker and potential therapeutic target for PD, warranting 
further mechanistic studies and clinical validation.
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Introduction
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the selective loss of dopaminergic 
neurons in the substantia nigra, resulting in motor impairments such as tremors, bradykinesia, and postural instability.1 

Globally, PD affects approximately 1.2% of individuals aged 65 and older, with a significant portion of cases attributed to 
familial genetic mutations.2,3 These mutations, which contribute to 5–10% of PD cases, play a crucial role in the 
pathogenesis by accelerating the aggregation of α-synuclein, a hallmark pathological feature of PD.4,5 Despite extensive 
research efforts, the molecular mechanisms underlying PD remain incompletely understood, underscoring the need for 
further investigation into its pathophysiology and targeted therapeutic strategies.
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Recent advancements in bioinformatics and genomic technologies have revolutionized the study of PD, particularly 
through the integration of large-scale transcriptomic datasets available in repositories such as the Gene Expression 
Omnibus (GEO).6 These datasets have enabled comprehensive analyses of gene expression profiles in PD patients 
compared to healthy controls, revealing numerous candidate genes and biological pathways implicated in PD 
progression.7 For instance, genes involved in dopamine biosynthesis (eg, TH),8 synaptic transmission (eg, SNCA),9 

and metabolic pathways (eg, PINK1)10 have been identified as critical factors in PD pathogenesis.
However, despite these insights, the comprehensive gene expression landscape in PD remains insufficiently explored, 

with many PD-associated genes requiring further characterization. To bridge this gap, our study leverages advanced 
machine learning algorithms alongside GEO transcriptomic data.11 Specifically, we employ techniques including 
Random Forest, Support Vector Machine Recursive Feature Elimination (SVM-RFE), and LASSO regression to system
atically identify novel candidate genes implicated in PD. Initially recognized for its role in cancer biology, ELL- 
Associated Factor 2 (EAF2) influences cellular processes such as proliferation and apoptosis through interactions with 
transcriptional machinery.12,13 We hypothesize that EAF2 may similarly influence PD pathology through these mechan
isms. Despite its known functions, the specific role of EAF2 in PD and its impact on disease progression remain poorly 
understood.

Moving forward, our study aims to elucidate the specific roles of EAF2 in PD using comprehensive bioinformatics 
approaches. By investigating its expression profile and molecular interactions within relevant pathways, we seek to 
uncover underlying disease mechanisms at the molecular level. This investigation promises not only to enhance our 
understanding of PD pathophysiology but also to pave the way for future therapeutic strategies targeting these molecular 
pathways. The integration of machine learning techniques provides a robust framework for identifying key genetic 
factors and advancing precision medicine in PD research.

Materials and Methods
Data Download and Integration
All data used in this study were obtained from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih. 
gov/geo/). Five datasets were downloaded from brain substantia nigra specimens of PD patients and healthy individuals, 
specifically GSE7621, GSE20163, GSE26927, GSE20164, and GSE20292. Detailed information about these datasets is 
presented in Table 1. The datasets GSE7621, GSE20163, and GSE26927, comprising 35 PD patients and 36 healthy 
individuals, were used as experimental datasets. The datasets GSE20164 and GSE20292, consisting of 21 PD patients 
and 25 healthy controls, served as validation datasets. The complete analytic workflow is illustrated in Figure 1. Batch 
effect correction on datasets from different platforms was performed using the Combat function in the “sva” package in 
R to ensure inter-sample consistency.

Differential Gene Expression Analysis and Weighted Gene Co-Expression Network 
Analysis
Differentially expressed genes (DEGs) between PD patients and healthy controls were analyzed using the limma package 
in R (version 4.3.0), with thresholds set at |logFC| > 1 and Padj < 0.05. Significant DEGs were visualized using heatmaps 

Table 1 List of Datasets and Platforms Utilized in This Study

GEO Dataset No. of Samples Platform ID

Control PD Total

Test Set GSE7621 9 16 25 GPL570

GSE20163 9 8 17 GPL96

GSE26927 18 11 29 GPL6255
Validation Set GSE20164 5 6 11 GPL96

GSE20292 20 15 35 GPL96
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created with the R packages “pheatmap” and “ggplot2”. Significantly upregulated and downregulated genes were 
visualized using volcano plots and heatmaps. Weighted gene co-expression network analysis (WGCNA) was performed 
using the R package “WGCNA” to identify potential functional modules characterizing the biological function of PD 
samples. Genes with similar expression patterns were assigned to co-expression modules. From the adjacency matrix, 
a topological overlap matrix (TOM) was derived, based on which genes were divided into modules according to the 
degree of dissimilarity in the TOM. The parameters for ME diss trees, minimal module size, and soft thresholding power 
were set to 0.25, 50, and 10, respectively. Gene significance (GS) and module membership (MM) were calculated, and 
the corresponding genes were extracted from the hub module for further analysis.

Machine Learning
To identify optimal feature genes for PD, three machine learning algorithms (LASSO, Random Forest, and SVM-RFE) 
were employed. LASSO regression was used to address high-dimensional data sparsity, with analyses performed using 
the “glmnet” package in R. The Random Forest (RF) algorithm, implemented with the “RandomForestSRC” R package, 
was based on an ensemble of decision trees generated by random feature sets, classifying samples via nonlinear decision 
boundaries. Recursive Feature Elimination based on Support Vector Machines (SVM-RFE) was implemented using the 

Figure 1 Flowchart depicting the study design.
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“cfe” function in the “cfe” package, with cross-validation of the fitted prediction function. The intersection of genes from 
the three machine learning algorithms was identified as the optimal feature genes for PD.

Functional Enrichment Analysis and Protein-Protein Interaction Network
Gene Ontology (GO) enrichment analysis,14 encompassing molecular function (MF), cellular components (CC), and 
biological processes (BP), was conducted along with Kyoto Encyclopedia of Genes and Genomes (KEGG)15 enrichment 
analysis to display functional signaling pathways involved in PD genes. Disease Ontology (DO) enrichment analysis 
identified diseases related to candidate feature genes. GO, KEGG, and DO enrichment analyses were performed using the 
“clusterProfiler” and “DOSE” R packages. The protein-protein interaction (PPI) network of overlapping candidate genes 
was constructed via the STRING database (https://cn.string-db.org/),16 with hub genes identified using Cytoscape 
software.17

Diagnostic Efficacy of Hub Genes in PD and Repeatability Verification
To evaluate the accuracy of feature genes for PD, receiver operating characteristic (ROC) analyses were conducted using 
the “pROC” R package. The area under the curve (AUC) values assessed the predictive utility of identified hub genes, 
with AUC > 70% considered moderately predictive. The GSE20164 and GSE20292 datasets were merged for differential 
testing and diagnostic function verification of hub feature genes.

Gene Set Enrichment Analysis and Gene Set Variation Analysis
Gene Set Enrichment Analysis (GSEA) was conducted on a gene list sorted by the Spearman correlation coefficient 
between each gene and the specified hub gene to predict significant biological processes and pathways associated with 
the hub gene. GSEA was performed using the “DOSE” package in R. Correlations between optimal feature gene 
expression levels were calculated using Pearson correlation analysis. The ssGSEA algorithm and GSVA algorithm, 
implemented with the “ssGSEA” and “GSVA” R packages, respectively, were used to calculate progress scores.

Immune Cell Composition
The infiltration of 22 different immune cell subtypes into PD patient tissues was estimated using the CIBERSORT 
algorithm.18 Analyses with P < 0.05 were considered significant, and the R “corrplot” package was used to visualize 
immune cell composition. Relative immune cell infiltration between PD and control samples was compared and 
visualized using the “vioplot” R package. Relationships between hub gene expression levels and immune cell infiltration 
were examined through Spearman’s rank correlation analyses and visualized using the R “ggpubr” package.

Clinical Sample Collection
From July 2023 to December 2023, 40 PD patients and 40 healthy controls were enrolled from the inpatient population of 
Henan Provincial People’s Hospital. Selection criteria for PD patients included meeting the diagnostic criteria for PD, 
UPDRS scores ranging from 20 to 50, and Hoehn-Yahr (HY) stages ranging from 2 to 5. All PD patients underwent separate 
clinical diagnoses and evaluations by two neurology doctors, while healthy controls were confirmed to have no neurode
generative diseases, severe systemic illnesses, psychiatric disorders, or a history of head trauma. Peripheral blood samples 
were collected from patients and controls on an empty stomach in the morning and stored at −80°C until use. This study was 
approved by the Ethics Committee of Henan Provincial People’s Hospital (Ethics approval number: 2023087), with 
detailed clinical sample information presented in Supplementary Table 1.

Real-Time Quantitative PCR
Total RNA was extracted using a centrifuge column RNA extraction kit (Beyotime, Shanghai, China). First-strand 
cDNA was synthesized according to the manufacturer’s protocols (#K1622, Thermo Fisher, Beijing, China), with 
GAPDH used as an internal reference. PCR amplification was performed with 1 cycle of 30s at 95°C, followed by 40 
cycles of 15s at 95°C and 30s at 60°C. All reactions were repeated in triplicate. Gene expression levels were 
calculated using the delta–delta Ct method (2−ΔΔCt). Primers used are shown in Table 2.
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Potential Therapeutic Drugs Prediction and Molecular Docking
Optimal characteristic genes for sepsis were searched in the CTDbase (https://ctdbase.org/) to obtain drug interaction 
information. Drugs related to these genes were predicted using Enrichr (https://maayanlab.cloud/Enrichr/), providing 
a gene-drug combined score and p-value. Functional information and structures of drug molecules were obtained from 
PubChem (https://pubchem.ncbi.nlm.nih.gov/). Molecular docking was performed using AutoDock Vina (version 1.1.2) 
and visualized using PyMOL (version 2.4) and PLIP (https://plip-tool.biotec).

Statistical Analysis
All data processing, statistical analysis, and plotting were conducted using R software (version 4.3.0) and GraphPad 
Prism (version 9). The Wilcoxon rank-sum test or Student’s t-test was used to analyze differences between groups. 
Correlations between variables were determined using Pearson’s or Spearman correlation tests. All statistical P-values 
were two-sided, with P < 0.05 regarded as statistically significant.

Result
Identification of Differentially Expressed Genes (DEGs) Between PD and Control 
Tissues
After standardizing data formats, filling in missing values, and removing outliers, normalized gene expression profiles of 
the training set (GSE7621, GSE20163, and GSE26927) were generated (Supplementary Figure 1a). Following data 
merging and elimination of batch effects, a combined expression matrix containing 9936 gene symbols was obtained 
from 35 PD patients and 36 healthy controls. DEG analysis identified 183 upregulated genes and 288 downregulated 
genes, which were visualized using volcano plots and heatmaps (Supplementary Figure 1b and c), highlighting genes 
potentially involved in the pathology of PD.

Weighted Gene Co-Expression Network Analysis (WGCNA) for Clinical 
Trait-Associated DEGs in PD
WGCNA was performed on 9939 genes from 36 control and 35 PD samples, resulting in the identification of 14 modules 
after merging highly correlated ones (Figure 2a–d). The soft thresholding power was set to 20, based on achieving 
a scale-free R2 = 0.9 and high average connectivity. The blue module, containing 3994 genes, showed a strong 
correlation with PD (R = 0.35, P < 0.0001) (Figure 2e–g). Out of these, 254 overlapping genes were identified as 
candidate feature genes, based on their association with both DEGs and hub genes in the blue module (Figure 2h).

Functional Enrichment Analysis of Candidate Feature Genes for PD
Functional enrichment analysis explored the biological functions and potential pathways associated with PD. GO analysis 
indicated that candidate feature genes are primarily involved in nervous system development (eg, axon development, 
neurotransmitter transport), neuron structure (eg, synaptic membrane, glutamatergic synapse), and ion channel activity 
(eg, voltage-gated ion channels) (Figure 3a). DO analysis highlighted related diseases such as neuropathy and brain 
ischemia (Figure 3b). KEGG analysis identified the top 15 enriched pathways, with the MAPK signaling pathway being 
the most significant (Figure 3c). A PPI network was constructed to illustrate the relationships among candidate feature 
genes (Figure 3d).

Table 2 Primer Sequences for GAPDH and EAF2 Used in This Study

Primer name Primer sequence (5ʹ-3ʹ)

GAPDH-F (internal reference) GGAAGCTTGTCATCAATGGAAATC
GAPDH-R (internal reference) TGATGACCCTTTTGGCTCCC

EAF2-F CCACACTGTGCGCTATGACT

EAF2-R GTCACCTGTTCACCTTCACCA
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Figure 2 Weighted gene co-expression network analysis (WGCNA). (a) Dendrogram for sample clustering, with tree leaves corresponding to individual samples. (b and c) 
Selection of soft-thresholding powers (β) and scale-free topology fitting indices (R2); β=10 was chosen for optimal model fit. (d) Dendrogram of modules identified through 
hierarchical clustering. (e) Sample cluster dendrogram, with colors representing distinct modules. (f) Correlation analysis between modules. (g) Associations between 
modules and clinical characteristics in normal and PD samples. (h) Interactions among genes within co-expression modules.
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Figure 3 Functional enrichment analysis. (a) Venn diagram showing intersection of DEGs and WGCNA-derived candidate feature genes. (b) Gene Ontology (GO) 
enrichment analysis of DEGs categorized into biological process (BP), cellular component (CC), and molecular function (MF). (c) Disease Ontology (DO) analysis revealing 
diseases associated with candidate genes. (d and e) KEGG pathway enrichment analysis highlighting pathways involving candidate feature genes. (f) Protein-protein 
interaction (PPI) network analysis of candidate feature genes in PD, indicating significant protein interactions.
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Identification of Hub Genes Using Machine Learning
Various machine learning methods were used to identify hub genes for PD. The RF algorithm identified the top 36 genes 
based on relative importance (Figure 4a and b). SVM-RFE selected 40 genes based on minimal root mean square error 
from 10-fold cross-validation (Figure 4c and d). The LASSO regression algorithm identified 22 key gene variables at an 
optimal lambda of 0.037 (Figure 4e and f). EAF2 was identified as the only overlapping gene among the three algorithms, 
as illustrated in the Venn diagram (Figure 4g).

Diagnostic Value and Validation of EAF2 in PD
EAF2 expression levels were assessed in PD patients and healthy controls. Analysis of the training dataset revealed 
reduced EAF2 mRNA levels in PD brain tissues (Figure 5a). ROC curves demonstrated its diagnostic potential with an 
AUC of 0.745 (Figure 5b). Validation using the GSE20164 and GSE20292 datasets confirmed lower EAF2 expression in 
PD patients (Figure 5c) with an AUC of 0.752 (Figure 5d). RT-qPCR experiments on peripheral blood samples further 
confirmed lower EAF2 mRNA levels in PD patients (Figure 5e), with an AUC of 0.842 (Figure 5f). These findings 
consistently indicate EAF2 downregulation in PD, suggesting its involvement in PD pathology.

EAF2 Participation in PD Pathological Progression Through Multiple Pathways
GSEA identified five upregulated pathways (amino acid metabolism, DNA replication, nitrogen metabolism, Type 
I diabetes mellitus, and viral myocarditis) and five downregulated pathways (circadian entrainment, circadian rhythm, 
IL-17 signaling pathway, nicotine addiction, and African trypanosomiasis) associated with EAF2 (Figure 6a and b). 
GSVA indicated differential expression of EAF2-related pathways in PD patients, highlighting PD-related pathways 
(Figure 6c and d). ssGSEA showed that EAF2 was mainly enriched in MAPK-related pathways in PD (Figure 6e).

Correlation Between EAF2 and the Immune Environment of PD
The study explored differences in immune cell expression between PD patients and healthy controls using the 
CIBERSORT algorithm. Significant differences were observed in T cells, macrophages, and NK cells (Figure 7a). PD 
samples showed increased levels of B cells, activated memory CD4 T cells, NK cells, and M2 macrophages (Figure 7b). 
Correlation analysis revealed a significant positive correlation between EAF2 expression and follicular helper T cells, M2 
macrophages, and plasma cells, and a significant negative correlation with activated CD4 memory T cells (Figure 7c–g). 
These findings suggest that EAF2 dysregulation affects immune cell composition in PD, contributing to immune 
microenvironment instability.

Drug Target Prediction and Molecular Docking for Sepsis Treatment
Potential drug targets related to EAF2 were predicted, identifying the top nine drugs with the highest combined scores, 
including Acalabrutinib, Tirabrutinib Hydrochloride, Ibrutinib, Cefalotin, Dasatinib, Gemcitabine, Vidarabine, Bosutinib, 
and Mitoxantrone (Table 2). Molecular docking techniques were employed to explore the optimal binding modes 
between these drugs and EAF2 (Figure 8a). Among the findings, Acalabrutinib and Tirabrutinib hydrochloride showed 
the best binding effects with EAF2, and the structures of the protein target-small molecule drug docking models are 
illustrated in Figure 8d–f. This analysis provides potential therapeutic targets and candidate drugs for Parkinson’s disease 
treatment, offering new avenues for drug development and personalized medicine.

Discussion
Our study employed an integrated transcriptomic and machine learning to identify EAF2 as a diagnostic biomarker and 
key pathogenic factor in PD. By analyzing five datasets from the GEO and validating findings through RT-qPCR, we 
demonstrated that expression of EAF2 is consistently downregulated in PD patients compared to healthy controls. The 
diagnostic value of EAF2 was confirmed by ROC analysis, showing high AUC values in both training and validation 
datasets, underscoring its potential as a reliable diagnostic marker for PD. Peripheral blood samples collected for 
validation also showed similar trends, reinforcing the robustness of our findings across different sample types.
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Figure 4 Identification of hub genes for PD using machine learning. (a and b) Impact of decision tree numbers on cross-validation error of Random Forest (RF) classifier. 
(c and d) Optimal error and accuracy rates of Support Vector Machine (SVM) model based on individual genes. (e) Logarithm (Lambda) values of genes in LASSO model and 
optimal Log values in the LASSO model. (f) Venn diagram illustrating overlapping genes in LASSO, SVM, and RF models.
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Previous studies have primarily focused on the oncological role of EAF2, particularly in prostate19 and colorectal 
cancer,12 where it functions as a tumor suppressor. Our research extends the significance of EAF2 to neurodegenerative 
diseases, specifically PD. Notably, interaction of EAF2 with the von Hippel Lindau protein (p-VHL) and its influence on 
HIF1-α stabilization may provide a mechanistic link to PD,20,21 as HIF1-α is known to exacerbate motor symptoms of the 
disease.22,23 In this context, EAF2 may be pivotal in the stabilization of HIF1-α and its downstream signaling pathways, 
offering new insights into how this protein might exacerbate PD pathology.

Functional enrichment analysis of EAF2-related genes revealed its involvement in critical biological processes tied to 
PD, such as dopamine biosynthesis and synaptic transmission. These findings align with the current understanding of PD 
pathophysiology, where degeneration of dopaminergic neurons and synaptic dysfunction play central roles.24,25 The 
enrichment of candidate genes in dopamine-related pathways suggests that EAF2 could be intricately involved in the 
regulation of dopaminergic signaling, and disruptions in its expression may contribute to synaptic malfunction, 
a hallmark of PD.26,27 Moreover, our KEGG analysis identified pathways linked to amino acid metabolism, which 
may point to underlying metabolic disturbances in PD, with accumulating evidence suggesting that impaired amino acid 
metabolism can contribute to neuronal damage and disease progression.28 Thus, these findings offer a fresh perspective 
on the metabolic aspects of PD and opens new avenues for understanding the disease’s molecular underpinnings.

The observed dysregulation of immune cell composition suggests that EAF2 could play a modulatory role in immune 
responses within the PD microenvironment. Immune cell infiltration is a hallmark of PD pathology, contributing to 
neuronal death and central nervous system damage through inflammatory cascades.29,30 Our study found significant 

Figure 5 Gene expression and diagnostic efficacy. (a) RT-qPCR results demonstrating reduced EAF2 expression in PD based on experimental dataset. (b) ROC curve 
showing diagnostic value of EAF2 in PD based on experimental dataset (AUC = 0.745). (c) Decreased EAF2 expression observed in PD validation dataset. (d) Diagnostic 
performance of EAF2 in validation dataset (AUC = 0.752). (e) Significant downregulation of EAF2 in peripheral blood samples from PD patients compared to healthy controls. 
(f) Diagnostic efficacy of EAF2 in clinical samples (AUC = 0.842; t-test analysis, ****P < 0.0001).
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Figure 6 Gene enrichment analysis. (a and b) Gene Set Enrichment Analysis (GSEA) results for top five positively and negatively correlated pathways with EAF2. (c and d) 
Single-gene GSEA revealing pathways enriched by EAF2 in PD. (e) Gene Set Variation Analysis (GSVA) indicating differential pathway expression of EAF2 in PD patients 
compared to normal controls.
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correlations between expression of EAF2 and various immune cell types, including T cells, NK cells, and macrophages. 
Increased T cell infiltration in the substantia nigra of PD patients and the associated loss of dopaminergic neurons have 
been well-documented.31,32 Similarly, macrophage dysfunction and increased blood-brain barrier permeability exacerbate 
neuroinflammation in PD.33,34 Our results are consistent with these findings, suggesting that EAF2 modulates the 
immune microenvironment in PD, further implicating its role in disease pathogenesis.

Figure 7 Correlation between immune-related cells and EAF2 in PD. (a) Stacked bar chart depicting infiltrating immune cells in PD and healthy controls. (b) Violin plot 
illustrating differences in infiltration levels of 22 immune cell types between PD and normal controls. (c) Lollipop plots showing correlation between EAF2 expression and 
immune cells. (d–f) Immune cells positively correlated with EAF2. (g) Immune cells negatively correlated with EAF2. (t-test analysis, *P < 0.05).
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Additionally, drug target prediction and molecular docking analyses identified several compounds that bind to EAF2, 
indicating that EAF2 also emerges as a promising therapeutic target. Among these compounds, Acalabrutinib and 
Tirabrutinib hydrochloride showed the most favorable binding interactions. While these drugs are primarily known for 
their roles in cancer treatment, particularly by inhibiting Bruton’s tyrosine kinase (BTK), recent research suggests that 
BTK inhibitors may have potential neuroprotective effects by modulating immune responses and reducing neuroin
flammation-both of which are critical in the pathology of PD.35 This opens up a novel avenue for drug repurposing in PD, 
offering a promising new approach to its treatment.

Figure 8 Molecular docking of EAF2 with potential therapeutic drugs. (a) Three-dimensional structure of the EAF2 protein. (b) Predicted binding modes of EAF2 with top 
candidate drugs, including Acalabrutinib, Bosutinib, Cephalothin, Dasatinib, Gemcitabine, Ibrutinib, Mitoxantrone, Tirabrutinib Hydrochloride, and Vidarabine.
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Despite the promising insights provided by our study, several limitations must be acknowledged. First, the sample 
size, while sufficient for initial analyses, could be expanded in future studies to improve statistical power and general
izability. Second, although we used microarray data for transcriptomic profiling, incorporating next-generation sequen
cing technologies would provide a more comprehensive understanding of EAF2’s role in PD. Lastly, while our results 
establish a strong correlation between EAF2 and PD, further mechanistic studies, including in vitro and in vivo 
experiments, are necessary to elucidate EAF2’s precise role in PD pathogenesis and its potential as a therapeutic target.

Conclusion
To the best of our understanding, this study represents the first comprehensive investigation into the role of EAF2 in PD 
using transcriptomic analysis and machine learning. Our findings identify EAF2 as a novel diagnostic biomarker for PD and 
suggest its involvement in multiple pathways affecting neuronal function and metabolism. Correlation of EAF2 expression 
with immune cell infiltration further highlights its role in the immune dysregulation observed in PD. These discoveries lay 
a foundation for future research into the molecular mechanisms of EAF2 in PD and its potential as a therapeutic target.
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