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ABSTRACT
Background: Mortality due to ischemic heart disease (IHD) is heterogeneously 
distributed globally, and identifying the sites most affected by it is essential in 
developing strategies to mitigate the impact of the disease, despite the complexity 
resulting from the great diversity of variables involved. 

Objective: To analyze the predictability of IHD mortality using machine learning (ML) 
techniques in combination with geospatial analysis in southern Brazil. 

Methods: Ecological study using secondary and retrospective data on mortality due 
to ischemic heart disease (IHD) obtained from the Mortality Information Systems 
(SIM-DATASUS) de 2018 a 2022, covering 1,191 municipalities in the states of Paraná 
(399), Santa Catarina (295), and Rio Grande do Sul (497). Ordinary Least Squares 
Regression (OLS), Geographically Weighted Regression (GWR), Random Forest (RF), and 
Geographically Weighted Random Forest (GWRF) analyses were performed to verify 
the model with the best performance capable of identifying the most affected sites 
by the disease based on a set of predictors composed by variables of procedures and 
access to health. 
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INTRODUCTION
Ischemic heart disease (IHD) is the most prevalent form of cardiovascular disease and the 
leading cause of death globally, with a 39.4% increase in 2022 (1–3). This condition stands out 
in public health discussions in countries such as Russia, the United States, Ukraine, Germany, 
and Brazil, where it represents more than half of the proportional mortality (1–5). Ischemic 
heart disease mortality is multifactorial, involving lifestyle changes, population aging, and lack 
of access to health services, representing a challenge for reducing morbidity and mortality, 
especially in Global South countries (6).

Survival of an acute IHD event depends on immediate and specialized interventions, the 
effectiveness of which varies depending on resource availability and patient location (7–10). 
Public health studies indicate the relationship between access to health services, socioeconomic 
disparities, and incidence of heart disease (7–11).

Previous studies have shown that machine learning (ML) has high performance in predicting 
cardiovascular disease at the individual level (12–14). However, despite the significant advance 
in the application of ML to predict cardiovascular diseases at the individual level, there is 
a relevant gap in the ecological prediction of IHD mortality, that is, in the analysis of data 
aggregated by geographic regions that consider variables such as coverage and access to 
health. Ecological prediction becomes fundamental because it allows the formulation of more 
effective and targeted public policies, especially in vulnerable areas where the incidence of IHD 
is high and resources are scarce (15, 16).

The spatial analysis of these phenomena reveals important information for reducing IHD 
mortality, highlighting the influence of the distribution of health resources and the need for 
equity in access to medical care, especially in vulnerable areas (17). The use of geographic 
information systems (GIS) allows for assessing accessibility to health services, providing insight 
into the distribution and effectiveness of actions and resources (7–11, 18).

The application of machine learning techniques, for spatial prediction of deaths from IHD, 
complements spatial analysis by allowing detailed analyses of spatiotemporal dynamics and 
the effects of contextual variables on clinical outcomes, with greater sensitivity and specificity 
than human capabilities (19–22).

Therefore, this research aims to explore the prediction of IHD mortality using machine learning 
(ML) techniques in combination with geospatial analysis in southern Brazil, aiming to improve 
the understanding of the factors that lead to delayed care and consequently influence high 
IHD mortality in different locations.

METHODOLOGY
STUDY DESIGN AND SITE

This is a cross-sectional, descriptive, and ecological study, based on geospatial analysis and 
ML tools, using secondary IHD mortality data in southern Brazil between 2018 and 2022, 

Results: In the analyzed period, there were 59,093 deaths, 65% of which were men, 82.7% 
were white, and 72.8% occurred between 60 and 70 years of age. Ischemic heart disease 
presented the highest mortality rates in the northwest and north regions of the state of 
Paraná, and in the central-east, southwest and southeast regions of Rio Grande do Sul, the 
latter state accounting for 41% of total deaths. The GWRF presented the best performance 
with R² = 0.983 and AICc = 2298.4, RMSE: 3.494 and the most important variables of the 
model in descending order were electrocardiograph rate, cardiac catheterization rate, 
access index to hemodynamics, access index of pre-hospital mobile units, cardiologists 
rate, myocardial scintigraphy rate, stress test rate, and stress echocardiogram rate. 

Conclusion: The GWRF identified spatial heterogeneity in the variation of geographic 
predictors, contrasting the limitation of linear regression models. The findings showed 
patterns of vulnerability in southern Brazil, suggesting the formulation of health policies 
to improve access to diagnostic and therapeutic resources, with the potential to reduce 
IHD mortality.
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and possible associated factors. The methodological quality was guaranteed following the 
Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis 
(TRIPOD) recommendations (23).

The southern region of Brazil had an estimated population of 29,933,315 inhabitants in 2022, 
corresponding to about 30% of the national population, distributed over a total area of 576,774 
km2 divided between 1,191 municipalities in the states of Paraná (399), Santa Catarina (295), 
and Rio Grande do Sul (497) (24). The region is situated between the latitudes of 22°30’58” and 
26°43’00”, and longitudes 48°05’37”, and 54°37’08” (25).

DATA SOURCE

Outcome variable

Two outcome variables were used in this study. The variable mortality rate due to IHD was 
calculated by the average number of deaths due to IHD divided by the population aged 30 
to 70 years and multiplied by 100,000 between 2018 and 2022. This variable was used in the 
analysis of Ordinary Least Square Regression (OLS) and Geographically Weighted Regression 
(GWR). The choice of this age group follows the guidelines of the American Heart Association, 
which indicates a higher probability of death in this age group (26). The number of deaths from 
IHD in individuals aged 30 to 70 years in the municipalities of the southern region of Brazil 
from 2018 to 2022 was obtained from the Mortality Information System (SIM) (27), considering 
deaths whose underlying cause was classified under codes I20 to I25 of the International 
Statistical Classification of Diseases and Related Health Problems (ICD) (10).

For the Random Forest (RF) and Geographically Weighted Random Forest (GWRF) analyses, the 
outcome variable was divided into three datasets. The mortality rates of the year 2020 were 
used for training, those of 2021 for validation, and those of 2022 for testing.

Independent variables

Independent variables related to health accessibility and procedures are described in Table 1. 
The variables were created using rates to normalize the data, allowing for a better understanding 
of the proportions of the procedures. The variable rate of cardiologists was created by dividing 
the number of cardiologists per 1,000 inhabitants. The number of electrocardiographs were 
calculated by dividing the number of electrocardiographs per 10,000 inhabitants. Similarly, the 
procedures of cardiac catheterization, echocardiography, exercise stress test, and myocardial 
scintigraphy were calculated by dividing the number of procedures performed per 10,000 
inhabitants (34).

The variables accessibility to hemodynamics and accessibility to pre-hospital mobile units 
were created using the Enhanced Two-Step Floating Catchment Area (E2SFCA) method. This 
method calculates the ratio of available health services to the population in a given area and 
adjusts that ratio by geographic distance. The E2SFCA results in an index that incorporates the 

VARIABLES PERIOD CONSTANT SOURCE

Mortality from Ischemic Heart Diseases (IHD) 2018–2022 100.000 27

Population 2018–2022 100.000 32 

Electrocardiograph rate 2018–2022 10.000 33 

Cardiac catheterization rate 2018–2022 10.000 34 

Access index to hemodynamics 2018–2022 E2SFCA 33 

Access index of pre-hospital mobile units 2018–2022 E2SFCA 33 

Cardiologists rate 2018–2022 1.000 33 

Myocardial scintigraphy rate 2018–2022 10.000 34 

Stress test rate 2018–2022 10.000 34 

Stress echocardiogram rate 2018–2022 10.000 34 

Shapefile from southern Brazil 2022 1191 35 

Table 1 Data source.
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decreasing influence of services as distance or travel time increases, using a decay function 
that adjusts the influence about distance (buffer with distance of 60 km based on the transport 
network) and travel time (60 minutes) (28, 29). Health services closer to the city center have 
a greater weight in total accessibility, with the time chosen based on the guidelines for the 
treatment of acute ST-elevation myocardial infarction (26, 30, 31).

DATA ANALYSIS

Spatial dependency analysis

Initially, data from 1,191 municipalities in the southern region of Brazil were linked to the 
cartographic base made available by IBGE (35). Next, an empirical Bayesian estimator based on 
the first-order queen neighborhood matrix in the GeoDA software (version 1.12.0) was used to 
create the smoothed IHD mortality rates in order to minimize possible spatial discrepancies (36).

Moran’s I Index was applied to analyze global spatial autocorrelation to verify the existence of 
spatial dependence for the distribution of mortality. Values less than zero indicated negative 
correlation, equal to zero indicated no correlation, and greater than zero indicated positive 
correlation (37). One of the main limitations of the Global Moran Index is the inability to identify 
groups of municipalities with high or low mortality. However, to solve this limitation, the Local 
Indicators of Spatial Association (LISA) technique was applied, capable of demonstrating the 
existence of local spatial clusters with high or low mortality rates, identifying the regions that 
most contribute to the existence of spatial autocorrelation (37, 38).

The clusters identified by LISA were categorized as high-high (HH), that is, municipalities with 
high mortality from IHD and with neighbors also with high mortality rates. The low-low type 
(LL) refers to the inverse, that is, low mortality surrounded by low mortality (7).

Next, Local Bivariate Moran’s analyses were performed to verify whether the independent 
variables had spatial dependence when analyzed in pairs with the mortality rate (39). This type 
of analysis is particularly useful for understanding how two different variables interact spatially, 
revealing patterns of concentration or dispersion that may not be evident when considering 
each variable separately.

These analyses were performed in the GeoDa software (version 1.22) and considered statistically 
significant when p < 0.05. The results were transferred to the Qgis software (version 3.14) for 
the elaboration of chloroplastic maps.

Global modeling algorithms without spatial components

The following global models do not use the spatial component and serve as elements of 
comparison with models that use spatial components to verify the influence of spatiality on 
the distribution of mortality. The global models initially used were Ordinary Least Squares 
(OLS) and Random Forest (RF). Ordinary Least Squares is a method that estimates the angular 
coefficients of each independent variables in relation to the dependent variable of a linear 
model (40). This analysis depends on restrictive assumptions about linearity, homoscedasticity, 
and normality of residuals, which may impair their performance in nonlinear relationships 
or heterogeneous variance of errors (9, 39, 40). In addition, it does not directly assess the 
importance of independent variables, limiting their usefulness in certain analytical contexts.

Random Forest is a non-parametric global machine learning technique, which constructs a set of 
decision trees for classification or regression (41). In addition, RF stands out for its ability to assess 
the relative importance of each independent variable without relying on standardized coefficients, 
being effective in modeling complex and nonlinear relationships between variables (40–42).

To examine local collinearity in a regression model, we also calculated local Variance Inflation 
Factors (VIF’s) for each independent variable. Local collinearity problems in the regression 
model are generally identified when VIF’s greater than five are found at any location for any 
independent variables (43).

Local modeling algorithms with spatial components

For analyses with spatial dependence, Geographically Weighted Regression (GWR) and 
Geographically Weighted Random Forest (GWRF) were used.
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Geographically Weighted Regression is a technique that estimates spatially variable regression 
coefficients, using weighted OLS based on the distance between each observation and the 
location being modeled, thus capturing spatial heterogeneity in the data (44). The matrix 
of spatial weights is crucial in GWR for the correct estimation of regression parameters. The 
spatial weight function was implemented using the Gaussian method, which establishes the 
relationship between weight and distance through a monotone decreasing function (44). 
Bandwidth size controls the degree of attenuation of weights with increasing distance (45).

Geographically Weighted Random Forest is a machine learning algorithm that combines 
GWR’s ability to account for spatial dependence of variables with RF’s robustness in handling 
high-dimensional data and capturing complex nonlinear relationships (46). The algorithm 
segments the study area into several smaller regions, modeling each separately with RF. 
Then, it estimates the spatial variation between dependent and independent variables in each 
region. Geographically Weighted Random Forest uses the same GWR calculation to determine 
bandwidth and kernel selection (47, 48).

To implement the global (OLS and RF) and local (GWR and GWRF) models, the ‘h2o’, ‘GWmodel’ 
and ‘SpatialML’ packages of the R programming language were used (49). To evaluate the fit of 
the models, the highest value of the coefficient of determination (R²) and the lowest values of 
Root Mean Squared Error (RMSE) and Mean Absolute Error (Mae) were used as evaluation metrics.

Test, training and validation data

For the analyses using RF and GWRF, the data were divided into three distinct sets, corresponding 
to complete years, maintaining the same variables in all sets. Specifically, the split was 
performed as follows: the training set used data from the year 2020, the validation set used 
data from the year 2021, and the test set used data from the year 2022.

For RF, the 10-part cross validation method was used to determine the best hyperparameter 
combinations of 200 models. For the GWRF, the RF model with the lowest Root Mean Squared 
Error (RMSE) in the validation dataset was selected.

For the interpretation of RF and GWRF model prediction, we implemented several explainable 
machine learning strategies (50). Initially, partial dependence plots were employed to 
investigate the direction and nature of the relationships, taking into account the average 
effects of the independent variables (51, 52, 53). Subsequently, the significance of each 
covariate was determined through the global permutation of its values, wherein the decreased 
model performance indicates the relevance of the covariate (51). Additionally, the importance 
of the independent variables were measured at the local level, similar to the traditional RF 
permutation methodology, classifying the variables by the increase in mean square error 
(IncMSE) (51, 54, 55) enabling the analysis of the geographic impact of each variable for each 
locality. Higher IncMSE values correspond to the greater importance of the predictor variable 
for the municipality in question.

Finally, the OLS, RF, GWR and GWRF models were compared and classified with the best 
performance based on the highest value of R², and lowest values of corrected Akaike 
Information Criterion (AICc) and Moran Residues.

RESULTS
Between 2018 and 2022, there were 59,093 deaths attributed to IHD among individuals aged 
30 to 70 years in southern Brazil. The mortality distribution in the states of Paraná (n = 21,565, 
36.5%), Santa Catarina (n = 13,296, 22.5%), and Rio Grande do Sul (n = 24,237, 41.0%) in 
the analyzed period revealed a higher number of deaths among men (n = 38,864, 65.7%), 
Caucasian (n = 48,914, 82.7%), and aged between 60 and 70 years (n = 43,081, 72.8%), as 
shown in Table 2.

Figure 1A shows the average percentages of IHD mortality between 2018 and 2022. It is 
observed that all municipalities presented mortality rates ranging between 17.1 and 119.9 per 
100,000 inhabitants. The municipalities with high rates were mainly in the states of Paraná 
and Rio Grande do Sul. The annual average was 51.82 (SD: 16.84) per 100,000 inhabitants in 
the period.
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The univariate global Moran’s analysis indicated a positive spatial autocorrelation (Moran’s 
I = 0.750; p < 0.01), indicating the existence of spatial dependence in the distribution of deaths 
from IHD in the southern region. In addition, the LISA analysis detected 211 (17.7%) sets of 
municipalities with high-high standard (HH), that is, municipalities with high IHD mortality 
rates are surrounded by neighboring municipalities with high mortality rates (Figure 1B). On the 
other hand, municipalities of the low-low type (LL) are those that have low mortality rates also 
surrounded by municipalities with low rates.

In the bivariate analysis of global Moran’s, a significant positive spatial correlation was 
identified between the mortality rate from IHD and the variables cardiac catheterization rate 
(Moran I = 0.09, p < 0.001), access index of pre-hospital mobile units (Moran I = 0.05, p < 0.001), 
and stress test rate (Moran I = 0.10, p < 0.001). On the other hand, a negative correlation 
was observed between the IHD mortality rate and the variables electrocardiograph rate (Moran 
I = –0.15, p < 0.001), access index to hemodynamics (Moran I = –0.08, p > 0.001), cardiologists 
rate (Moran I = –0.08, p < 0.001), and stress echocardiogram rate (Moran I = –0.05, p < 0.001).

As shown in Figure 2, the sets of municipalities are presented when analyzed by the Bivariate 
Local Moran. The sets of HH-type municipalities are those with high mortality rates surrounded 
by municipalities with high rates of a given variable. All variables presented this pattern; however, 
it is observed in greater quantity with the variables IHD × cardiac catheterization rate (105), 
IHD × access index to hemodynamics (86), IHD × access index of pre-hospital mobile units (70), 
IHD × electrocardiograph rate (57), IHD × cardiologists rate (46), IHD × myocardial scintigraphy 

Figure 1 Spatial distribution 
of IHD mortality rates in 
the 1,191 municipalities 
of southern Brazil, and 
their clusters. 1A. IHD 
mortality rates per adjusted 
population/100,000 
inhabitants in Southern 
Brazil, 2018 to 2022; 1B. 
Analysis of Local Indicators 
of Spatial Association (LISA) 
indicating clusters according 
to distribution patterns of high 
and low IHD mortality rates.

VARIABLES SOUTH REGION N = 59,093

PARANÁ  
N = 21,565  
(36.5%)

SANTA CATARINA 
N = 13,296  
(22.5%)

RIO GRANDE DO SUL 
24,232  
(41.0%)

TOTAL 
N = 59,093  
(100%)

Gender

Male 14,171 (65.7%) 9,034 (68.0%) 15,657 (64.6%) 38,859 (65.8%)

Female 7,394 (34.3%) 4,262 (32.0%) 8,575 (35.4%) 20,230 (34.2%)

Race

White 16,299 (75.6%) 11,894 (89.5%) 20,721 (85.5%) 48,912 (82.8%)

Non-white 5,266 (24.4%) 1,402 (10.5%) 3,511 (14.5%) 10,181 (17.2%)

Age group (years)

30–40 448 (2.1%) 241 (1.8%) 362 (1.5%) 1,051 (1.8%)

40–50 1,590 (7.4%) 970 (7.3%) 1,403 (5.8%) 3,962 (6.7%)

50–60 4,137 (19.2%) 2,761 (20.8%) 4,105 (16.9%) 10,999 (18.6%)

60–70 15,390 (71.4%) 9,324 (70.1%) 18,362 (75.8%) 43,081 (72.9%)

Table 2 Number of deaths 
attributed to IHD in subjects 
aged 30 to 70 years in the 
Southern region of Brazil, 
2018–2022.



7de Carvalho Dutra et al.  
Global Heart  
DOI: 10.5334/gh.1371

rate (33), IHD × stress rate test (32), and stress echocardiogram rate (13). The HH clusters formed 
by IHD mortality rates and cardiac catheterization rate, access index to hemodynamics, and 
access index of pre-hospital mobile units are concentrated in the northwest and north regions 
of Paraná, and central-east, southwest and southeast regions of Rio Grande do Sul.

Table 3 shows the results of OLS, GWR, RF, and GWRF regressions. The GWRF model showed 
the best performance in terms of R² (0.983), AICc (2298.4), RMSE: 3.494, and Moran residues 
(–0.151).

The GWRF model showed the mean local importance values (%IncMSE) in descending order: 
electrocardiograph rate, Cardiac catheterization rate, Access index to hemodynamics, Access 
index of pre-hospital mobile units, Cardiologists rate, Myocardial scintigraphy rate, Stress test 
rate, and Stress echocardiogram rate (Figure 3).

Figure 4 shows the importance values of the predictor variables in the GWRF analysis, in which 
warmer colors indicate greater importance and cooler colors indicate less importance. The 
variables stress echocardiogram rate, myocardial scintigraphy rate and stress test rate showed 
low importance (0–20%) for 1175 (98.65%), 1168 (98.06%) and 1154 (96.89%) municipalities.

On the other hand, the variables electrocardiograph rate, access index to hemodynamics, cardiac 
catheterization rate, cardiologists’ rate and access index of pre-hospital mobile units stood out 
with high importance (80–100%) in 380 (31.90%), 375 (31.48%), 373 (31.31%), 367 (30.81%), 
and 365 (30.64%) municipalities. These municipalities are distributed in the North, Northwest 
and Eastern Center, South and Mountain regions of Santa Catarina, and Southeast, Southwest, 
Northwest and Northeast of Rio Grande do Sul, respectively.

As for the validation of the GWRF, as illustrated in Figure 5, it is observed that the GWRF 
estimated mortality values close to those observed. ‘Observed Validation 2021’ represents the 
distribution of mortality observed in 2021, while ‘GWRF Validation 2021’ refers to the use of the 
trained algorithm to make final adjustments to the model. ‘Observed Test 2022’ represents the 
distribution of mortality observed in 2022. ‘GWRF Test 2022’ is the application of the refined 
model to estimate mortality rates for the year 2022. The results show that the mortality 
rates estimated for 2022 by the model are very similar to those observed, thus validating the 
predictive capacity of the GWRF.

Figure 6 shows the comparison of observed and expected values when analyzed by the GWRF. 
When analyzing the predicted and observed values, the GWRF presented an R² of 0.985 for 
the 2021 validation data, and 0.983 for the 2022 test, indicating an almost perfectly linear 
accuracy.

The results obtained demonstrate the predictive capacity of the GWRF model in estimating the 
mortality rate by IHD. These indicators reveal that the model is able to explain more than 98% 
of the variability in the data.

Figure 2 Bivariate Local Moran 
of ischemic heart disease 
(IHD) in the south region of 
Brazil.
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Figure 3 Importance of the 
variable according to the 
incMSE.

Figure 4 Spatial distribution of 
predictor variables’ importance 
in the GWRF model.

Figure 5 Ischemic heart 
disease mortality rates 
predicted using GWRF.
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DISCUSSION
The bulwark of this study lies in its ability to support targeted and evidence-based public health 
policies. Using advanced machine learning techniques and geo-artificial intelligence, such as 
GWRF (46), we were able to identify and map predictors associated with higher IHD mortality 
in municipalities in the southern region of Brazil, which in turn can guide more effective and 
equitable public health interventions.

Our main findings were the identification of predictors associated with higher IHD mortality, 
and varying spatially in the southern region of Brazil, confirming that socio-demographically 
disadvantaged territories have higher IHD mortality rates, in direct relationship with the 
availability of cardiologists, diagnostic tests and accessibility to hemodynamic centers. Most 
deaths from IHD occurred in white individuals in the southern region of Brazil, possibly due to 
the predominantly white demographic composition of the region.

Machine learning has been used with some frequency to analyze mortality from ischemic heart 
disease and identify the critical risk factors that contribute to higher mortality rates (56, 57). By 
utilizing more advanced and geographically weighted ML techniques, we were able to find out that 
different factors are associated with IHD mortality rates at different spatial locations. This reveals 
that the interrelationships between risk factors and IHD mortality are complex and dynamic and 
cannot be adequately reflected by traditional linear methods (58). However, this approach can be 
criticized for its complexity and need for detailed spatial data, which is not always available (57).

The results of this study corroborate the current literature that emphasizes the importance 
of technological advances and early diagnosis in reducing IHD deaths (59–63). These studies 
show that spatial patterns related to the number of cardiologists, the availability of tests 
(electrocardiogram, catheterization, myocardial scintigraphy, exercise testing, stress echo), and 
accessibility to hemodynamics centers and pre-hospital ambulances are directly related to IHD 
mortality rates (59, 61).

The study of Virani et al. (2023) reinforces the importance of the ECG and catheterization in 
the diagnosis and treatment of IHD, while Rafie (2021) addresses myocardial scintigraphy as 
fundamental in the evaluation of myocardial perfusion and risk stratification in patients with 
IHD (63, 64). These studies reinforce our findings on the importance of a well-structured and 
equipped health system with rapid access to diagnostic tests and therapeutic interventions. 
The epidemiological report highlights the high prevalence of IHD in Brazil and the need for 
investments in its treatment in the way of infrastructure and human resources, such as 
accessibility to hemodynamics and the number of cardiologists (65).

The majority of deaths due to IHD (82.8%) occurred in white individuals in the southern region 
of Brazil, a significantly higher proportion than that observed in non-white individuals (17.2%). 
This pattern can be partially explained by the predominantly white demographic composition 
of the region due to its colonial history (66). However, other factors such as access to health 
services, lifestyle habits and genetic predisposition may also influence the occurrence of IHD in 
different population groups (67).

Figure 6 Determination 
coefficients of validation and 
test data using Geographically 
Weighted Random Forest to 
predict IHD Mortality Rate.

https://pubmed.ncbi.nlm.nih.gov/37471501/
https://www.mdpi.com/2673-3846/2/4/39
https://abccardiol.org/article/estatistica-cardiovascular-brasil-2020/
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Similarly to our findings, previous studies indicate that age and education level are associated 
with cardiovascular disease comorbidity (59, 61). Populations over 60 years of age have 
high IHD mortality rates, highlighting the importance of mapping age-related spatial 
clusters to improve predictions and planning of highly complex care and the responsiveness 
of the health system (59, 68). In Spain, Benett et al. (2022) found a higher incidence of 
cardiovascular diseases in disadvantaged areas (69), highlighting the need for special 
attention to these regions.

Despite having high socioeconomic indicators, such as human development, per capita income 
and access to basic services, the Southern region still faces significant social inequalities, 
especially in rural areas (67). These rural areas are more vulnerable to IHD mortality (16), 
highlighting that low accessibility to health care is associated with increased mortality. 
Improving access to care can reduce geographic disparities in AMI mortality (11, 70).

This study has some limitations, since this research was based on secondary data and depended 
on the accuracy of the primary records. However, the quality of secondary data provided by the 
Brazilian Ministry of Health has improved over time, becoming the best available source for 
obtaining public health information.

Future studies could benefit from the integration of longitudinal data and the use of machine 
learning techniques to predict changes over time and apply them in other geographic 
regions, and for other chronic diseases, expanding the understanding of the spatiotemporal 
interrelationships between risk factors and health outcomes. This could significantly contribute 
to the creation of public health policies more focused on improving accessibility to services 
and investing in prevention, including pre-hospital mobile units, hemodynamic services, 
cardiologist training, and complementary tests such as scintigraphy, exercise testing, and 
stress echocardiography, aiming to reduce IHD mortality.

CONCLUSIONS
Geographically weighted random forest was effective in capturing spatial heterogeneity by 
analyzing the variation in the importance of predictors over geographic space, contrasting 
with the limitation of linear regression models that offer only local coefficients. Our findings 
have important political implications by revealing geographic patterns of vulnerability in 
the southern region of Brazil, enabling the formulation of evidence-based health policies to 
improve access to diagnostic and therapeutic resources and thus contribute to decreasing 
IHD mortality.
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