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Summary
Chickpea is the world’s fourth largest grown legume crop, which significantly contributes to

food security by providing calories and dietary protein globally. However, the increased

frequency of drought stress has significantly reduced chickpea production in recent years. Here,

we have performed a field experiment with 36 diverse chickpea genotypes to evaluate grain

yield, photosynthetic activities and molecular traits related to drought stress. For metabolomics

analysis, leaf tissue was collected at three time points representing different pod-filling stages.

We identified L-threonic acid, fructose and sugar alcohols involved in chickpea adaptive drought

response within the mid-pod-filling stage. A stress susceptibility index for each genotype was

calculated to identify tolerance capacity under drought, distributing the 36 genotypes into four

categories from best to worst performance. To understand how biochemical mechanisms

control different traits for genetic improvement, we performed a differential Jacobian analysis,

which unveiled the interplay between various metabolic pathways across three time points,

including higher flux towards inositol interconversions, glycolysis for high-performing

genotypes, fumarate to malate conversion, and carbon and nitrogen metabolism perturbations.

Metabolic GWAS (mGWAS) analysis uncovered gene candidates involved in glycolysis and MEP

pathway corroborating with the differential biochemical Jacobian results. Accordingly, this

proposed data analysis strategy bridges the gap from pure statistical association to causal

biochemical relations by exploiting natural variation. Our study offers new perspectives on the

genetic and metabolic understanding of drought tolerance-associated diversity in the chickpea

metabolome and led to the identification of metabolic control points that can be also tested in

other legume crops.

Introduction

The global human population is experiencing exponential growth,

while the agricultural sector is not expanding at the same rate.

There is a pressing need to boost crop production to address the

increasing dietary demands. However, this endeavour is hindered

by challenges such as heatwaves, droughts, and other unpre-

dictable environmental conditions. The ‘climate crisis’ leads us

towards a warmer and drier Earth (FAO, 2019). Approximately US

$29 billion in global economic losses in agriculture stemming

from drought in the last decade were reported (FAO, 2018).

Water demand for agriculture by 2050 could increase twofold,

with freshwater availability decreasing by up to 50% due to

increasing climatic variations. To achieve food security, there is an

urgent need to revamp investments in developing high-yielding

crops that are climate resilient and more efficient in up-taking

water than their existing counterparts (Atlin et al., 2017; Trnka

et al., 2019; Varshney et al., 2021a).

Chickpea (Cicer arietinum L.) is one of the major grain legumes,

with a global annual production of �15.87 million tonnes from

an area of �15.00 million hectares. It possesses an average yield

of 1.06 tonnes/hectares (FAOSTAT, 2021). Chickpea contributes

significantly to the world’s food security by providing dietary

proteins and calories for millions of people (Varshney et al.,

2013). Rainfed conditions contribute almost 80% of chickpea

production in the fields (Khan et al., 2019; Pang et al., 2017).

However, the production of chickpea in rainfed systems faces

significant limitations, primarily due to drought stress in the latter

stages of growth (known as terminal drought), which leads to

substantial yield losses, averaging around 64% in India (Hajjar-

poor et al., 2018) and approximately 40–90% globally depending

upon the timing and severity of water stress (Fang et al., 2010;

Korbu et al., 2022; Leport et al., 2006; Nayyar et al., 2006).

Chickpea seed yield decreases significantly during terminal

drought due to reduced pod production, seed size, and flower

and pod abortion (Leport et al., 1999, 2006). Developing

chickpea varieties that are more productive under occasional

drought scenarios has been successful over the past few decades

through conventional breeding (Hajjarpoor et al., 2018; Kashi-

wagi et al., 2006). However, these approaches alone are
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insufficient to keep pace with the future food demand. To this

end, rapid identification of genetic variation underlying crop

performance can improve breeding efficiency and substantially

accelerate resilient crop improvement (Roorkiwal et al., 2020;

Varshney et al., 2021b). For example, chickpea varieties have

been characterized for quantitative trait loci associated with

drought tolerance-related traits, including root architecture,

transpiration efficiency and early vigour (Barmukh et al., 2022).

However, it is also extremely important to understand biochem-

ical mechanisms controlling different traits for genetic improve-

ment. Hence, analyses of biologically important molecules are

necessary to understand stress response mechanisms in chickpea.

Plants release numerous biochemical compounds, including

major metabolites, under abiotic stress conditions (Ghatak

et al., 2018). Plant metabolites (primary and secondary) play

essential roles in cell signalling, membrane formation, cell integrity,

energy storage, growth, plant development, cellular replenish-

ment and whole-plant resource allocation (Ghatak et al., 2018).

Plants adapt to different conditions (biotic and abiotic) through

metabolic changes and modify their physiology accordingly

(Chaturvedi et al., 2024; Weckwerth et al., 2020). An untargeted

metabolomics study in chickpea under stress revealed 20 known

metabolites, of which proline, arginine, histidine and tryptophan

were increased, and aspartic acid, alanine, tyrosine and phenylal-

anine decreased under drought stress (Khan et al., 2019). Kudapa

and co-workers recently employed a multi-omics approach to

study chickpea roots under drought stress considering four

genotypes with contrasting responses to drought stress, viz., ICC

4958 (drought-tolerant), JG 11 (drought-tolerant), an introgres-

sion line JG 11+ (drought-tolerant) and ICC 1882 (drought-

sensitive). This investigation identified six metabolites (fructose,

galactose, glucose, myo-inositol, galactinol and raffinose) that

significantly correlate with RFO metabolism (Kudapa et al., 2024).

In yet another study, different genotypes of chickpea were

evaluated under rainfed and irrigated field conditions, which

revealed significant differences in several metabolites, including

oxalic acid, threonic acid, inositol, maltose and L-proline between

studied groups (Nisa et al., 2020). Chickpea subjected to drought

stress uncovered co-expressed genes, proteins and metabolites

regulating glutathione metabolism, glycolysis/gluconeogenesis

and phosphatidylinositol signalling pathways. Significant alter-

ations were observed in the drought-tolerant genotype (Singh

et al., 2023).

During drought stress, plants decrease stomatal conductance,

resulting in reduced CO2 fixation and a decrease in the rate of

photosynthesis, followed by a reduction in growth and seed yield

(Pang et al., 2017). Plants can protect themselves against mild

drought stress in an emergency by accumulating osmolytes

(Todaka et al., 2017). Osmolytes are small organic compounds

that serve as compatible solutes in plants, as they are non-toxic to

plant cells and do not disrupt regular metabolic processes. The

key inquiry in comprehending legume stress revolves around

investigating osmolytes and other small molecules to observe

how plants respond to stress and adapt to uphold their internal

balance or homeostasis. Metabolomics is one key technique to

achieve this goal, which plays an important role in understanding

the complex shifts that occur in plants under environmental

perturbations, such as drought and limited water stress (Feussner

and Polle, 2015).

One of the main challenges for plant breeders is selecting

genotypes that could handle environmental stress like drought.

Several selection indices have been suggested to differentiate the

degree of stress resistance between different genotypes (Ayed

et al., 2021). One important index is the stress susceptibility index

(SSI), which was first employed by Fischer and Maurer (Fischer

and Maurer, 1978). This index describes the variation of yield

performance under stress and non-stress conditions, allowing the

breeders to exploit genetic variation to screen stress-tolerant

varieties. SSI was employed in several studies, for example, the

evaluation of drought tolerance in durum wheat genotypes,

which revealed year-to-year and location-to-location variation

(Mohammadi et al., 2011). Similarly, it was applied to identify

susceptible cotton genotypes under rainfed conditions (Nandhini

et al., 2022). Recently, Nouraei and co-workers identified 53

single-nucleotide polymorphisms (SNPs) significantly associated

with SSI in a wheat genome-wide association study of drought

tolerance (Nouraei et al., 2024). The response mechanism under

drought stress varies with the genotypes and developmental

stage of the plants. Hence, it would be much more valuable if

biochemical indicators could be identified for each crop species.

Additionally, interrelationships among various physiological

responses to dehydration can provide insight into developing

useful strategies to improve drought stress response in chickpea.

Therefore, the objectives of the present study were: (1) to

examine the impact of drought stress on leaf metabolism at three

pod-filling stages in a natural field environment, using Gas

chromatography–mass spectrometry (GC–MS) analysis; (2) to

gain insights into the intricate physiological and molecular

changes that occur in response to stress conditions, their impact

on yield, and to assess the SSI among different chickpea

genotypes with a focus on Desi varieties to provide a

homogenous population; and (3) to employ bio-mathematical

methods to understand the plasticity between molecular and

phenotypic networks, which are the main facilitators of adaptive

changes in response to stressful environments. The exploration of

constraints that facilitate plasticity in metabolic networks were

determined using a data-driven approach in chickpea. In this

study, we exemplify the use of the differential biochemical

Jacobian matrix (Doerfler et al., 2013; Kitashova et al., 2023; Li

et al., 2023; Nagele et al., 2014; Nukarinen et al., 2016; Sun and

Weckwerth, 2012; Weckwerth, 2019; Weiszmann et al., 2023;

Wilson et al., 2020) to decipher metabolic constraints of the

adaptive response to drought stress and its association to SSI as

well as metabolic genome-wide association study (mGWAS) in

chickpea. Additionally, we highlight its adaptability in metabo-

lomics studies to explore valuable traits that could be integrated

into the breeding programs. (4) Finally, a mGWAS analysis was

conducted for identifying the genomic regions involved in

metabolite alterations between well-watered and drought condi-

tions as well as investigating a relation between SNP associations

with differential metabolic fluxes derived from the differential

biochemical Jacobian (Weiszmann et al., 2023).

Results

Experimental setup and physiological measurements

In the present study, 36 diverse chickpea genotypes were

evaluated under drought stress (DS) in the natural field

condition. Drought stress was initiated when plants were at

50% flowering stage (Figure 1a). The significant difference in

the soil water content (%) between well-watered (WW) and DS

conditions was the first indication of the drought stress
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imposed. Initial significant change in soil water content (%) was

observed on 7 days after stress (DASt), which plateaued after 19

DASt (Figure 1b). The measurement of plant height (in cm) was

taken throughout the developmental stages, from the vegetative

phase to maturity. A significant decrease in plant height was

noted during the flowering and pod-filling stages under DS

conditions (Figure 1c). To investigate the physiological basis of

genotypic variation under drought stress, photosynthetic param-

eters were determined using PhotosynQ V2.0, which include

leaf temperature differential (corresponding to the stomatal

closure), Fv/Fm, and relative chlorophyll content (see section

‘Materials and Methods’). The recorded observations were

analysed in parallel to define the harvesting time points for

further molecular analysis. All the recorded observations are

provided in Table S1.

The immediate response of plants under DS is the closure of

stomata to prevent water loss via transpiration. Plants grown

under drought conditions tend to have lower stomatal conduc-

tance, thus helping to conserve water and maintain an adequate

leaf water status while reducing leaf internal CO2 concentration

and photosynthesis (Ghatak et al., 2020). The precise relationship

also depends on factors like genotypes, drought history and

environmental conditions. In this study, leaf temperature differ-

ential showed a significant difference under DS compared to WW

on 19 DASt, followed by a slight increase on 24 DASt, with a

substantial difference between DS and WW on 45 DASt

Figure 1 (a) Experimental design. (b) Soil water content (SWC) (%). Values represent means, and error bars indicate the corresponding standard errors

(n= 6). (c) Plant height (in cm). Boxplots representing the plant height measured. The boxplots show the median (central bar), the mean (central circle), the

interquartile range (box), and minimum and maximum values (vertical bars). The circles outside the box show the outliers. The colour of the boxplots

represents the different experimental conditions. (d) Maximum photochemical efficiency of PSII (Fv/Fm), relative chlorophyll content and leaf temperature

differential. Values represent mean, and error bars indicate the corresponding standard errors (n= 108). Means without at least one asterisk are non-

significant from each other (P> 0.05; one-way ANOVA) between the treatments well-watered (WW) and drought-stressed (DS). Significance was tested for

each time. Significance per day is indicated by asterisk (***P< 0.001; **P< 0.01; *P< 0.05).
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(Figure 1d). In general, the relative chlorophyll content decreased

in all the genotypes under DS compared to the WW condition,

with a significant decrease observed at 19 DASt (Figure 1d). All

the genotypes studied showed a significant decrease in the

photochemical efficiency of photosystem II (Fv/Fm) at different

time points after the initiation of DS (Figure 1d). Considering the

physiological response, the different harvesting time points were

selected, which corresponded well with the pod-filling stage in

chickpea. The first harvesting point was selected at the early pod-

filling stage (19 DASt), the second was at the mid pod-filling stage

(24 DASt), and the third sampling point was at the late pod-filling

stage (45 DASt) (harvest time point 3) (Figure 1a). The plants were

allowed to grow until the senescence stage to evaluate the

impact of drought stress on yield, which also helped to categorize

the genotypes based on their degree of drought tolerance (see

section on SSI).

Stress susceptibility index (SSI) and its correlation with
differential metabolomic response under drought stress
in chickpea

The list of genotypes and their percentage yield reduction due to

DS is indicated in Figure 2a. To differentiate the degree of

drought tolerance and evaluate the grain yield potential under DS

among different chickpea genotypes, we determined the SSI, a

ratio of genotypic performance under stress and non-stress

conditions (Talebi et al., 2013) (Table S1). Figure 2b shows the

biplot between maximum production under DS conditions

(100-seed weight under DS samples) and SSI for 36 chickpea

genotypes (Gutiérrez et al., 2020). In the biplot, quadrant I (Q1)

corresponds to chickpea genotypes that are drought tolerant and

have a high production capacity under stress conditions

(designated as best chickpea genotypes from the current

germplasm), quadrant II (Q2) contains chickpea genotypes that

are tolerant to DS while having low 100-seed weight under stress

conditions, quadrant III (Q3) corresponds to susceptible chickpea

genotypes with low 100-seed weight, and quadrant IV (Q4)

contains chickpea genotypes susceptible to DS with high

production under drought conditions (Figure 2b).

With the help of SSI, we were able to categorize tolerant

genotypes under DS conditions. Values less than 1 for SSI

indicate genotypes with more tolerance to water stress, while

those with values over 1 are more susceptible. The SSI values for

100-seed weight ranged from 0.21 to 2.85 (Table S1). Thus, the

SSI values between 0.21 and 0.97 of several chickpea genotypes

(QI and II) indicated that these genotypes could be considered

more tolerant to DS. The chickpea genotypes located in QI were

G6, G34, G35, G1, G19, G20, G3, G21, G13, G33, G17, G15

and G2. These genotypes can be considered best performing

ones due to the highest 100-seed weight value under DS and

the lowest value of SSI. However, chickpea genotypes with

higher SSI values (1.14 – 2.85) can be considered to have lower

drought tolerance (QIII and IV). The chickpea genotypes located

in QIII were G26, G25, G23, G22, G36, G27, G29, G5 and G16

(Figure 2b). These genotypes can be considered the worst

performing ones due to the lowest 100-seed weight value

under DS and the highest value of SSI. Moreover, this drought

index-based genotypic ranking consistently agrees with the

results of chickpea genotype responses under DS expressed as

percentage yield reduction (Figure 2a).

Once each chickpea genotype’s SSI was evaluated, we

examined the prediction power of metabolites to prove the

hypothesis that metabolome can be related to the SSI and,

consequently, seed quality and production. For that, the

distribution of single metabolites from mid-pod-filling stage (i.e.

harvest time point 2) was queried for their predictive power

concerning the SSI distribution by calculating pairwise correlations

between all 63 measured metabolites relative abundance and 36

chickpea genotypes with SSI values (Figure 3). The 63 metabolites

are listed in Figure 3 (left panel table) (harvest time point 2).

Metabolites with the highest significant correlations are displayed

on the two-dimension correlation plot (log-transformation of

metabolite relative abundance and SSI values) (Figure 3 (right

panel )), which strongly represents central metabolism-derived

compounds such as organic acids (pyruvic acid, succinic acid,

glyceric acid, unknown carbonic acid 3, L-Threonine acid, ribonic

acid and aconitic acid) and sugar alcohols (cyclic sugar alcohol,

unknown sugar alcohol 3 and unknown sugar alcohol 4). Some

metabolites are tricarboxylic acid (TCA) cycle members, such as

succinic acid, aconitic acid and pyruvic acid. The highest absolute

correlation (COR, R) found was for sugar alcohol compounds,

which yielded a value of �0.41. This correlation is statistically

significant (P-value of 1.036 × 10�5) and can explain 16.08% of

the variance. Other significantly correlated compounds include

pyruvic acid (0.386; P-value of 2.709 × 10�5), succinic acid

(0.353; P-value of 0.0002), L-Threonic acid (�0.347, P-value of

0.0002), ribonic acid (�0.346; P-value of 0.0002) and cyclic sugar

alcohol (0.345; P-value of 0.0003).

Metabolome profiling

Metabolome profiling of the leaf tissue was conducted using GC-

time-of-flight (TOF)-MS. Sixty three metabolites were identified

and quantified with identification level 1 using quality control

(QC) mixes and in-house library (Ghatak et al., 2022; Weiszmann

et al., 2023; Zhang et al., 2021). The identified metabolites were

classified into organic acids, amino acids, sugars, sugar alcohols,

amines and unknowns represented using the heat map

(Figure 4a; Table S2). Principle component analysis (PCA) revealed

distinct metabolites associated with DS and WW samples at three

different time points (Figure S1; Table S3), suggesting a clear

distinction in the metabolite accumulation under two conditions.

Harvest time point 2 demonstrated the strongest separation

between DS and WW conditions at PC1 compared to harvest

time points 1 and 3 (Figure 4b). The highest positive loading of

PC1 indicates metabolites that were highly accumulated in the

WW condition compared to DS, which includes threonine,

unknown sugar alcohol 2, fumaric acid, glycine, shikimic acid,

serine, etc. The highest negative loadings of PC 1 indicate that

metabolites highly accumulated under DS were unknown sugar

alcohol 3, L-threonic acid, fructose, tyrosine and unknown sugar,

among others (Figure 4b). Further, PLS-DA analysis was per-

formed for DS and WW conditions, which also demonstrated a

similar outcome with the strongest variation at harvest time point

2 (with PC1 explaining 21.64% total variation) compared to

harvest time points 1 and 3 (Figure S2; Table S4).

Since harvest time point 2 (i.e. mid pod-filling stage) was the

most drought-responsive time point, we focused on evaluating the

metabolome identified at this stage. Metabolites with significant

accumulation (P value <0.05) under DS determined by a volcano

plot (Figure 4c) include L-threonic acid, unknown sugar alcohol 3,

pyruvic acid, ascorbic acid, fructose, and 2-oxo-glutaric acid. The

bar plot represents the regulation of these selected metabolites

across all the replicates under DS and WW conditions (Figure 4d).

Regulation of all 63 metabolites across all the replicates in both DS

and WW conditions can be found in Figure S3. Based on the
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outcome of PLS-DA analysis (Table S4), heat maps were con-

structed to determine the regulation of the metabolites at harvest

time point 2 (Figure 4e) and similarly for harvest time points 1 and 3

considering all the genotypes (Figure S4).

Metabolite clustering was performed using K-means clustering

across all three time points. In total, K= 10 clusters were

identified based on the accumulation of patterns of the

metabolites in three harvesting time points (Figure S5; Table S5).
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G17 ICC 6279 Landrace Desi India
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G19 ICC 6579 Landrace Desi Iran
G20 ICC 6537 Landrace Desi Iran
G21 ICC 6811 Landrace Desi Iran
G22 ICC 8950 Landrace Desi India
G23 ICC 9002 Landrace Desi Iran
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G27 ICC 11627 Landrace Desi India
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G30 ICC 12307 Landrace Desi Myanmar
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Figure 2 (a) Natural variation in 100-seed weight among chickpea genotypes with 100-seed weight percentage decrease under drought stress. (b) Biplot

with stress susceptibility index (SSI) and drought-stressed 100-seed weight of each chickpea genotype.
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It indicated metabolic changes under DS across three pod-filling

stages.

Biochemical Jacobian analysis for drought stress
tolerance in chickpea

To complement and enhance the conclusions drawn from

the statistical analysis, we include the Jacobian matrix as a

dynamic systems tool that can act as a bridge between statistics

and mathematical formalisms of metabolic networks

(Weckwerth, 2019). While purely statistical methods such as

PCA, PLS-DA and clustering approaches offer great insight into

distributions and correlations in the data, dynamic system tools

consider non-static interactions and aim to decipher mechanisms

that might explain the measured observables in the system. The

Jacobian matrix is a linearization of a system’s steady state (Tailor

and Bhathawala, 2011) and approximates a system’s dynamics

around a specific time point, omitting complex non-linearities. It

provides the rate of change of the system and indicates

interrelations among variables, represented as partial derivatives

as in:

J=
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. . .
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6666666664

3
7777777775

(1)

Each entry gives information on how fast or slow a reaction

changes its rate according to the rate of change of a metabolite’s

concentration, i.e. its sensitivity towards that metabolite, known

as ‘reaction elasticity’ (Heinrich and Schuster, 1996). Larger entry

values indicate a faster rate of change with respect to a

metabolite’s concentration and smaller values indicate slower

rates of change (Table S6).

Here wemake use of the differential Jacobian approach (Nägele

et al., 2014; Nagler et al., 2018; Weiszmann et al., 2023) to com-

pare high-performing (Q1) versus low-performing (Q3) chickpea

genotypes and to identifywhichmetabolic reactions contribute to a

high yield index and drought tolerance. Focusing on the primary

drought response within harvest time point 2, differential reaction

elasticities are indicated in Figure 5, with red/blue arrows corre-

sponding to larger differential entries in Q1/Q3 genotypes

respectively. The arrow shape indicates whether a reaction is

activated or inhibited. The reaction elasticities fumarate to malate,

cis-aconitase to succinate, ethanolamine to serine, and ononitol to

myo-inositol are shown to have larger, activating differential values

in Q1 compared to Q3 chickpea genotypes. Conversely, reaction

elasticities from maltose to glucose and those leading to tyrosine,

phenylalanine, methionine, and ornithine have relatively larger

inhibiting fluxes in Q3 genotypes. Differential metabolite fluxes for

all the three time points are shown in Figure 5 and further discussed

in Document S1.

Metabolic genome-wide association study reveals
genomic regions associated with drought tolerance in
the chickpea metabolome

Next, to identify the genomic regions associated with drought

tolerance in the chickpea metabolome, we performed mGWAS

using the available genotypic data (Varshney et al., 2021b). In

total, we obtained 334 significant marker-trait associations

(MTAs) from covering 292 SNPs across different combinations

of harvest time points and treatment (Table S7). The significant

MTAs were found for metabolites such as galactaric acid (SNP:

S5_10723119) and unknown sugar amine (SNPs: S4_48687551

and S1_13338812) for harvest time point 1, asparagine (SNP:

S3_37239676) and unknown sugar alcohol 4 (SNP S5_40024599)

for harvest time point 2 and succinic acid (SNPs: S4_16315718,

S3_3964985, S4_16317194, S1_30882559, S7_39208926,

S5_38026026) for harvest time point 3 under DS (Figure S6). In

addition, significant MTAs with gene annotations that corre-

sponded with and supported well the rest of our results were

found for metabolites such as cyclic sugar alcohol (pinitol) (SNP:

S4_27328584, harvest time point 1 under drought) and malic

acid (SNPs: S2_32066110, S1_33885468 and S1_9042532,

harvest time point 3 under drought). The gene annotations of

significant MTAs identified in this study can be found in Table S7

and their relevance to chickpea drought tolerance is discussed

below.

Discussion

In the present study, 36 chickpea genotypes from different

geographical locations were subjected to drought stress (DS) to

evaluate their physiological andmetabolomic responses. The study

aims to uncover metabolite responses across three pod-filling

stages (i.e. three harvest time points) (Figure 1a) that contribute to

drought stress tolerance and its impact on seed yield (Figure 2a).

This approach has recently attracted more attention (Khan

et al., 2019; Nisa et al., 2020; Singh et al., 2023). Due to our

experimental setup, we also tested the adaptability of chickpea in

a cooler European central climate compared to their place of origin.

Identifying metabolite biomarkers that characterize the main

drought response and differential metabolite fluxes across pod-

filling stages will enable the development of improved chickpea

cultivars with increased drought tolerance and higher seed yield,

which can be further incorporated into breeding programmes.

Pod-filling stages and photosynthetic activity as
determinants for final yield performance under drought
stress

Pods in legumes are fruit structures where the seeds develop

(Gupta et al., 2016). The quantity and quality of nutrients

Figure 3 Pearson correlation analysis to distribute the 36 diverse chickpea genotypes based on the performance concerning the metabolite and SSI (Stress

Susceptibility Index) value. The pairwise correlations between all 63 measured metabolite levels and SSI were calculated. Positive correlations are shown in

blue; negative correlations are shown in red. The intensity of blue or red represents the value of the correlation coefficient. The * indicates a statistically

highly significant correlation (P-value< 0.05) (Left panel). Metabolite-SSI biplot shows the correlation strength between metabolites and SSI (Right panel).

The size of each circle denotes the relative amount value of metabolites with the corresponding chickpea genotype. Genotypes with a lower SSI value and a

higher 100-seed weight value have been considered the best genotypes. Genotypes with a higher SSI value and a lower 100-seed weight value have been

considered the worst genotypes.
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transferred during the seed-filling period greatly affect final seed

weight and yield. Under water deficit conditions, crop growth

and final grain yield at any developmental stage can be affected,

particularly damaging the pod-filling stage (Pushpavalli

et al., 2015). Studies have shown that cultivars have differing

pod-filling potential (Gupta et al., 2016), suggesting the involve-

ment of strong genetic components in this process. Therefore, in

the present study, utilizing a range of 36 different chickpea

Figure 4 (a) Heatmap - Metabolic changes in leaves under drought stress (left to right) harvest time point 1 (19 DASt), harvest time point 2 (24 DASt),

harvest time point 3 (45 DASt). Metabolic changes are presented as means of each treatment. Colours indicate increases (red) and decreases (blue). (b) PCA

Score plot and PC1 and PC2 top-ranked metabolites in harvest time point 2. The top 20 scoring loadings (10 highest and 10 lowest) of PC1 and PC2 are

shown by row for each PCA. Bar colours indicate the experimental condition in which each top-scoring metabolite is more regulated. Ellipses show a 90%

confidence interval. Different colours indicate different experimental conditions (n = 108 biologically independent replicates). (c) Volcano plot generated

with a 216-observation dataset (108 well-watered (WW) samples and 108 drought-stressed (DS) samples) comprised of 63 metabolites at harvest time

point 2. Red circles represent metabolites with a fold change ≥2 that was statistically significant (P-value ≤ 0.05). Blue circles represent metabolites with a

fold change ≥2 lacking statistical significance (P-value> 0.05), while grey circles represent metabolites with a fold change ≤2. The identity of the most

discriminating metabolites highlighted in the plot as red and blue circles are described in bar plots. (d) Barplot visualization of the highlighted metabolites in

WW and DS conditions. Error bars represent the standard error on the 108 replicates. (e) Hierarchically clustered heatmap of the 36-chickpea genotypes

using the top 20 metabolites with higher loadings in the first component of PLS-DA. The bi-clustering uses the average linkage of Pearson correlation

distance between chickpea genotypes and metabolites. Metabolic changes are presented as means of 3 replicates. Colours indicate increases (red) and

decreases (blue).
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genotype backgrounds and mapping their metabolomic changes

during pod-filling under DS can greatly advance our understand-

ing of how genetic background influences final yield. For

metabolomics analysis, primary leaves (close to pods) that are

the source from where nutrients (such as sucrose, amino acids

and fatty acids) are transported to the sink (endosperm) during

seed developmental stages (Sehgal et al., 2018) were taken into

consideration.

After the withdrawal of irrigation in the stress bed, soil water

content (%) (Figure 1b) decreased linearly under the DS

compared to WW condition and plateaued at day 19, after

which it remained the same, maintaining equal levels of water

deficiency across the three pod-filling stages. The maximum

photochemical efficiency of PSII (Fv/Fm) started decreasing rapidly

after day 19. It reached a low level (0.4 Fv/Fm) by day 45 DASt

(Figure 1d), indicating increasing plant stress between advancing

pod-filling stages. Relative chlorophyll content slightly differed

between DS and WW conditions at day 19 (early pod-filling

stage), whereas it did not differ significantly during the mid and

late pod-filling stages (Figure 1d). Though not statistically

significant, the clear trend of less chlorophyll content in the DS

conditions might be used as a physiological bio-indication for

drought stress tolerance in chickpea and signifies the role of NUE

in the stress response. However, this must be investigated in more

detail in future studies.

In contrast, leaf temperature differential significantly increased

after 24 DASt, with a large difference between DS and WW

conditions at 45 DASt. Thus at a later stage of stress the relative

higher cooling of WW is not a contrast, but goes along with the

lack of soil water content under DS. Even though two

physiological measurements (Fv/Fm and leaf temperature differ-

ential) demonstrated increasing stress levels across pod-filling

stages (Figure 1d), the metabolome data indicated the mid pod-

filling stage (harvest time point 2) as the most drought-responsive

time point. This was evident from the PCA, where PC 1 showed

the strongest separation between DS and WW conditions

(Figure 4b) compared to harvest time point 1 and 3 (Figure S1).

Hence, we categorized harvest time point 1 to be an early

preparatory stage during pod-filling, which metabolically primes

the plant for the main transfer of nutrients from the primary

leaves to the seed embryo, whereas, the second harvest time

point signifies the plant’s leaf metabolism to be most flexible and

adaptive to DS. Finally, at the late pod-filling stage (45 DASt;

harvest time point 3), the primary leaves have adapted to DS and

reset to a metabolic state closer to the WW condition. It also

signifies the end of the transfer of nutrients to the seed embryo,

in which the primary leaves no longer need to adapt to DS

flexibly.

L-threonic acid, fructose, and sugar alcohols are
potential metabolite markers for the main drought
response in chickpea in their natural habitat

Focusing on harvest time point 2 as the pod-filling stage where

most drought responses occur in the metabolome between WW

and DS, the metabolites with the highest loading scores (absolute

value>0.1) at PC1 (23.12% variance) include organic acids such as

L-threonic acid, ribonic acid, citramalic acid, glyceric acid and

unknown 2 (oxalic acid, level 2 identification), fructose, sugar

alcohols and amines (unknown sugar alcohol 3, unknown sugar

alcohol 4, unknown sugar amine, unknown sugar), as well as

amino acids (serine, tyrosine, lysine and unknown amino acid 3

(ethanolamine, level 2 identification)) (Figure 4b). L-threonic acid

was found to have the largest fold change between DS and WW

conditions, followed by unknown sugar alcohol 3 and unknown

sugar and fructose (Figure 4c). Threonic acid, among other organic

acids, was previously shown to accumulate in the kabuli variety

under DS (Nisa et al., 2020). This organic acid accumulates after

ascorbic acid degradation (Truffault et al., 2017), which is one of

the strongest antioxidants that scavenge reactive oxygen species

(ROS) overproduced under various stress conditions. The produc-

tion of threonate from ascorbic acid strongly indicates the

upregulation of the ascorbate pathway in chickpea under DS.

Threarate, a product of threonic acid oxidation (Parsons et al.,

2011), contributes to osmoregulation under DS (Guerrier

et al., 2000). Conversely, the high relative abundance of

fructose under DS indicates the accumulation of soluble sugars by

starch breakdown to increase osmotic potential and cause more

absorption of the scarce moisture in the soil (Camisón et al., 2020).

Accumulation of sugars and a reset in the source-sink carbon

relation are always activated under DS. This prevents oxidation and

dehydration of cell membranes, supports osmotic adjustment, and

lowers plant photosynthetic rates. Fructose also links to the citric

acid cycle (TCA) by producing 3-phosphoglycerate converted to

pyruvic acid via phosphoenolpyruvate. The latter connects to the

Figure 5 Circular plot for the differential Jacobian entries between Q1 and Q3 chickpea genotypes within three harvest time points under DS. Red/blue

colours indicate higher reaction rates for Q1/Q3 genotypes respectively. The shape of the arrow indicates whether this reaction is activating (→) or inhibiting

(--|).
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shikimic acid pathway and the further production of aromatic

compounds such as tyrosine that lead to flavonoid and secondary

metabolite production.

Sugar alcohols (unknown sugar alcohols 1, 3 and 4, unknown

sugar amine, unknown sugar and myo-inositol, cyclic sugar

alcohol (ononitol, level 2 identification), threitol and pinitol) were

identified with higher relative abundance under DS compared to

WW conditions in harvest time point 2 (Figure 4a). These

photosynthetic by-products are known for their osmoprotective

effects under DS (Ahn et al., 2018; Singh et al., 2015), accounting

for 50% of the total osmotic adjustment in chickpea (Amede and

Schubert, 2003). Sugar alcohols can also contribute to yield

tolerance under DS by providing alternative carbon sources after

being transported to seed coats and accumulating their respective

α-galactosides in mature seeds (Obendorf and Górecki, 2012).

This is in congruence with our finding of sugar alcohols being the

most significant negatively correlated metabolites to the SSI

values.

Most sugars and sugar alcohols demonstrated relatively low

abundance in the early pod-filling stage (Figure 4a, harvest time

point 1) with a slight increase under DS (e.g. unknown sugar

alcohol 3 and unknown sugar amine). The depletion of sugars in

primary leaves at early pod-filling stages signifies that the sink

strength has been reduced due to increased sugar transport to

the seed coats. Nevertheless, there is an increase of sugars under

DS in harvest time point 3 (fructose, galactose, glucose, sucrose,

myo-inositol, cyclic sugar alcohol (ononitol, level 2 identification),

pinitol, unknown sugar alcohol 4), reaching their respective

control levels (Figure 4a). These results indicate that the primary

leaves recovered from lower water potential during the earlier

pod-filling stages and restored metabolic processes to normal at

the late pod-filling stage. This recovery was also observed in bean

tissues when exposed to DS (González-Hernández et al., 2012)

and corresponds well with the smaller separation between DS

and WW conditions at harvest time point 3 compared to harvest

time point 2 along PC1 (Figure S1), which is also a sign of

metabolic recovery to control levels. The fast metabolic recovery

by the late pod-filling stage shows high adaptive potential

mediated mainly within harvest time point 2. Hence, it is probably

important for determining final yield productivity in chickpea.

Interestingly, a higher relative abundance of various amino

acids (alanine, aspartic acid, glycine, methionine, phenylalanine,

serine, threonine, valine and unknown amino acids 1 and 2) as

well as organic acids (fumaric acid, lactic acid, aconitic acid,

glycolic acid and unknown carbonic acids 1 and 3) was observed

at the early pod-filling stage (Figure 4a). Similar observations were

derived from the recent findings by Zhang and co-workers, where

an increased concentration of amino acids and organic acids was

identified in the early grain-filling stages in wheat (Zhang

et al., 2021). Similarly, in soybean late pod-filling stage amino

acid content declined due to their incorporation into storage

proteins (Kambhampati et al., 2021).

The differential Jacobian gives clues to differential
metabolite fluxes between chickpea genotypes

For a more mechanistic understanding of how the metabolome

contributes to differences in yield performance, comparisons

between the Jacobian matrices of high-performing (Q1) versus

low-performing (Q3) chickpea genotypes were uncovered by

differential fluxes that contribute to drought tolerance mecha-

nisms in chickpea (Figure 2b; Table S1). Focusing at harvest time

point 2, the higher flux from fumarate to malate reaction could

explain higher performance in Q1 genotypes as the accumulation

of fumaric and malic acid has been associated with stomatal

closure (Araujo et al., 2011) and maintenance of growth under

severe DS (Ashrafi et al., 2018). The higher flux from cis-aconitate

to succinate in Q1 genotypes might signify higher activity of the

aconitase enzyme that hydrates cis-aconitate to the intermediate

isocitrate. Aconitase is highly sensitive to oxidative stress

(Lehmann et al., 2009) and controls many aspects of carbon

metabolism (Carrari et al., 2003). The slightly higher flux of

ononitol to myo-inositol in Q1 genotypes points to the raffinose

pathway, where ononitol forms methylated galactinol by reacting

with UDP-galactose, which then forms raffinose and myo-inositol

(Dong et al., 2013). The interconversion of maltose and glucose is

differentially regulated between Q1 and Q3 genotypes. In Q3

genotypes, an inhibition of flux from maltose to glucose was

observed, indicating that after the breakdown of starch to

maltose, small sugar accumulation and transport, known to

confer higher drought tolerance (Du et al., 2020; Maleckova and

Ponnu, 2022), is occurring at lower rates (Figure 5).

Conversely, glucose to maltose interconversion in Q1 geno-

types is inhibited, allowing flux to flow towards starch breakdown

products and transport. Higher flux through the ethanolamine

and serine reaction in Q1 genotypes points to drought tolerance

mechanisms via glycine betaine, which requires serine and

ethanolamine to be synthesized and is shown to be involved in

ROS scavenging under various abiotic stresses (Dos Reis

et al., 2012). Phenolic compounds tyrosine and phenylalanine

(high loading scores for PC1 and PC2 at harvest time point 2

under DS) (Figure 4b) are known to contribute to drought

tolerance mechanisms after upregulation of phenylpropanoid

genes due to drought (Sharma et al., 2019). Flux towards these

compounds is inhibited in Q3 genotypes at harvest time point 2.

This agrees with higher shikimic acid concentrations in some Q1

genotypes at harvest time point 2 since shikimic acid is a

precursor of these phenolic compounds. Flux towards methionine

and ornithine, involved in the urea cycle, is also inhibited in Q3

genotypes. The urea cycle contributes to nitrogen remobilization,

polyamine and proline production, contributing to abiotic stress

tolerance (Zhang and Becker, 2015) and proper seed setting (Liu

et al., 2018). Furthermore, we have determined differential fluxes

of the metabolites between Q1 and Q3 chickpea genotypes in

harvest time points 1 and 3, for more details, see Document S1

and Figure 5.

mGWAS identifies genetic control of differential
metabolite fluxes

Metabolomic genome-wide association studies analysis uncov-

ered genetic associations between SNPs and metabolites that

gave clues to differential genetic control under DS and WW

conditions across the three harvest time points. Genetic control

identified through mGWAS complements metabolic control

identified by the differential Jacobian analysis. In harvest time

point 1, the highly activated flux between galactose and glucose

(Figure 5) points to higher activity towards glycolysis under DS.

SNP S4_27328584 on chromosome 4, which was found to be

associated with pinitol and ascorbic acid in harvest time point 1

under DS (Document S1), is likely found within the gene coding

for gibberellin 20 oxidase 2 (GA20ox2) or glyceraldehyde-3-

phosphate dehydrogenase of plastid 1 (GAPDH) gene. SNP

S5_10723119 on chromosome 5 (associated to galactaric acid,

Figure S6) was found to reside in the gene encoding 1-deoxy-D-

xylulose 5-phosphate synthase 1 (DXS1). Together, the highly
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associated SNPs at harvest time point 1 provide further evidence

for upregulation of the glycolysis pathway leading to the plastidic

2C-methyl-d-erythritol 4-phosphate (MEP) pathway that results in

gibberellin production (Estévez et al., 2001). GAPDH redirects flux

towards plastidial glycolysis, where glyceraldehyde-3-phosphate

(GAP) is normally converted to pyruvate. The DXS1 gene converts

GAP to 1-Deoxy-D-xylulose 5-phosphate, which then enters the

MEP pathway (Tian et al., 2022) and results in the production of

gibberellins and ABA (Estévez et al., 2001). GA20ox was shown to

regulate gibberellin concentration in many plant species and

stimulated germination and flowering in A. thaliana (Xu

et al., 1997). SNP S1_13338812 is significantly associated with

unknown sugar amine (Figure S6) and annotated to the sucrose-

phosphatase 1 gene that participates in sucrose and starch

metabolism. This could explain the increasing reaction rate from

sucrose in Q1 genotypes within time point 1 (Figure 5).

At harvest time point 2, SNP S3_37239676 associated with

asparagine (Figure S6) was found on chromosome 3 within the

alpha-carbonic anhydrase (CA) 2 gene that assimilates CO2 to

HCO3– and produces malate. CA is known to regulate stomatal

closure under various stresses (Polishchuk, 2021), and it connects

well with the elevated fumarate to malate flux in Q1 genotypes at

harvest time point 2 (Figure 5), that also controls stomatal

conductance under stress. At harvest time point 3, SNP

S1_33885468 on chromosome 1, associated with malic acid

under drought, is found on a gene encoding sucrose synthase,

which converts glucose to fructose and sucrose and agrees with

the higher flux of the fructose-sucrose reaction in Q1 genotypes

(Figure 5). SNPs S4_16315718 and S3_3964985 on chromosome

4, associated with succinic acid (Figure S6), are found in the

coding region of the myo-inositol monophosphatase-like 1 gene,

which is involved in the recycling of D-inositol products

(Nourbakhsh et al., 2015). It can explain the dominant flux from

ononitol to myo-inositol in harvest time point 3 (Figure 5). SNP

S2_32066110, associated with malic acid at harvest 3, is found

within the coding region of an Early Response to Dehydration

gene (Igamberdiev and Kleczkowski, 2018). ERD genes are

known to be induced by drought stress in response to ABA

signalling and confer drought tolerance (Wu et al., 2023). SNP

S1_9042532, associated with malic acid at harvest time point 3, is

within the coding region of a glutamate decarboxylase (GAD)

gene, which catalyses the decarboxylation of glutamate to GABA

(Rashmi et al., 2018). This agrees with the implied activity of

GABA inferred from the differential Jacobian at harvest time point

3 and its role in grain-filling (Document S1). SNP S5_38026026,

associated with succinic acid within harvest time point 3 under

drought, is annotated to a nitrate transporter gene known to

confer higher crop yields through nitrogen use efficiency (Fan

et al., 2017). Alternatively, this SNP is also annotated to a

senescence-associated gene. During the late pod-filling stages,

there is a decrease in nitrogen uptake, which is then remobilized

from the leaves to the seeds. This process leads to leaf senescence

(Hajibarat and Saidi, 2022) and an upregulation of genes involved

in senescence-related processes.

Conclusion

Large genotypic variation was observed among the chickpea

germplasm subjected to drought stress, which underlines the

usability of this collection for applied breeding programs. Using

high-throughput, non-targeted GC–MS analysis, we identified

and quantified 63 metabolites and their corresponding

biochemical reactions within the chickpea leaf tissue under both

DS and WW conditions in three distinct harvest time points

(Figure 6). We identified L-threonic acid, fructose and various

sugar alcohols to be involved in the main adaptive drought

response of chickpea at the mid-pod-filling stage (i.e. harvest time

point 2). Different relative abundances of metabolites between

high- and low-performing genotypes at harvest time point 2 also

include citric acid, glutamic acid, ribonic acid, shikimic acid, serine

and glycerate as potential biomarkers for high seed yield, which

points towards the activation of the central metabolism such as

TCA cycle, GABA biosynthesis, and flavonoid pathways. The

differential Jacobian analysis further established increasing fluxes

towards glycolysis in harvest time point 1 and differential

regulation of sugar alcohols, possibly depending on the level of

sucrose concentration, leading to stachyose synthesis in Q1

genotypes. Inositol and sugar alcohol interconversions were also

highly active at harvest point 2.

In contrast, the implied role of GABA and nitrogen remobiliza-

tion is evident in differential fluxes in harvest time points 2 and 3,

physiological measurements (relative chlorophyll content), and

metabolite abundances, further supporting our mGWAS analysis.

Taken together, the role of nitrogen metabolism in maintaining

high seed yield performance in nitrogen-fixing legumes such as

chickpea is crucial. Accordingly, in follow-up studies, we will

address in more detail the relation of drought stress to pod filling

and protein content (Benali et al., 2023; Cohen et al., 2021). Our

differential Jacobian analysis further unveiled the interplay

between various metabolic pathways across three-time points in

maintaining a good drought response and yield, which would not

be possible by only looking at changes in concentrations of the

metabolites alone. We would thus like to encourage and support

further use of more advanced data-driven mathematical tools,

like the Jacobian matrix, in discerning and facilitating an all-round

understanding of adaptive, dynamic changes in metabolic and

other molecular networks. Importantly, this study unveiled

dynamic metabolite changes across the pod-filling trajectory of

chickpea, with important metabolite biomarkers that contribute

to drought tolerance mechanisms and which can be translated to

other legume crops. It also sheds light on the specific

developmental stages where these biomarkers are most effective,

which is important in their correct implementation to achieve a

final high seed yield performance under drought. Furthermore,

based on the SSI, promising genotypes are identified in this study

that can serve as potential donors for designing future drought-

tolerant chickpea.

Materials and methods

Experimental design, growth conditions and drought
treatment

Thirty-six chickpea (Cicer arietinum L.) genotypes from different

geographical origins were selected for this study. These geno-

types were part of the global composite collection (Varshney

et al., 2021c) obtained from the gene bank repository of the

International Crops Research Institute for the Semi-Arid Tropics

(ICRISAT), India. The field study was conducted at the Augarten

experimental garden at the University of Vienna, Vienna, Austria

(48°13026.200 N 16°22029.100 E). The experiment was started in

June and concluded in October. Seeds were hand-sown in the

experimental plot. The distance between rows was 30 cm with

20 cm between plants, and the sowing depth was 3–5 cm with

four to five seeds sown per genotype per replicate. The
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experiment was laid out in a randomized manner with three

biological replicates per genotype. The irrigation was adapted to

the plant’s physiological needs. The difference in the soil water

content between control (WW, well-watered) and stressed plants

(DS, drought stress) was the first indication of drought imposed;

at this stage, plants were at 50% flowering stage. Photosynthetic

activities were estimated until 45 days after the stress (Figure 1a).

Leaf tissues were harvested for metabolomics at three-time points

(representing three pod-filling stages): 19, 24 and 45 days after

stress (DASt) (Figure 1a). The harvested samples were frozen in

liquid nitrogen to stop any enzymatic activity. The tissue samples

were grounded in liquid nitrogen using mortar and pestle.

Pulverized tissue was stored at �80 °C until further analysis. The

plants were allowed to grow till the senescence stage (120 days)

under control and stress conditions to evaluate the impact of

drought stress on yield.

In vivo measurements of photosynthetic activity and
microclimate conditions

Soil water content was monitored using Delta T theta probe ML2

in close vicinity of the plant roots (between 10 and 40 cm of soil

depth) of the soil in the experimental plot (Table S1; Figure 1b).

Plant height was measured using a folding yardstick to determine

the growth and development of the plants under WW and DS

conditions (Table S1; Figure 1c).

The photosynthetic activity was measured using PhotosynQ

V2.0 (https://www.photosynq.com/technology), a cloud-based,

integrated system using microcontrollers (Arduino-based) in a

non-destructive manner (Table S1; Figure 1d). Parameters such as

relative chlorophyll content (at an absorbance at 430 nm and

560 nm), chlorophyll fluorescence (Fv/Fm ratio), and leaf temper-

ature differential (related to ambient temperature, evapotranspi-

ration cooling of the plant leaf by stomatal conductance and soil

evapotranspiration respectively) were determined for each

genotype under WW and DS condition (Table S1; Figure 1d).

Stress susceptibility index

The SSI was determined to evaluate drought tolerance and to

differentiate chickpea genotypes on the degree of drought

tolerance. SSI was calculated using 100-seed weight (Table S1),

allowing access to the seed quality and grain yield potential under

drought conditions. For each genotype, the SSI was calculated,

according to Fischer and Maurer, as differences in the results

obtained for drought stress (DS samples) and control (WW

samples) conditions by using the following equation: SSI=
[1� Yp/Ys]/SI; SI= [1�MYs/MYp], where Yp is the mean value

for the investigated trait under WW conditions, Ys is the mean

trait value under DS condition, MYp is the mean trait value of all

investigated genotypes under WW conditions respectively, MYs is

the mean trait value of all genotypes under DS conditions,

respectively and SI represents stress intensity (Fischer, 1998)

(Table S1).

Metabolomics using gas chromatography coupled to
mass spectrometry (GC–MS)

Metabolomic analysis was performed according to Weckwerth

et al. (2004). The leaf tissues were freeze-dried in liquid nitrogen

(N2) and homogenized using mortar and pestle. Metabolites were

extracted with 500 μL pre-cooled extraction solution of methanol:

chloroform: water (2.5:2:1 v/v/v). The extracts were vortexed,

Figure 6 The biochemical pathway represents metabolic changes in chickpea leaves along three pod filling stage (i.e. 3 harvesting time points) under well-

watered (WW) and drought-stress (DS) conditions. Metabolic changes are presented as mean relative abundance of all chickpea genotypes under each

conditions. Values of metabolite levels from minimal to maximal are coloured from blue to red.

ª 2024 The Author(s). Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 22, 3278–3294

Chickpea metabolomics under drought stress 3289

https://www.photosynq.com/technology


incubated for 8 min on ice and then centrifuged for 4 min at

20 000 g and 4 °C. The supernatant was removed and transferred

to an Eppendorf tube (2 mL). The metabolites were once again

extracted by adding another 500 μL pre-cooled extraction

solution (methanol:chloroform:water (2.5:2:1 v/v/v)) on the pellet.

Further, distilled water (300 μL) was added, and the solution was

then centrifuged for 2 min at 20 000 g/4 °C to obtain the phase

separation. The upper polar phase (methanol/water) was

combined with the first extraction supernatant, then dried in

the speed vac (SCANVAC Cool Safe 110-4, SpeedVacuum

concentrator; Labogene) and stored at �80 °C until further

derivatization. For derivatization, the dried polar phase was

dissolved in 20 μL methoxylamine hydrochloride in pyridine

(40 mg/mL) and incubated for 90min at 30 °C in a thermoshaker.

Eighty microliters of N-methyl-N-(trimethylsilyl) trifluoroacetamide

(MSTFA) (Macherey Nagel, Germany) was added in all the

samples, which were incubated at 37 °C for 30min in a

thermoshaker. After the incubation, the samples were centri-

fuged for 2 min at 14 000 g, transferred to GC-micro vials with

micro inserts, and closed with crimp caps. Along with the

samples, a 60 μL retention index marker solution of even alkanes

from C10 to C40 in hexane (Sigma-Aldrich) at a concentration of

50mg/L was also prepared with MSTFA spiked.

GC–MS analyses of primary metabolites, a LECO Pegasus 4D

GC ×GC TOF-MS instrument was used. Samples, alkanes, and

blanks were injected with a split/splitless injector at the constant

temperature of 230 °C. The injection volume was 1 μL of the

derivatized sample; the injection was performed at a split ratio of

1:5 and 1:100. GC separation was conducted on an HP-5MS

column (30m × 0.25 mm × 0.25 mm; Agilent Technologies) using

helium as carrier gas at a flow rate of 1 mL/min. The temperature

gradient started at 70 °C isothermal for 1 min, followed by a

heating ramp of 9 °C/min to 330 °C, where the temperature was

held for 7 min. The transfer line temperature was 250 °C, and the

ion source temperature was set to 200 °C. Mass spectra were

acquired with an acquisition rate of 20 spectra/s at an m/z range

of 40–600 using a detector voltage of 1500 V and an electron

impact ionization of 70 eV.

Data analysis was performed with Chroma TOF software (Leco,

Mönchengladbach, Germany). Briefly, representative chromato-

grams of different samples were used to generate a reference

peak list based on quality control samples (QC) including

reference compounds, and all other data files were processed

against this reference list. Deconvoluted mass spectra were

matched against an in-house mass spectral library. Peak

annotations and peak integrations were checked manually before

exporting peak areas for relative quantification. The internal

standard and the fresh weight of the sample were used to

normalize the peak areas. Metabolite amounts are given in

arbitrary units corresponding to the peak areas of the chromato-

grams (Ghatak et al., 2022; Zhang et al., 2021, 2024).

Bioinformatics and statistics analysis

Multivariate (principal component analysis (PCA)) analysis was

performed using the R program (v 4.0.2) (pRocessomics,

https://github.com/Valledor/pRocessomics). Heatmaps, partial

least squares-discriminant analysis (PLS-DA) and k-means cluster

analysis were computed and constructed using the R package

(pRocessomics). Seed yield and metabolite profile were correlated

by simple Pearson correlation using the SSI values and

log-transformed relative abundance values of all metabolites

identified under DS at the second harvest time point. The R

function ‘cor.test’ (stats basic package in R, R version 3.6.1) was

used to calculate the Pearson correlation between a single

metabolite and SSI for each chickpea genotype. The one-way

analysis of variance (ANOVA) was applied to compare the

agronomy and physiology data, including soil water content,

plant height, Fv/Fm, relative chlorophyll content and leaf

temperature difference, between WW and DS conditions, using

the ‘aov’ function from the stats basic package in R (R version

3.6.1).

Data-driven inverse mathematical modelling approach

For the calculation of the Jacobian matrix, an inverse data-driven

method was used that only requires the covariance matrix from

the data and an arbitrary noise matrix as inputs. This was

previously developed by (Sun and Weckwerth, 2012) using the

Lyapunov equation (Weckwerth, 2019):

JC þ CJT =�2D, (2)

where C is the covariance matrix, D is the noise matrix, T stands

for transpose of a matrix and J is the vectorized form of the

Jacobian matrix. Input data for the covariance matrix included 48

metabolites (all known metabolites as well as unknowns with

level 2 identification using the NIST library) and was log-

transformed separately for the Q1 and Q3 genotypes and at

each time point. The noise matrix D was arbitrarily set with

diagonal entries randomly drawn from a standard normal

distribution and non-diagonal entries set to 0. A reconstructed

metabolic network of central metabolism in chickpea was used as

a constraint using SIM-network settings with cost 3 (Li

et al., 2023) as well as manual curation with the KEGG pathway

database as a reference. The calculation was repeated 104 times

and the median value was taken for the final output.

The Jacobian matrices between Q1 and Q3 genotypes were

compared using the differential Jacobian. This was previously

established (Nagele et al., 2014), as in:

d Jijð Þ= log
∂f A,C2
∂ A,C2

∂f A,C1
∂ A,C1

�����

����� (3)

where the numerator is a Jacobian entry from one condition (Q1

genotypes) and the denominator is the same Jacobian entry from

the other condition (Q3 genotypes). Positive differential entries

indicate larger fluxes in one condition whereas negative

differential entries indicate higher fluxes for the other condition

and give clues to underlying regulatory differences at the level of

proteins or transcripts. All calculations were performed in

MATLAB. Circular plots of differential Jacobian entries for each

time point were also plotted using MATLAB. MATLAB scripts are

either downloadable as a GUI toolbox COVAIN (https://mosys.

univie.ac.at/resources/software/) and additional scripts from Li

and co-workers are available by request (Li et al., 2023).

Metabolic GWAS and genomic prediction

The raw genotypic data for the 36 genotypes were obtained from

the chickpea 3366 Genomes Project (Varshney et al., 2021c). The

genotypic data were filtered based on MAF cut-off ≥0.05, a

missing rate of ≤20% and a heterozygosity rate of ≤20%, using

vcftools v0.1.16 (Danecek et al., 2011) to obtain a set of 153 820

high-quality SNPs. The metabolomic data were averaged across

the three biological replicates. The averaged metabolomic data

(after log-transformation) were checked for normal distribution
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using shapiro.test function in R. If the metabolite did not follow

normal distribution (P-value cut-off 0.05) for a given harvest time

point, the GWAS analysis was not performed for the respective

metabolite. The filtered genotypic data and metabolite data were

subjected to genome-wide association studies (GWAS) analysis

with GAPIT R package using FarmCPU method (Liu et al., 2016) as

described in (Garg et al., 2022). The GWAS analysis was

performed separately for all metabolites under each treatment

(WW and DS) and harvest time point. The significant marker-trait

associations were obtained based on a P-value cut-off of 1E-05.

Additionally, for gene annotation, the FASTA DNA sequences

5000 bp upstream and downstream of the identified significant

SNPs were retrieved and matched against homologous A.

thaliana annotated gene sequences using the blast search tool

of EnsemblPlants. Overlapping genes with the retrieved

sequences were chosen based on overall score according to

relatively low E-values and high % identity similarity.
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Obendorf, R.L. and Górecki, R.J. (2012) Soluble carbohydrates in legume seeds.

Seed Sci. Res. 22, 219–242.
Pang, J., Turner, N.C., Khan, T., Du, Y.L., Xiong, J.L., Colmer, T.D., Devilla, R.

et al. (2017) Response of chickpea (Cicer arietinum L.) to terminal drought:

leaf stomatal conductance, pod abscisic acid concentration, and seed set. J.

Exp. Bot. 68, 1973–1985.
Parsons, H.T., Yasmin, T. and Fry, S.C. (2011) Alternative pathways of

dehydroascorbic acid degradation in vitro and in plant cell cultures: novel

insights into vitamin C catabolism. Biochem. J. 440, 375–383.
Polishchuk, O.V. (2021) Stress-related changes in the expression and activity of

plant carbonic anhydrases. Planta 253, 58.

ª 2024 The Author(s). Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 22, 3278–3294

Palak Chaturvedi et al.3292



Pushpavalli, R., Zaman-Allah, M.A., Turner, N.C., Baddam, R., Rao, M.V. and

Vadez, V. (2015) Higher flower and seed number leads to higher yield under

water stress conditions imposed during reproduction in chickpea. Funct. Plant

Biol. 42, 162–174.
Rashmi, D., Zanan, R., John, S., Khandagale, K. and Nadaf, A. (2018) γ-
aminobutyric acid (GABA): biosynthesis, role, commercial production, and

applications. Nat. Product. Chem. 57, 413–452.
Roorkiwal, M., Bharadwaj, C., Barmukh, R., Dixit, G.P., Thudi, M., Gaur, P.M.,

Chaturvedi, S.K. et al. (2020) Integrating genomics for chickpea improvement:

achievements and opportunities. Theor. Appl. Genet. 133, 1703–1720.
Sehgal, A., Sita, K., Siddique, K.H.M., Kumar, R., Bhogireddy, S., Varshney,

R.K., HanumanthaRao, B. et al. (2018) Drought or/and heat-stress effects on

seed filling in food crops: impacts on functional biochemistry, seed yields, and

nutritional quality. Front. Plant Sci. 9, 1705.

Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M. and Zheng, B.

(2019) Response of phenylpropanoid pathway and the role of polyphenols in

plants under abiotic stress. Molecules 24, 2452.

Singh, M., Kumar, J., Singh, S., Singh, V.P. and Prasad, S.M. (2015) Roles of

osmoprotectants in improving salinity and drought tolerance in plants: a

review. Rev. Environ. Sci. Biotechnol. 14, 407–426.
Singh, V., Gupta, K., Singh, S., Jain, M. and Garg, R. (2023) Unravelling the

molecular mechanism underlying drought stress response in chickpea via

integrated multi-omics analysis. Front. Plant Sci. 14, 1156606.

Sun, X. and Weckwerth, W. (2012) COVAIN: a toolbox for uni- and multivariate

statistics, time-series and correlation network analysis and inverse estimation

of the differential Jacobian from metabolomics covariance data.

Metabolomics 8, 81–93.
Tailor, M.R. and Bhathawala, P. (2011) Linearization of nonlinear differential

equation by Taylor’s series expansion and use of Jacobian linearization

process. Int. J. Theor. Appl. Sci. 4, 36–38.
Talebi, R., Ensafi, M., Baghebani, N., Karami, E. and Mohammadi, K. (2013)

Physiological responses of chickpea (Cicer arietinum) genotypes to drought

stress. Plant Growth Regul. 11, 9–15.
Tian, S., Wang, D., Yang, L., Zhang, Z. and Liu, Y. (2022) A systematic review of

1-Deoxy-D-xylulose-5-phosphate synthase in terpenoid biosynthesis in plants.

Eur. J. Agronomy 96, 221–235.
Todaka, D., Zhao, Y., Yoshida, T., Kudo, M., Kidokoro, S., Mizoi, J., Kodaira,

K.S. et al. (2017) Temporal and spatial changes in gene expression,

metabolite accumulation and phytohormone content in rice seedlings

grown under drought stress conditions. Plant J. 90, 61–78.
Trnka, M., Feng, S., Semenov, M.A., Olesen, J.E., Kersebaum, K.C., Rotter, R.P.,

Semeradova, D. et al. (2019) Mitigation efforts will not fully alleviate the

increase in water scarcity occurrence probability in wheat-producing areas.

Sci. Adv. 5, eaau2406.

Truffault, V., Fry, S.C., Stevens, R.G. and Gautier, H. (2017) Ascorbate

degradation in tomato leads to accumulation of oxalate, threonate and oxalyl

threonate. Plant J. 89, 996–1008.
Varshney, R.K., Barmukh, R., Roorkiwal, M., Qi, Y., Kholova, J., Tuberosa, R.,

Reynolds, M.P. et al. (2021a) Breeding custom-designed crops for improved

drought adaptation. Adv Genet 2, e202100017.

Varshney, R.K., Bohra, A., Yu, J., Graner, A., Zhang, Q. and Sorrells, M.E.

(2021b) Designing future crops: genomics-assisted breeding comes of age.

Trends Plant Sci. 26, 631–649.
Varshney, R.K., Roorkiwal, M., Sun, S., Bajaj, P., Chitikineni, A., Thudi, M.,

Singh, N.P. et al. (2021c) A chickpea genetic variation map based on the

sequencing of 3,366 genomes. Nature 599, 622–627.
Varshney, R.K., Song, C., Saxena, R.K., Azam, S., Yu, S., Sharpe, A.G., Cannon,

S. et al. (2013) Draft genome sequence of chickpea (Cicer arietinum) provides

a resource for trait improvement. Nat. Biotechnol. 31, 240–246.
Weckwerth, W. (2019) Toward a unification of system-theoretical principles in

biology and ecology—the Stochastic Lyapunov matrix equation and its

inverse application. Front. Appl. Math. Stat. 5, 29.

Weckwerth, W., Ghatak, A., Bellaire, A., Chaturvedi, P. and Varshney, R.K.

(2020) PANOMICS meets germplasm. Plant Biotechnol. J. 18, 1507–1525.
Weckwerth, W., Wenzel, K. and Fiehn, O. (2004) Process for the integrated

extraction, identification and quantification of metabolites, proteins and

RNA to reveal their co-regulation in biochemical networks. Proteomics 4,

78–83.

Weiszmann, J., Walther, D., Clauw, P., Back, G., Gunis, J., Reichardt, I.,

Koemeda, S. et al. (2023) Metabolome plasticity in 241 Arabidopsis thaliana

accessions reveals evolutionary cold adaptation processes. Plant Physiol. 193,

980–1000.
Wilson, J.L., Nagele, T., Linke, M., Demel, F., Fritsch, S.D., Mayr, H.K., Cai, Z.

et al. (2020) Inverse data-driven modeling and multiomics analysis reveals

phgdh as a metabolic checkpoint of macrophage polarization and

proliferation. Cell Rep. 30, 1542–1552.e7.
Wu, G., Tian, N., She, F., Cao, A., Wu, W., Zheng, S. and Yang, N. (2023)

Characteristics analysis of early responsive to dehydration genes in

Arabidopsis thaliana (AtERD). Plant Signal. Behav. 18(1), 2105021.

Xu, Y.L., Gage, D.A. and Zeevaart, J. (1997) Gibberellins and stem growth in

Arabidopsis thaliana (effects of photoperiod on expression of the GA4 and

GA5 Loci). Plant Physiol. 114, 1471–1476.
Zhang, L. and Becker, D.F. (2015) Connecting proline metabolism and signaling

pathways in plant senescence. Front. Plant Sci. 6, 552.

Zhang, S., Ghatak, A., Bazargani, M.M., Bajaj, P., Varshney, R.K., Chaturvedi,

P., Jiang, D. et al. (2021) Spatial distribution of proteins and metabolites in

developing wheat grain and their differential regulatory response during the

grain filling process. Plant J. 107, 669–687.
Zhang, S., Ghatak, A., Bazargani, M., Kramml, H., Zang, F., Gao, S., Ramšak, Ž.
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Data S1 Differential Jacobian results and discussion for time

points 1 and 3.

Figure S1 PCA Score plot and PC1 and PC2 top-ranked

metabolites. (a) Harvest 1 and (b) Harvest 3. (a, b) Top 20 scoring

loadings (10 highest and 10 lowest) of PC1 and PC2 are shown by

row for each PCA, bar colours indicate the experimental condition

in which each top-scoring metabolite is more accumulated.

Ellipses showing different colours indicate different experimental

conditions (n= 108 biologically independent replicates).

Figure S2 PLS-DA Score plot and PC1 and PC2 top-ranked

metabolites. (a) Harvest 1, (b) Harvest 2 and (c) Harvest 3. (a, b)

Top 20 scoring loadings (10 highest and 10 lowest) of component

1 and component 2 are shown by row for each PLS-DA, bar

colours indicate the experimental condition in which each top-

scoring metabolite is more accumulated. Ellipses show a 90%

confidence interval. Different colours indicate different experi-

mental conditions (n= 108 biologically independent

replicates).

Figure S3 Primary metabolites identified in chickpea. Bar plots

representing the relative abundance of primary metabolites

measured in chickpea leaves at harvest time point 2. The bar

plots show the average, standard error and each independent

value in circles. The colour of the bar plots represents the

experimental condition (WW, well-watered and DS, drought-

stressed samples).

Figure S4 (a) Harvest 1, and (b) Harvest 3. Hierarchically clustered

heatmap of the 36-chickpea genotypes using the top 20

metabolites with higher loadings in the first component of PLS-

DA. The bi-clustering uses averages linkage of Pearson correlation

distance between chickpea genotypes and metabolites. Meta-

bolic changes are presented as means of three replicates. Colours

indicate increases (red) and decreases (blue).

Figure S5 K-means clustering and chemical family pie chart. K-

means clustering of needle metabolites of each experimental

condition in each harvest time. 63 detected metabolites in all the
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treatments were scaled in each dataset. Metabolites were

grouped in 10 clusters based on the accumulation pattern

occurring during experiment days (19, 24 and 45 DASt). Colours

indicate treatment level: green (WW, well-watered samples) and

yellow (DS, drought-stressed samples). The most intense solid line

shows the mean for each cluster, and the light lines show

individual patterns. Pie charts of each metabolic pathway of

annotated metabolites for each cluster. Different colours indicate

different chemical family (organic acids, amino acids, sugars,

sugars alcohols, amines and unknowns).

Figure S6 mGWAS analysis. Selected Manhattan plots and QQ

plots show association with the metabolites under well-watered

(WW) and drought-stress (DS) conditions in three harvesting time

points (19, 24 and 45 DASt). The black horizontal line in the

Manhattan plots represents the significance threshold of P-

value= 1e–5.
Table S1 (A) Photosynthetic activity under WW and DS in

chickpea genotypes. (B) Seed yield parameters under WW and DS

in chickpea genotypes. (C) Soil water content (%) and plant

height measurements under WW and DS in chickpea genotypes.

(D) Stress Susceptibility Index (SSI) calculation for 36 chickpea

genotypes under WW and DS conditions. G (Genotypes; 1–36),
WW (well-watered) and DS (drought-stressed).

Table S2 (A) The list identified metabolites in Harvest time point 1

and their relative abundance values for each chickpea genotype

and experimental conditions. (B) The list identified metabolites in

Harvest time point 2 and their relative abundance values for each

chickpea genotype and experimental conditions. (C) The list

identified metabolites in Harvest time point 3 and their relative

abundance values for each chickpea genotype and experimental

conditions. (D) Univariate analysis of metabolites. For each

metabolite, mean and standard deviation (SD) are provided.

ANOVA pairwise comparisons were performed for WW and DS

samples at each harvest time point, and P-values obtained after

ANOVA were provided. (E) Chemical family classification table.

Metabolic changes in chickpea leaves along three harvest time

points under well-watered and drought-stressed conditions.

Metabolic changes are presented as relative abundance means

for each treatment. For each chemical family, mean values were

summed. G (Genotypes; 1–36), WW (well-watered) and DS

(drought-stressed).

Table S3 PCA loadings of chickpea genotypes under WW and DS

conditions for three harvesting time points.

Table S4 PLS-DA analysis of chickpea genotypes under WW and

DS conditions for three harvesting time points.

Table S5 Cluster analysis of chickpea genotypes using Kmeans

analysis under WW and DS conditions for three harvesting time

points.

Table S6 List of metabolites included in the differential Jacobian

analysis with their level of identifications.

Table S7 mGWAS analysis. Details of genetic associations

between SNPs and metabolites of chickpea genotypes under

control and drought stress conditions for three harvesting time

points, including gene annotations. H (harvest time point), C

(control) and D (drought).
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