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Melting properties are critical for designing novel materials, especially for discovering high-
performance, high-melting refractory materials. Experimental measurements of these properties are
extremely challenging due to their high melting temperatures. Complementary theoretical predictions
are, therefore, indispensable. One of the most accurate approaches for this purpose is the ab initio
free-energy approach based on density functional theory (DFT). However, it generally involves
expensive thermodynamic integration using ab initio molecular dynamic simulations. The high
computational costmakes high-throughput calculations infeasible.Here,weproposeahighly efficient
DFT-basedmethod aided by a specially designedmachine learning potential. As themachine learning
potential can closely reproduce the ab initio phase-space distribution, even for multi-component
alloys, the costly thermodynamic integration can be fully substituted with more efficient free energy
perturbation calculations. The method achieves overall savings of computational resources by 80%
compared to current alternatives. We apply the method to the high-entropy alloy TaVCrW and
calculate itsmelting properties, including themelting temperature, entropy and enthalpy of fusion, and
volume change at the melting point. Additionally, the heat capacities of solid and liquid TaVCrW are
calculated. The results agree reasonably with the CALPHAD extrapolated values.

Discovering novel high entropy alloys (HEAs) with exceptional perfor-
mance has ushered in a new era for materials design1–3. The melting tem-
perature is a crucial parameter in the search for suchmaterials. For instance,
a correlation between a high melting point and elevated temperature
strength has been identified in refractory complex concentrated alloys4.
Besides themelting temperature, othermelting properties, such as enthalpy
and entropy of fusion, and volume change at the melting point, are also
crucial for constructing phase diagrams and developing novel materials.
However, experimental measurements on these properties, even for unary
refractorymaterials, face severe challenges due to highmelting points, often
resulting in very scattered experimental data, if available at all. Additionally,
the vast compositional space of HEAs makes systematic experimental
screening of promising candidates impractical.

Several computational methods for melting point predictions have
been developed using empirical potentials, machine learning potentials,
and density functional theory (DFT)5–7. Calculations on other melting
properties, such as entropy and enthalpy of fusion, volume expansion
from solid to liquid at the melting point, and thermodynamic properties
of the liquid phase (especially the liquid heat capacity), are, however,
limited. They require access to the free energy surface of both solid and
liquid, including all relevant physical contributions, such as vibrational
entropy, including the anharmonic contribution, and electronic
entropy, including the electron-vibration coupling. These physical
contributions significantly impact the thermodynamic properties of
both the solid and liquid phases, thereby affecting the predicted melting
properties8–10.
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One approach, capable of including these contributions and con-
sidered a gold standard for such calculations due to its high accuracy, is the
ab initio free energy approach within the DFT framework11–17. In this
approach, Gibbs energies of the solid and liquid phases are explicitly cal-
culated, and the crossing point of the solid and liquid Gibbs energies
determines the melting point. The solid and liquid thermodynamic prop-
erties can also be extracted from the Gibbs energies. However, achieving a
high accuracy entails a significant computational cost, primarily due to the
typically involved expensive ab initio molecular dynamics (MD)
simulations.

Methods for speeding up ab initio solid free energy calculations have
been under active development. A recent advancement in this direction is
based on dedicated machine learning potentials to entirely avoid the costly
ab initio MD calculations18,19. The ab initio accuracy is then achieved by
performing static DFT calculations on a few snapshots generated by the
machine learning potential using free energy perturbation theory20. This
approach is called “direct upsampling" and has shown significantly
improved computational efficiency compared to the previous ab initioMD-
based approaches using thermodynamic integration3,21,22.

For ab initio liquid free energy calculations, due to the randomly dis-
tributed positions of the atoms, a static lattice reference is missing. There-
fore, the liquid free energy calculation relies ondesigning a good reference to
closely reproduce the ab initio liquid phase space and on performing
thermodynamic integration calculations based on ab initio MD. A recent
development for speeding up the liquid free energy calculations is the TOR-
TILD (two-optimized reference thermodynamic integration using Langevin
dynamics) methodology16. It has demonstrated remarkable efficiency for
calculating elemental materials and binary alloys10,16,17 by employing two
specially designed EAM potentials as references. However, when going to
multi-component alloys, its computational speed significantly slows down.
The reason is that the large compositional space of multi-component alloys
results in many different atomic structures. The requirements to fit an
efficient reference to reach the same accuracy as for unary systems are thus
more critical. In this case, EAM potentials lose their power to accurately
describe the ab initio liquid system.

Here, we propose an efficient ab initio based approach for liquid free
energy calculations inspired by direct upsampling for solid phases. A key
ingredient to the proposed approach is a specially designed machine-
learning interatomic potential. This potential can be any machine learning
model as long as it shows excellent performance regarding accuracy and
efficiency, e.g., the recently developed atomic cluster expansion (ACE)
potentials23 or moment tensor potentials (MTPs)24,25. In the present work,
MTP is used. As the phase-space distribution of the specially designedMTP
closely overlaps with the ab initio distribution for the liquid, even for multi-
component materials, it becomes possible to entirely skip the expensive ab
initio MD simulations and directly up-sample to the DFT level using a few
snapshots from the MTP generated trajectories based on free energy
perturbation.

We use the TaVCrW HEA as a prototype system to demonstrate the
performance of the proposed methodology. We compare the respective
results with those obtained from the original TOR-TILDmethod using two
EAMpotentials and a hybridTOR-TILDapproachwithoneEAMpotential
and one MTP. The free energy and thermodynamic properties of solid
TaVCrW are computed using the direct upsampling approach. Combining
the thermodynamic properties of solid and liquid TaVCrW, the melting
properties of TaVCrW are obtained and compared to available CALPHAD

data, including the heat capacity and bulk modulus of the liquid phase.
GGA-PBE and LDA exchange-correlation functionals are used, and their
performance in predicting melting properties for the TaVCrW alloy is
discussed.

Results
General overview of the methodology
A key ingredient to the proposed methodology is an optimized machine-
learning potential (here, anMTP) that replaces one of the two classical EAM

potentials utilizedwithin theTOR-TILDmethod16. This replacement allows
us to remove the computationally very expensive DFT-based thermo-
dynamic integration and to replace it with efficient free-energy perturbation
theory. This is possible because of the high accuracy of the MTP, which
provides a similar phase-space distribution as DFT and thus facilitates a
quick convergence within free-energy perturbation calculations. It is
important that only one of the classical potentials is replaced by the MTP.
The other classical EAM potential is needed in order to guarantee efficient
coexistence calculations, as MD calculations using such classical potentials
are generally 30–50 times faster than those using machine learning poten-
tials. In particular, coexistence calculations require large supercells, long
sampling times, and many statistically independent runs in order to guar-
antee a precise melting point prediction. However, they do not need to be
accurate (i.e., close to DFT) because, in the later steps of the proposed
method, accuracy is restoredby thermodynamic integration to theMTPand
perturbation theory toDFT.Overall, we achieve an optimized hierarchically
structured approach that profits fromboth the accuracyofmachine learning
potentials and the speed of classical potentials.

The proposed approach is contrasted with the original TOR-TILD
method and with a hybrid TOR-TILDmethod in Fig. 1. The original TOR-
TILD method is additionally labeled as EAM+EAM+TI, indicating the
usage of two classical EAM potentials (one for the coexistence calculations
and one for the optimized description of the liquid) and thermodynamic
integration (TI) to reach DFT accuracy. The hybrid TOR-TILD method is
also labeled by EAM+MTP+TI to indicate the replacement of the liquid
EAM by the MTP, while the thermodynamic-integration step is preserved.
We introduce this hybrid TOR-TILDmethod here to facilitate a systematic
comparison of themethods and a systematic investigation of the achievable
time savings (Section “Efficiency and accuracy”). Finally, the newmethod is
labeled by EAM+MTP+FEP, clarifying the additional replacement of the
expensive thermodynamic integration by free energy perturbation (FEP)
theory. Following the respective columns in Fig. 1, one can identify the steps
that are modified with respect to the original TOR-TILD method (gray→
light blue→ blue). For the newly proposedmethod, the workflow is further
emphasized by the subfigures (a) to (f).

The key equation of the new approach expresses the target free energy
of the liquid Fliquid as:

F liquidðV;TÞ ¼ F liquid
EAM þ ΔFliquid

EAM!MTP

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{at Vm;liquid
EAM ;Tm

EAM

� �

þΔF liquid
MTP ðV;TÞ þ ΔF liquid

MTP!DFTðV ;TÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
on a ðV ;TÞmesh

:
ð1Þ

The first term F liquid
EAM describes the liquid free energy of the classical EAM

potential, the one that is retained in the proposed method and that works as
the initial reference. The computation of this free-energy term is the same as
in theoriginalTOR-TILDmethodvia the interface (aka coexistence)method
(Fig. 1a), thermodynamic integration for the solid from a quasiharmonic
reference to the EAM (Fig. 1b and Eq. (2)), and the equality of the solid and
liquid Gibbs energies at the melting point. The second term ΔF liquid

EAM!MTP is
the difference between the EAM potential and MTP. In the original TOR-
TILD method, the second potential is a classical EAM potential, but is
replaced here by a machine learning potential, i.e., MTP. The difference
ΔF liquid

EAM!MTP can be very efficiently obtained by thermodynamic integration
(Fig. 1c and Eq. (3)), which has fewer requirements with respect to system
size and time sampling than the interface method. Both of the terms Fliquid

EAM
andΔF liquid

EAM!MTP are calculated at themelting temperature and correspond-
ing volume of the EAM potential, Tm

EAM and Vm;liquid
EAM . The next term in

Eq. (1), ΔF liquid
MTP ðV ;TÞ, unfolds the liquid free energy surface in the volume

and temperature dimensions. For that purpose, integration of the internal
energy and pressure along the temperature and volume axis is performed
(Fig. 1d and Eqs. (4), (5)). As for thermodynamic integration, also this
calculation step has fewer requirements with respect to system size and time
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sampling than the interface method. The last term ΔFliquid
MTP!DFT corrects the

free energy obtained by the MTP potential to DFT accuracy. In the original
TOR-TILDmethod, a thermodynamic integration is required in this last step
because, in general, the accuracy of classical potentials is not enough to

guarantee a converged perturbative approach. In the here proposedmethod,
we can instead rely on free energy perturbation (Fig. 1e and Eq. (6)) for this
term because of the sufficiently high accuracy of theMTP. The utilizedMTP
is a conventional machine-learning potential, i.e., one that captures the

Fig. 1 | Schematic of the proposed method for liquid free energy calculations in
comparison to TOR-TILD. Steps modified with respect to the original and hybrid
TOR-TILD method are marked in light and dark blue, respectively. The workflow
for the new approach is emphasized in (a)–(f). a Shows the solid-liquid interface
structure used for predicting the melting point of the EAM and the resulting
Gaussian distribution of the melting points. b, cDepict thermodynamic integration
from an effective quasiharmonic (QH) reference to EAM and from EAM toMTP at
the predicted melting point. d Represents the MTP liquid free energy surface

calculated via integration of the internal energy and pressure along the temperature
and volume dimensions starting from the free energy value (gray dot) obtained in
(c). e Displays the MD trajectory of MTP (black line) and DFT snapshot energies
(red dots) with their Gaussian distributions and mean values (dashed lines). f Is the
DFT liquid free energy surfacewith theDFTdata pointsmarked by black crosses. See
“Methods” section for additional details. gCompares the computational efficiency of
the three methods.
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vibrational degrees of freedombut not the electronic ones. Future extensions
with the recent electronic MTPs26 are possible but beyond our scope. The
electronic contribution and the important impact of vibrations on it are,
nevertheless, fully included in the present method by employing finite
temperature DFT within the perturbation calculations. The final free energy
surface (Fig. 1f) allows us to extract DFT accurate melting properties.

It is important to stress that theMTP involved in the proposedmethod
is solely optimized for an accurate description of the part of the DFT phase
space representative of the liquid. It is not guaranteed that this MTP is
transferable to other parts of theDFT phase space. TheMTP functions only
as a very efficient bridge to obtain DFT-accurate thermodynamics of the
liquid phase.

Efficiency and accuracy
The key of the proposed approach is the highly optimized MTP that pro-
vides a strongoverlapwith thephase spacedistributionof the ab initio liquid
(see Fig. 1e). This overlap enables more efficient free energy perturbation
calculations and avoids the computationally expensive thermodynamic
integration calculations based on ab initio MD. To achieve DFT accuracy,
the energy difference between the MTP and the ab initio liquid can be
computed using Eq. (6), leveraging a few uncorrelated snapshots from the
MD trajectories of theMTP.The number of required snapshots depends on
the root-mean-square error (RMSE) of the MTP, following the relation
(2RMSE/c)2, where ± c represents the target accuracy. This relationship has
been tested and discussed in detail in ref. 19. According to the RMSE of the
MTP (here 2.6meV/atom forGGA-PBE calculations), to attain an accuracy
of 1 meV/atom, only approximately 28 uncorrelated snapshots are needed,
as depicted in Fig. 2a.

We compare the computational effort of the proposed approach to the
original and hybrid TOR-TILD method (cf. Section “General overview of
themethodology”). Tohave a consistent comparison, thefirst potential in all
three approaches is fitted to solid DFT energies with low-converged DFT
parameters; the second potential in both TOR-TILD methods is fitted to
liquid DFT energies with low-converged DFT parameters while high-
converged DFT parameters are taken for the second potential in the new
approach. The required CPU core hours for the three approaches in fitting
the potentials and computing a liquid free energy surface on a 5 × 6 (V, T)
grid are listed in Table 1, broken down according to the steps described in
Section “Details of themethodology”. Compared to the original TOR-TILD
method, the proposed approach is about 20 times faster in the total CPU
time. This substantial boost in efficiency stems from the reduction in CPU
core hours in Step 4 on computing the black trajectories in Fig. 1e, from
5,526,720 to only 23CPU core hours, even though the computing efficiency
experiences a slight slowdown in Step 2 (Fig. 1c) and Step 3 (Fig. 1d) where
MTP calculations are involved. The overall acceleration is attributed to
substituting EAM with MTP and TI with FEP. When comparing the new
approach with the hybrid TOR-TILD method, the required computational
resources are saved by about 80% in calculating a free energy surface on a

5 × 6 (V, T) grid. Note that the saving factor increases with the number of
(V, T) sampling points. Especially for accurately determining the heat
capacity, a densermeshof the free energy surface is generally required, as the
heat capacity is related to the second derivative of the Gibbs energy with
respect to temperature. The computational efficiency of the three approa-
ches is also illustrated in (Fig. 1g).

The proposed methodology can achieve the same level of ab initio
accuracy as the original and hybrid TOR-TILD methods. The energy
differences between the MTP and DFT computed by free energy
perturbation and thermodynamic integration are relatively small
(0.5 meV/atom), as shown in Fig. 2a, b. They result from the chosen
convergence accuracy of 1 meV/atom for the thermodynamic
sampling in thermodynamic integration and free energy perturbation.
These energy differences result in a comparably small melting point
shift of 15 K.

Electronic contribution and its coupling to vibrations
To analyze the effect of electronic excitations and their coupling to vibra-
tions on the melting properties of TaVCrW, we focus on the DOS of the
solid and liquid at 2400 K at the respective equilibrium volume. The GGA-
PBE results are plotted in Fig. 3. The DOS of the ideal static lattice at 0 K,
with a consistent electronic temperature of 2400 K, is also provided as a
reference (depicted by the black dashed line in Fig. 3). This representation
highlights how thermal vibrations smoothout theDOSof both the solid and
liquid phase at elevated temperatures.

Fig. 2 | Free energy difference between MTP and
DFT using GGA-PBE for liquid TaVCrW at T =
2400 K and V = 16.24 Å3/atom. a Calculated from
free energy perturbation. b Calculated from ther-
modynamic integration. The “reference value” cor-
responds to the free energy difference computed as
the area under the blue line in (b), which is a linear fit
of the five blue dots. The resulting energy difference
between the free energy perturbation and the ther-
modynamic integration approach is only 0.5
meV/atom.

Table 1 | CPU time in core hours needed by the original and
hybrid TOR-TILD method and the newly proposed approach
for computing the ab initio free energy surface of liquid
TaCrVW on a 5 × 6 (V, T) grid using LDA

Original Hybrid New

potential
fitting

t(solid EAM) 15,360 15,360 15,360

t(liquid EAM) 15,360 – –

t(liquid
lowMTP)

– 15,360 15,360

t(liquid
highMTP)

– – 36,000

free energy
calculation

t(Step 1) 630 630 630

t(Step 2) 25 110 110

t(Step 3) 52 2319 2319

t(Step 4) 5,526,720 990,960 23

t(Step 5) 360,000 360,000 216,000

t(total) 5,918,147 1,384,739 285,802

The time for fitting the potentials is also listed and included in the total time. Steps 1–5 are defined in
Section “Details of the methodology”.
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The electronic contribution to the free energy of solid and liquid
differs. This disparity results from a gap of 0.16 states/eV ⋅ atom in the
DOS of solid and liquid phases at the Fermi level. Correspondingly, this
gap translates to an electronic Gibbs energy difference of 4.2 meV/atom
between the solid and liquid, leading to a shift in the melting point by 48
K compared to calculations that do not account for the electronic con-
tribution. For the LDA calculations, the electronic Gibbs energy dif-
ference between solid and liquid is about 5.8 meV/atom resulting in a
melting point shift by 57 K.

Melting properties
Unlikeunarymaterials, alloys typically exhibit adistinct solidus and liquidus
temperature, resulting in amelting interval with upper (liquidus) and lower
(solidus) limits, where both solid and liquid phases coexist. Here, the
melting point we investigate is the crossing point of the solid and liquid
Gibbs energy, called T0 within the CALPHAD community.

As there are no experimental melting properties for TaVCrW
available for a comparison with our DFT results, we extrapolate the
melting properties of TaVCrWusing the CALPHADmethodwith Thermo-
Calc 2023a27. The recent high entropy alloy TCHEA4 database28 is uti-
lized which, however, only includes binary descriptions for the sub-
systems in the Ta-V-Cr-W quaternary system. This is understandable
given the lack of adequate experimental ternary phase diagram infor-
mation. While no general rules exist for assessing the uncertainty of a
CALPHAD calculation based on binary system extrapolation, the successful
applications of the TCHEA database and its predecessor, TCNI, in
designing refractory high entropy alloys29–34 indicate the reliability of the
database.

Figures 4 and 5 depict the temperature dependence of the Gibbs
energy (G), entropy (S), volume (V), enthalpy (H), heat capacity (CP),
and bulkmodulus (B) for solid (black line) and liquid (red line) TaVCrW
from GGA-PBE and LDA. The Gibbs energies are referenced to the
internal energy of solid TaVCrW at T = 0 K. Table 2 compiles the
resulting melting properties for GGA-PBE and LDA in comparison to
the CALPHADmethod. Our DFT predictedmelting points fromGGA-PBE
and LDA are respectively 2376 K and 2409 K. Both values are lower than
the CALPHAD value of 2569 K, but still within themelting interval between
2335 K (solidus) and 2805 K (liquidus) extracted from the CALPHAD

method. Our predicted enthalpy of fusion, the entropy of fusion, the heat
capacity of both solid and liquid, and the volume change at the corre-
sponding melting point are slightly larger than the CALPHAD values,
whereas the predicted volumes for solid and liquid are smaller than the
CALPHAD values. Note that the temperature dependence of the bulk
modulus for both solid and liquid is also easily accessible with our
approach, as shown in Figs. 4f, 5f, where the solid bulkmodulus is higher
than the liquid one at the correspondingmelting point by 31.6 GPa from
GGA-PBE and 27.9 GPa from LDA. The existing database within
Thermo-Calc does not contain data for bulk modulus for comparison.

Notably, even though the absolute values of the thermodynamic
properties for both the solid and liquid are different betweenGGA-PBE and
LDA, the temperature dependence is similar, as shown in Figs. 4, 5, which is
consistent with our previous finding for tungsten10.

Configurational entropy and impact of short-range order
We assume ideal mixing of the elements for the solid and liquid free energy
calculations. To quantify the degree of short-range order and its possible

Fig. 4 | Temperature dependence of thermodynamic properties of solid and
liquid TaVCrW fromGGA-PBE calculations. aGibbs energy (G), (b) entropy (S),
(c) volume (V), (d) enthalpy (H), (e) heat capacity (CP), and (f) bulk modulus (B).

The yellow lines in (a), (b), and (d) represent the solid Gibbs energy, entropy, and
enthalpy, including the SRO contribution, which slightly stabilizes the solid phase
and results in a higher melting point of 2397 K.

Fig. 3 | The electronic density of states (DOS) of TaVCrW referenced to the
Fermi level.The blue and red lines are, respectively, the DOSs of the solid and liquid
at 2400 K and the corresponding equilibrium volume, including the electron-
vibration coupling. These DOSs are calculated from a statistically converged set of
uncorrelated snapshots. The blue/red shaded areas show the standard deviation
from the different snapshots. The black dashed line is for the ideal static lattice at 0 K
with an electronic temperature of 2400 K. All DOSs shown here are computed using
GGA-PBE.
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impact, we performed simulations employing on-lattice machine learning
potentials, namely the low-rank potentials, see Section “Short-range order
calculations” for the technical details. We focus on the high-temperature
regime of 2200–2500K as in Fig. 4, relevant formelting properties. To allow
for efficient computation, we have chosen a temperature of 2260K, which is
about 100 K below the GGA-PBE computedmelting temperature, to fix the
volume and electronic free energy contributions.

We computed the configurational part of the internal energy, ΔU solid
conf ,

entropy, ΔSsolidconf , and free energy, ΔFsolid
conf referenced to the ideal random

alloy. These quantities allow for a direct evaluation of the impact of SRO as
compared to the ideal random alloy assumption. The internal energy is
directly accessible via the Monte Carlo simulations. The entropy con-
tribution is computed by integrating the heat capacity from high tem-
peratures downwards35.

Due to SRO, the configurational entropy is slightly smaller than the
ideal configurational entropy of lnð4Þ. It, therefore, results via −TS in a
positive (destabilizing) entropy-driven energy contribution of around 5–6
meV/atom. However, SRO also decreases the internal energy by about 8–9
meV/atom (Fig. 4d). Hence the resulting free energy of the solid is overall
stabilized by about 2.4 meV/atom, Fig. 4a, resulting in a slight shift of the
melting temperature as discussed further below.

Discussion
Ahierarchical approach for efficient calculations of the liquid free energy of
high entropy alloys with ab initio accuracy has been introduced. The
approach integrates EAM, MTP, and DFT to achieve progressively
increasing accuracywhilemaintainingmaximally optimized computational
speed. This combination improves the overall computational efficiency by
saving 80% of the computational resources as compared to similarly accu-
rate methods while retaining accuracy in the sub-meV range. The primary
innovation lies in leveraging the advantages of MTP and replacing the
expensive thermodynamic integration with free energy perturbation cal-
culations. The substantial reduction in computing effort makes the
approach attractive for high-throughput calculations of melting properties
of multi-component alloys with ab initio accuracy.

The approach has been applied to the bcc refractory high entropy
alloy TaVCrW, for which currently no experimental data of melting
properties exist. The results obtained with the new method align closely
with those from the TOR-TILD methodology (deviations < 0.5 meV/
atom). To put the predicted properties into perspective, we have com-
pared the data with those computed with the CALPHAD method using
Thermo-Calc 2023a. Both our DFT predictions are below the CALPHAD

extracted value (2569K) by 193K forGGA-PBE and 160K for LDA. This
discrepancy is not a direct shortcoming of the proposed methodology
since the established TOR-TILD method, which does not rely on free
energy perturbation and can be considered as a higher-level reference,
gives the same results. To further support this statement, we have per-
formed an additional benchmark for the VW system. The VW system is
simpler than the present TaVCrW alloy, the available CALPHAD data are
very reliable, and its melting properties have been intensively assessed
previously10. The benchmark for VW leads to the same conclusion, i.e.,
that the here proposed method does not introduce any additional
uncertainty into the results. Hence, the observed discrepancy between
CALPHAD and DFT must be of a different nature. A few uncertainties that
may contribute to this discrepancy are listed in the following.

First, for the CALPHAD extractedmelting point, the input data in the high
entropy alloy database for parametrization includes only sub-binary alloy
information for TaVCrW. Although direct evidence for the uncertainty of
the CALPHAD predictedmelting point of the TaVCrWalloy is lacking, we can
reasonably speculate that the error is within ± 100 K, based on comparing
CALPHAD predicted values with those from experimental and theoretical data
for similar refractory alloy systems34,36,37.

Table 2 | Melting properties of TaVCrW calculated with GGA-
PBE and LDA compared to those extracted from the CALPHAD

method

GGA-PBE LDA CALPHAD

Tm (K) 2376 2409 2569

ΔHm (kJ/mol) 25.9 25.6 23.8

ΔHm (meV/atom) 268.5 265.5 246.3

ΔSm (J/(mol K)) 10.9 10.63 9.25

ΔSm (kB/atom) 1.31 1.28 1.11

Cm
P;solid (J/(mol K)) 43.45 45.39 42.58

Cm
P;liquid (J/(mol K)) 43.84 44.99 43.55

ΔVm (Å3/atom) 0.64 0.54 0.51

Vm
solid (Å3/atom) 16.02 15.02 16.37

Vm
liquid (Å3/atom) 16.66 15.56 16.88

Fig. 5 | Temperature dependence of thermodynamic properties of solid and
liquid TaVCrW from LDA calculations. a Gibbs energy (G), (b) entropy (S), (c)
volume (V), (d) enthalpy (H), (e) heat capacity (CP), and (f) bulk modulus (B). The

yellow lines in (a), (b), and (d) represent the solid Gibbs energy, entropy, and
enthalpy, including the SRO contribution, which slightly stabilizes the solid phase
and results in a higher melting point of 2431 K.
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Second, for the DFT calculations, the estimated error in the computed
Gibbs energy arising from statistics and fitting is about 2.5 meV/atom for
both the solid and liquid. For the free energy approach, an error of 1 meV/
atom in either solid or liquid phase would introduce a ~10 K shift in the
melting point prediction. We, therefore, estimate the maximum numerical
error in the DFT predicted melting points as ±50 K.

Third, high-temperature magnetic fluctuations have not been inclu-
ded. Cr and V, for example, are treated as non-magnetic elements at the
investigated temperature range. We have performed additional spin-
polarized test calculations using GGA-PBE based on high-temperatureMD
snapshots, revealing a negligible impact. However, it was reported that
standard DFT employing GGA-PBE or LDA fails to account for strong
magnetic fluctuations in bcc Cr38. More elaborate treatment of magnetism
may resolve this issue, which is, however, beyond the scope of the
present work.

Fourth, the SRO contribution to the solid Gibbs energy stabilizes the
solid phase by 2–3 meV/atom at Tm. This contribution is relatively small
because themelting temperature is nearly twice the chemical order-disorder
temperature39. The effect on the calculated melting temperature is
approximately 25 K.While SRO contributions may have a more significant
impact in alloys with strong ordering and greater SRO near the melting
temperature, SRO does not significantly affect the computation of the
melting temperature in the current alloy.

Overall, considering the discussed uncertainty of the CALPHAD extra-
polated value and the accumulated possible uncertainties from the DFT
predictions, we achieve a reasonable agreement for themelting temperature
value of bcc TaVCrW.

Apart from the quantitative comparison, a crucial merit of the
approach is that it provides physical insights into how different thermal
contributions affect the melting properties of materials, in particular, the
electronic excitations and their coupling to lattice vibrations. Inourprevious
work10,weobserved a significant impact of electronic excitations in tungsten
resulting in a large melting point shift (178 K for GGA-PBE and 158 K for
LDA). In the present work, given that tungsten constitutes 1/4 of the
investigated TaVCrW alloy, the induced change in melting point is smaller
but still significant (48 K for GGA-PBE and 57 K for LDA) and again
highlights the necessity to include the electronic contribution into melting
point considerations.

The efficiency of the approach allows us also to evaluate the per-
formance of different exchange-correlation functionals on melting
property predictions within the DFT framework, which would be
otherwise a computationally much more challenging task. Our previous
works10,16,17 have shown that GGA-PBE and LDA provide an ab initio
confidence interval for the experimental melting points, i.e., GGA-PBE
predicts a lower melting boundary and LDA a higher melting boundary,
as shown in Fig. 6. The reason is attributed to the underbinding / over-
binding property of GGA-PBE / LDA. For TaVCrW, using the CALPHAD

value as a proxy for the experiment, this empirical rule seems to not hold
anymore.However, this does not necessarily invalidate this rule but could
be related to the aforementioned uncertainties in the CALPHAD value. To
elucidate this point further, we considered the performance of the
exchange-correlation functionals for the equilibrium lattice constants at
T = 0 K. Already for the pure elements, the underbinding / overbinding
tendency of GGA-PBE / LDA, which generally predicts larger / smaller
equilibrium lattice constants compared to experimental values for most
unaries, does not hold for unary V10,40,41 and Cr41,42 anymore, where both
GGA-PBE and LDA predict smaller equilibrium lattice constants atT = 0
K. This discrepancy may propagate into the here-considered TaVCrW
multi-component alloy. It would be therefore instructive tofirst elaborate
on different methods (e.g., dynamical mean-field theory), capable of
resolving theT=0Kdiscrepancies for the unaries10,43,44, before employing
these computationally more expensive approaches for melting point
calculations. We also note that other DFT treatments can be integrated
into the proposed free energy perturbation approach since it requires
only the computation of energies but not forces.

The proposed method offers a computationally efficient (80% of
resource savings) and highly accurate (within the sub-meV range) way to
determine themelting properties ofmulti-component alloys. Themethod is
thus an alternative to challenging and not always feasible experiments as
well as to rough estimates based on linear averages of unary properties.
Moreover, it can be also used as an accurate reference for designing
machine-learning potentials, which could provide a more approximate but
faster alternative for screening the compositional space. In any case, being
able to explore melting properties for a wide range of compositions in
chemically complex alloys provides valuable opportunities for materials
design.

Methods
Details of the methodology
We sketch the entire workflow of the proposed method in five steps and
compare the steps to those of the original TOR-TILD method.

Step 1: The first step remains the same as in the original TOR-TILD
method. We apply the interface method45, also called coexistence
approach, to compute the melting temperature of the EAM, Tm

EAM. The
employed interface structure is shown in Fig. 1a. The efficiency of EAM
allows us to perform calculations on sufficiently large supercells and long
timescales. Here, a 16 × 16 × 32 supercell (16,384 atoms) is used for
TaVCrWwith the simulation time up to 50 pswith a timestep of 1 fs. The
simulations are carried out with our previously developed automated
pyiron workflow5. Determining the melting point of an empirical
potential with high precision requires performing a few tens of calcu-
lations with different initial random seeds. The resulting statistical dis-
tribution of melting points closely resembles a Gaussian function, and
the mean is used as a precise prediction, as shown in Fig. 1a. The cor-
responding standard error is well below 1 K and can be neglected in the
final DFT melting point prediction.

At Tm
EAM the volume of solid, Vm;solid

EAM , and the volume of liquid,
Vm;liquid

EAM , are respectively computedbyNPTMDsimulations using theEAM
potential. The solid free energy Fsolid

EAM(V
m;solid
EAM ;Tm

EAM) is then calculated by
thermodynamic integration from an effective quasiharmonic (QH) refer-
ence (computed in ref. 18) through

Fsolid
EAM Vm;solid

EAM ;Tm
EAM

� �
¼ Fsolid

QH ðVm;solid
EAM ;Tm

EAMÞ

þ
Z 1

0
dλ Esolid

EAM � Esolid
QH

D E
λ;Tm

EAM

;
ð2Þ

Fig. 6 | Performance of the standard exchange-correlation functionals GGA-PBE
and LDA in predicting themelting point.TheDFT data for Cu are from ref. 16, for
Al and Ni from ref. 17, for V, VW, and W from ref. 10. The black bars indicate the
experimental melting points. The gray and light gray bars are the melting points
extrapolated from the CALPHADmethod (crossing points of the liquid and solid Gibbs
energy corresponding to T0 used in the CALPHAD community). Explicit experimental
melting data is available for binary VW (gray bar). In contrast, for TaVCrW the
extrapolated melting point from the CALPHAD method (light gray bar) is an
approximate theoretical prediction based on available binary alloys in the database.
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as shown in Fig. 1b. Here, 〈…〉λ,T denotes the thermodynamic average at
a temperature T and coupling λ. A simple Einstein model has been also
tested as a reference. The difference in free energy between an effective
QH and an Einstein reference is only 0.7 meV/atom, indicating that
using different references at this stage has a negligible impact on
computational accuracy. Once Fsolid

EAMðVm;solid
EAM ;Tm

EAMÞ is obtained,
Fliquid
EAM (Vm;liquid

EAM ;Tm
EAM) is simultaneously available based on the relation

G(P,V) = F(V,T)+PV and the fact that the liquidGibbs energy equals to
the solid one at themelting point and constant pressure (hereP = 0GPa).
Note that the melting properties at different pressures can be easily
accessed by adding the PV term to the Helmholtz energies.

Step 2: In this step using Fliquid
EAM (Vm;liquid

EAM ;Tm
EAM) from Step 1 as a

starting point, the liquid free energy of the MTP is obtained by performing
thermodynamic integration through

Fliquid
MTP Vm;liquid

EAM ;Tm
EAM

� �
¼ Fliquid

EAM Vm;liquid
EAM ;Tm

EAM

� �

þ
Z 1

0
dλ Eliquid

MTP � Eliquid
EAM

D E
λ;Tm

EAM

;
ð3Þ

as demonstrated in Fig. 1c. MTP is involved in this step compared to the
original TOR-TILD using two EAMs.

Step 3: In this step, using Fliquid
MTP (Vm;liquid

EAM ;Tm
EAM) from Step 2

as a starting point, we unfold the liquid free energy surface of the
MTP by integrating the pressure P(V, T) along the volume dimension
using

Fliquid
MTP V;Tm

EAM

� � ¼ Fliquid
MTP Vm

EAM;T
m
EAM

� �
þ
Z V

Vm
EAM

P V 0;Tm
EAM

� �
dV 0;

ð4Þ

and integrating the internal energy U(V, T) along the temperature dimen-
sion using

FliquidMTP ðV ;TÞ
kBT

¼ FliquidMTP V ;Tm
EAMð Þ

kBT
m
EAM

þ
Z T

Tm
EAM

d
1
T 0

� �
UðV;T 0Þ;

ð5Þ

where kB is the Boltzmann constant. This step is illustrated in Fig. 1d. Here,
the MTP fully substitutes EAM compared to the original TOR-TILD
method. As applying MTP is much slower than using EAM, a relatively
small but still converged supercell size of 12 × 12 × 12 (3456 atoms) is
employed instead of a supercell size of 16 × 16 × 16 (8192 atoms) when
using EAM.

Step 4: In the original (and hybrid) TOR-TILD method, this step
requires ab initio MD simulations for the thermodynamic integration cal-
culations at various λ values, volumes, and temperatures. In the present
method, only MTP MD simulations are carried out to generate the trajec-
tories at a set of volumes and temperatures (the black line in Fig. 1e). The
applied supercell size is 4 × 4 × 4 (128 atoms) and the same as used for the
DFT calculations in Step 5. Here, the computational effort is tremendously
reduced by a magnitude of 104 in CPU core hours compared to the hybrid
TOR-TILD, see Table 1.

Step 5: In this last step, ab initio accuracy is achieved.We use the set of
uncorrelated snapshots from the MTPMD trajectories generated in Step 4
to calculate the change in free energy from MTP to DFT with high con-
verged parameters via perturbation theory. The respectiveDFT energies are
represented by the red dots in Fig. 1e. The free energy differencebetween the
MTP and DFT can be calculated using

ΔF liquid
MTP!DFT ¼ �kBTln e�

1
kBT

ðEDFT�EMTPÞ
D E

MTP
; ð6Þ

where EDFT and EMTP are the energies of the snapshots obtained with DFT
and MTP, respectively. Importantly, the variance of the difference in these
energies is very small, and the free energy in Eq. (6) converges quickly. This
highlights the high quality of the MTP for performing free energy pertur-
bation calculations. The electronic contribution and the impact of atomic
vibrations on it are included by utilizing finite temperature DFT for com-
puting EDFT, i.e., by setting the electronic temperature equal to the MD
temperature. The resulting change in the energy only introduces a constant
shift but neither affects the variance nor the convergence of the free energy.

In the original (and hybrid) TOR-TILD method, free energy pertur-
bation theory is also applied, in the sense of the up-sampling technique21, in
order to correct the free energy computed with low-converged DFT para-
meters to high-converged parameters. Note that this step in the original
(and hybrid) TOR-TILDmethod is done in addition to the thermodynamic
integration involving the DFT-based MD.

Potential fitting: EAM and MTP
We utilized the MEAMfit code46 for fitting the EAM potential. The EAM
was fitted only to the solid DFT energies from ab initio MD trajectories
computed with low-converged DFT parameters (cutoff energy of 300 eV
and k-mesh of 2 × 2 × 2). Four volumes from the relevant volume range
were selected for generating the training data at 2500 K. This potential was
used in Steps 1 and 2. The interface MD calculations, including the liquid,
are stable, even though the EAM was fitted only to the solid phase. An
accurate (with respect to DFT) prediction of the EAMmelting point is not
required due to the following corrections to MTP and DFT.

For fitting theMTP,we employed theMLIP package47 implemented in
pyiron48 within the potential fitting module49. We employed a two-stage
fitting procedure to optimize efficiency. First, we fitted a low-quality MTP
with level 20 (lowMTP) to liquid ab initio MD trajectories computed with
low-converged DFT parameters, the same as used for fitting the EAM. The
fitting temperature was 2500 K, and five volumes from the relevant volume
range were selected. The lowMTP was then used to generate new MD
trajectories at the same temperature and volumes, followed by static DFT
calculations with high-converged DFT parameters (cutoff energy of 450 eV
and k-mesh of 4 × 4 × 4) for a set of uncorrelated MTP MD snapshots.
Second, we fitted a high-quality MTP with level 24 (highMTP) using the
DFT energies from the static DFT calculations in the preceding step. The
RMSE of the highMTP for the GGA-PBE liquid calculations is 2.6 meV/
atom, which is similar to 2.4 meV/atom obtained previously for solid
TaCrVW18. The highMTP was used in Steps 2, 3, and 4.

Short-range order calculations
To analyze the short-range order in the solid, we utilized low-rank intera-
tomicpotentials (LRP)50,51 as an interactionmodel in canonicalMonteCarlo
(MC) simulations. The LRPs belong to a class of on-lattice machine-
learning potentials and have been proven to perform very efficiently for
computing SROparameters inmulti-component alloys35,52–55.We evaluated
different ranks and have chosen a rank of 3 for the final evaluation. The
training was performed on 128-atom cells by training a set of ten inde-
pendent potentials to evaluate the uncertainty. During the iterative
retraining process, 324 and 36 configurations were added to the final
training and validation sets, respectively. The training and validation errors
are below 1meV/atom. TheMonte Carlo simulations were carried out with
periodic boundary conditions. We mainly focused on the 2000–2400 K
temperature range where the alloy remains disordered. The simulations
were carried out for systems containing 128 and 5488 atoms, i.e., 4 × 4 × 4
and 14 × 14 × 14 lattice units, based on a two-atom primitive BCC cell. The
number of MC steps (atom-atom swap attempts) was 20,000 times the
number of atoms in the corresponding supercell. The burn-in approach56

was utilized for thermal equilibration, i.e., for each temperature, thefirst half
ofMC stepswas neglected. Test calculationswith 50,000MC steps per atom
were performed to corroborate the findings. From the MC simulations, the
internal energy and specificheat capacity are directly accessible. To compute
the configurational contribution to the entropy,we followed the approachof
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ref. 35, i.e., we integrated the specific heat capacity and subtracted it from a
high-temperature reference state taken at 10,000 K representing the ideal
disordered state with entropy ln 4kB.

The DFT calculations for the training were performed at a lattice
constant of 3.171Å andusing an electronic smearingparameter of 0.195 eV,
which corresponds to the (GGA-PBE) values at 2260 K, about 100 K below
the predictedmelting temperature. The details of the otherDFTparameters
are as in Section “Computational details of the DFT andMD calculations”.
For computational efficiency, the plane wave cutoff and k point mesh were
reduced to 270 eV and 3 × 3 × 3, respectively. Test calculations from the
training set revealed that more accurate parameters resulted in a constant
energy shift with energy variation among the configurations below
0.2 meV/atom.

Computational details of the DFT and MD calculations
For the DFT calculations, we used the projector-augmented wave (PAW)
method57 as implemented in the VASP software package58–61. PAW
potentials for Ta,Cr,V, andWtreatingp electrons as the valence stateswere
used. LDA and GGA were employed for the exchange-correlation func-
tional, with the Perdew-Burke-Ernzerhof (PBE)62 parametrization for
GGA.The data of solid free energy fromGGA-PBEwere taken from ref. 18.
The solid free energy for LDAwas calculated with direct upsampling in the
present work, as well as the liquid free energy for bothGGA-PBE and LDA
using the new approach. The sets of explicitly DFT computed volume and
temperature points for both solid and liquid in the presentwork are given in
Table 3. The DFT calculations were performed in a 4 × 4 × 4 supercell with
128 atoms. For the solid, a 128-atom SQS structure was used. For liquid, the
SQS structure was heated up to a high temperature, e.g., 3000 K, to trigger
the liquid phase. The explicitly computedDFT points were used as input to
fit polynomials up to third order to obtain an analytical description of the
free energy surface as a function of volume and temperature. The plane
wave cutoff and k point mesh (Monkhorst-Pack63) were set to 450 eV and
4 × 4 × 4, respectively. For details on the fitting procedure of the corre-
sponding GGA-PBE solid free energy surface and the respective con-
vergence parameters, we refer to ref. 18.

For the reference potential calculations, we used the LAMMPS soft-
ware package64. For fitting the liquid free energy surface of our potential, we
used the same volumes as for the DFT calculations (see Table 3), but at a
denser temperaturemesh (steps of 20K). For theMD simulations using the
specially designed MTP we used a time step of 5 fs and the Langevin
thermostat with a friction parameter of 0.01 fs−1 to control the temperature.

Data availability
The authors declare that the data supporting the findings of this study are
available within the article and its supplementary information files or from
the corresponding authors on reasonable request.
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