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In general multiple medical devices orthogonal frequency-division multiplexing (OFDM) 
communication systems, all the interfering medical users are legitimate but will cause disturbance to 
the desired user. In this work, we evaluate three deep learning (DL) algorithms: fully connected deep 
neural networks, convolutional neural networks, and long short-term memory neural networks for 
signal processing and detection in uncoded multiple medical devices OFDM communications systems. 
The bit error rates (BER) of these DL methods are compared with the conventional linear minimum 
mean squared error (LMMSE) detector. Additionally, the relationships between the BER and signal-
to-interference ratio, signal-to-noise ratio, the number of interferences, and modulation type are 
investigated. Numerical results show that DL methods outperform LMMSE under different multiple 
medical device interference situations and are robust when the wireless channel has high variability. 
Also, DL methods are proven to have strong anti-interference ability and are useful in multiple medical 
devices OFDM systems.

In recent years, to combat multipath fading in wireless channels, orthogonal frequency-division multiplexing 
(OFDM) has become a widely used modulation scheme in various wireless communications systems1. To gain 
the channel state information (CSI) and recover the transmitted symbols in OFDM systems, many works have 
been conducted for channel estimation and signal detection2. There are several classical estimation methods 
for wireless channels, such as least squares (LS), minimum mean squared error (MMSE), and linear MMSE 
(LMMSE). Generally, the performance of LS is worse than MMSE and LMMSE, which use more channel 
statistics3.

Since deep learning (DL) algorithms are widely used in various fields4, many researchers have focused on 
applying DL to wireless communications. Especially, deep learning-based approaches estimate CSI implicitly 
and recover the transmitted symbols directly5. In6,7, DL methods were used to improve the performance of 
the MMSE estimator. In8, a fully convolutional beamforming model named FC-BFNet, and a convolutional 
blind denoising network, were developed for channel estimation of millimeter-wave massive multiple-input 
multiple-output (MIMO) systems. In9, a fully convolutional beamforming model named FC-BFNet is studied. In 
addition, recently, deep learning has been applied to OFDM communication systems. In10, a residual learning-
based OFDM channel estimation method was presented. In11, a DL-based estimator was proposed to adapt to the 
scenarios of high mobility in the MIMO-OFDM system, showing high robustness. In12, a generative adversarial 
network was developed for channel super-resolution to gain more details of the CSI with performance close to 
that of LMMSE. In5, a fully connected neural network (FCDNN) was used for signal detection. It was shown that, 
when the cyclic prefix was omitted and the number of pilots was small, the DL-based detector was more robust 
than LS and MMSE detectors. In13, a DL-based channel estimator with a joint pilot design was presented. In the 
scheme, the inherent correlations in MIMO-OFDM were utilized to improve the performance of estimation. 
In14, a channel estimation network and a channel-conditioned recovery network were proposed for channel 
estimation and signal detection to make them robust to the variation of parameters. However, all these works 
have considered only a single user.

On the other hand, how to improve the accuracy of signal processing in multiuser conditions has received a 
lot of attention. In15, a convolutional neural networks (CNNs) approach to restoring the desired signal impaired 
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by the multiple-input multiple-output (MIMO) channel. In16, the design of non-orthogonal multiple access 
(NOMA) beamforming is investigated in a spatial division multiple access (SDMA) legacy system. In17, dynamic 
partially connected (DPC) CNN was used in the hybrid precoding with multi-user optimization. The proposed 
detector gave higher accuracy than the conventional MMSE detection scheme. In18, an RIS-assisted multiuser 
multiple-input single-output orthogonal frequency division multiplexing (MU-MISO-OFDM) system, and 
propose a practical transmission protocol with non-uniformly spaced comb-type pilots for compressed channel 
estimation and data transmission. In19, a deep learning (DL) aided receiver was proposed for NOMA joint signal 
detection.

The works mentioned above are all for a specific multiuser scenario, such as multiuser SDMA16, NOMA19, 
MIMO15 or MISO18. Different from them, in this work, we will study DL-based signal processing and detection 
for an uncoded multiuser OFDM system. In this system, there are one or more legitimate interfering users, and 
multiuser interference will be added directly at the OFDM receiver. For the receiver, it is difficult to distinguish 
and recover the transmitted symbols from the desired user. The performances of different DL methods in such 
a tough system will be evaluated. FCDNN has been proved suitable for OFDM signal detection in5. CNNs are 
popular in image processing. It is worth trying to extract the features of reshaped wireless signals as a 2D image. 
Furthermore, transmitted symbols can be regarded as sequence data. To address the non-trivial problem of 
estimating channel fading states and signals simultaneously, two deep learning (DL)-aided minimum mean 
square error (MMSE) estimation schemes are proposed7. Therefore, these three DL methods are chosen. To 
evaluate their anti-interference ability in multiuser situations, we compare the bit error rates (BERs) of offline-
trained FCDNN, CNN, and LSTM neural networks. The BERs for different signal-to-interference ratios (SIRs), 
signal-to-noise ratios (SNRs), numbers of interfering users (NoI), and modulation types of interfering users will 
be investigated to evaluate the performance.

Results
In this section, we compare the performances of the different methods. The FCDNN, CNN, and LSTM models 
were trained offline and subsequently deployed for online testing. To evaluate their effectiveness, we used bit 
error rate (BER) as the primary performance metric. It is important to note that all signal-to-interference ratio 
(SIR) values discussed in this section represent the transmitting SIRs.

In signal processing systems, successive interference cancellation schemes are often employed. However, 
these methods frequently encounter challenges such as decoding and estimation errors. Among traditional 
statistical estimation methods, including least squares (LS), minimum mean squared error (MMSE), and 
linear MMSE (LMMSE), LMMSE offers a favorable balance between computational complexity and estimation 
accuracy. Therefore, we use the BER of the LMMSE method as a benchmark for comparison with the deep 
learning models.

For the desired user, we utilize 4-ary quadrature amplitude modulation (4-QAM) signaling. The modulation 
types of interfering users and signal-to-interference ratios (SIRs) vary across different experiments. The OFDM 
channel is modeled as a Rayleigh frequency-selective fading channel, with a 1D random fade variance of 0.5. The 
Rayleigh fading models are commonly employed to simulate multipath environments, where signals reflect off 
various objects before reaching the receiver. This results in the signal arriving with different delays and strengths, 
leading to interference and signal fading. Since OFDM is designed to address the challenges posed by multipath 
fading, the use of a Rayleigh model is a natural choice for testing the robustness of OFDM systems under realistic 
conditions.

To determine the optimal number of epochs, the training loss curve with 4-QAM interference when SNR = 
15 dB and SIR = 0 dB is illustrated in Fig. 1. A batch size of 1000 is chosen for training. In Fig. 1, the loss function 
decreases significantly before the 25th epoch. After the 25th epoch, it declines slowly and continuously. Similarly, 
the BER curves show a sharp decreasing trend before the 25th epoch. When the epoch exceeds 100, the BER no 
longer changes. All the methods reach their error floor in this situation. However, after the 150th epoch, overfitting 
occurs, leading to noticeable fluctuations in the BER. Consequently, we select 150 epochs as the optimal training 
duration.

Comparison of methods
To validate the performance of the deep learning (DL) models in OFDM detection, Fig. 2 presents the BER 
results for the DL models in an OFDM system without interference. All three models demonstrate reliable 
performance. Specifically, when the SNR exceeds > 5 dB, the BER remains ⩽ 10−1, and when SNR > 15 dB, the 
BER ⩽ 10−2. Notably, the lowest BER achieved by both the LSTM and CNN models is 10−3.

Figures 3 and 4 give the performance comparison of different DL algorithms and LMMSE detector when 
4-ary phase shift keying (4-PSK) and 4-QAM are used by interfering users and SNR = 15 dB. In both figures, 
the BERs of DL and LMMSE increase with increasing NoI. When interfering users are 4-PSK modulated, at 
SIR = 15 dB, the BERs of FCDNN, CNN, and LSTM are 0.04, 0.039, 0.047 smaller than LMMSE in average, 
respectively. When SIR is increased to 25 dB, the gap between LMMSE and DL methods are smaller. The 
BERs of FCDNN, CNN, and LSTM are 0.005, 0.003, and 0.006 smaller than LMMSE. When 4-QAM, the same 
modulation type as the desired user, is used by the interfering users, all methods exhibit higher BERs compared 
to 4-PSK. Nevertheless, the DL algorithms continue to outperform LMMSE at both 15 dB and 25 dB SIR levels. 
Overall, while the BER differences between FCDNN and LSTM remain small, CNN performs slightly worse in 
the presence of 4-PSK interference. As the SIR increases, the DL models outperform the conventional LMMSE 
method, particularly under severe interference conditions.

To evaluate the robustness of the methods, we compare their performance with different numbers of pilots. 
Figure 5 shows the BERs of the methods when 16 pilots and 64 pilots are used in a frame of 128 symbols. For the 
CNN model, the BER with 16 pilots is between 0.006 and 0.0466 higher than the BER with 64 pilots for different 
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numbers of interfering users (NoI). In contrast, the BER increase for FCDNN and LSTM is smaller, with the 
difference being no more than 0.019 between the two pilot configurations. This indicates that the decrease from 
64 to 16 pilots has a less significant effect on the performance of FCDNN and LSTM compared to CNN.

Overall, LSTM and FCDNN demonstrate better and more robust performance against interference 
compared to CNN. When compared with the conventional LMMSE detector, the deep learning (DL) models 
show significantly lower BERs in scenarios with weaker interference. This advantage is attributed to the ability 
of neural networks to learn and adapt to signal and channel features through extensive training over multiple 
epochs.

NoI and SNR
The received signal is affected by both AWGN and interference. To better understand the impact of these 
disturbances, we examine the BER for various SNR values and NoI. In this analysis, the SIR is fixed at 20 dB.

Figure 6 illustrates the performance of three DL algorithms for different SNRs with NoI values of 1, 5, and 9. 
As NoI increases, interference becomes more significant. The BER differences between DL methods at the same 
SNR and NoI are very small too. However, the BER of CNN at lower SNR is higher than FCDNN and LSTM, 

Fig. 2. BERs of DL models without interference.

 

Fig. 1. Training loss when SNR = 15 dB and SIR = 0 dB.
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which means that CNN model is less robust in lower SNR regions. For LSTM, when SNR > 25 dB, each curve 
flattens out and reaches the error floor of SIR = 20 dB. When SNR ⩾ 20 and NoI = 1, all of the DL methods can 
reach BER of 10−3.

Interference modulation types
Different modulation types result in varying signal complexities, which can influence the detection accuracy of 
deep learning (DL) algorithms in the presence of interference signals.

To investigate the impact of interference signaling, Fig. 7 illustrates BERs of LSTM and LMMSE for five 
different types of modulation when SIR = 20 dB and SNR = 15 dB. In the order from smallest to largest by 
BER of LSTM, are 4-PSK, 16-PSK, 4-QAM, and 16-QAM. LSTM method outperforms LMMSE in all cases, 
but the gap between LSTM and LMMSE is very small in 16-QAM modulation. For LSTM, the BERs of QAM 
interference are higher than those of PSK interference. The BER of 16-QAM interference is noticeably higher 
than the that of 4-QAM. On the contrary, there is only a small gap between BERs of 4-PSK and 16-PSK curves. 
For QAM modulation, higher constellation size leads to higher BER, this is because the Euclidean distance of 
interfering signal decreases with constellation size. In summary, QAM interference has a greater impact than 

Fig. 4. BERs of different methods with 4-QAM interference.

 

Fig. 3. BERs of different methods with 4-PSK interference.
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PSK interference due to the differences in both phase and amplitude in QAM signaling, while PSK symbols only 
differ in phase. Additionally, the impact of constellation size is more significant in QAM than in PSK. Similar 
tests were conducted for the FCDNN network, and the BER of FCDNN is comparable to that of LSTM.

Methods
System structure
The structure of the proposed deep learning-based OFDM communication system is illustrated in Fig. 8. The 
transmitted symbols Sk (t) with pilots are converted from serial to parallel stream. The signal is then transformed 
into the time domain using the inverse discrete Fourier transform (IDFT). After inserting a cyclic prefix (CP) 
into the symbols, the signal is converted back into a serial stream and transmitted over the wireless channel. The 
signal at the receiver is

 r (t) = c (t) ⊗ s (t) + n (t) , (1)

Fig. 6. BERs when different SNR and different NoI.

 

Fig. 5. BERs with different number of pilots.
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where c (t) is the wireless channel, s (t) is the transmitted signal after IDFT and n (t) is the additive white 
Gaussian noise (AWGN). In this work, similar to5, the WINNER II channel model is used as the OFDM channel 
for both the desired user and all interfering users, with a maximum delay of 16 sampling periods. The carrier 
frequency is set to 2.6 GHz, and the number of paths is 24. For the desired user, whose signal we aim to receive, 
we denote the transmitted signal, received signal, and wireless channel as sM (t), rM (t), and cM (t) respectively. 
The NoI is n. For the jth interfering user, the transmitted signal, received signal, and wireless channel are 
denoted as sIj (t), rIj (t), and cIj (t) respectively. At the receiver, the desired signal rM (t) is interfered by 
rI1 (t), rI2 (t), ..., rIn (t). After parallel-to-serial conversion, removal of CP, discrete Fourier transform (DFT), 
and serial-to-parallel conversion, SM (k) is recovered using DL without CSI. The CSI is unknown at the receiver. 
The recovered symbols are denoted as ŜM (k). In the system, DL is trained offline. At the deployment stage 
when DL is online, the weight of the network has been fixed and there is no training at this stage. To learn the 
characteristics of the channel, the DL model is trained using a large dataset of SM (k) and unrecovered symbols 
at the receiver, accommodating a dynamic OFDM channel in various scenarios. All the OFDM channels in the 
simulation are multipath fading channels and change randomly.

The network does not need to be re-generated or re-trained for different NoI, SNR or SIR. Similar to5, to enhance 
performance, each frame of 128 symbols is used as input across 8 parallel networks, with each network detecting 
16 symbols. For transmitted signals, the pilot symbols are the same in the training and testing stages, while the 
data symbols are generated randomly in each simulation. The output layer will give a result of 8×16 symbols.

Deep learning networks
As previously mentioned, this work utilizes FCDNN, CNN, and LSTM to recognize transmitted symbols. In the 
physical layer of communications, the transmitted symbols are binary, represented as 0 or 1. Thus, the detection 
process can be viewed as a straightforward binary classification problem. To accommodate the different 
networks, the data will be reshaped into various sizes.

In the CNN input layer, the complex channel parameters and transmitted signals will be transformed into 
a 2D array using their real and imaginary parts. In contrast, the LSTM network will process the input data as a 
sequence.The mean squared error function is chosen to calculate the loss. The loss function L2 can be described 
as

 
L2 = 1

N

N∑
k=1

(
ŜM (k) − SM (k)

)2
. (2)

All the numbers of neurons and layers below are determined after testing in different values.

As the structure in Fig.  9 shows, an FCDNN is an advanced version of an artificial neural network that is 
composed of several layers, each of which contains multiple neurons. Each neuron in each layer is connected to 
all neurons in the upper and lower layers. The FCDNN structure includes an input layer, several hidden layers, 
and an output layer. For the FCDNN network, the detector can be represented as follows

Fig. 7. BERs of LSTM and LMMSE with different interference.
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Fig. 9. Structure of an FCDNN.

 

Fig. 8. System structure.
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 Ŝ = f (I, W) fL
(
fL−1 (

...f1 (I)
))

, (3)

where Ŝ represents the recovered transmitted symbols, which is the output of the neural network, L denotes 
the number of layers, I is the input data, and W refers to the network weights that need to be optimized during 
the training process. In5, the FCDNN has been proved as a effective method for OFDM signal detection. In this 
work, after testing, the number of neurons was adjusted to suit the multiuser scenario. The architecture of the 
network is shown in Table 1.

Essentially, a CNN is a neural network constructed by forward propagation and trained by back propagation. 
The structure of a CNN is similar to that of an FCDNN; it consists of multiple layers, including an input 
layer, several hidden layers, and an output layer. However, in contrast to an FCDNN, a CNN has particular 
hidden layers known as convolution layers. These are the core layers of a CNN, and they generate most of its 
computation. Convolution is widely used in image processing. For example, a discrete 2D filter, which is also 
called a convolution kernel, is used to perform convolution operations on 2D images. This 2D filter (Conv2D) 
slides to all positions on the 2D image and calculates the inner product with the central pixel point and the areas 
neighbouring that point. For CNN, the output of two Conv2D layers can be written as

 
I

′′
= f

(
K2 ⊗ f

(
K1 ⊗ I

′
+ b1

)
+ b2

)
, (4)

where KL represents the Lth convolutional kernel, ⊗ denotes the convolution operation, and b represents the 
bias. As mentioned before, because CNN has its own advantage on 2D image feature extraction, the received 
signal is transformed to a 2D matrix like an image. The architecture of the CNN network used in this work is 
shown in Table 2. We use 1*2 and 2*1 filters to match the 64*2*2 input data. The pooling layer is omitted due to 
the small size of the input data.

The LSTM network is a development from a recurrent neural network (RNN). In an RNN, the hidden state of 
node ht can be represented as

 ht = σ (wxtxt + whtht−1 + b) , (5)

where xt represents the t-th observation, and wxt and wht are the network weights. However, with an RNN, 
long-term series data will lead to long-term dependence problems; this means that earlier information recorded 
in the memory unit will be diluted with the passage of time steps. As a result, it will be difficult to establish the 
dependency relationships between parameters and the information in earlier time steps. The LSTM network 
solves the long-term dependence problem by incorporating a ‘gate’ into each memory unit to control the flow 
and loss of features.

The structure of the memory block of an LSTM network is illustrated in Fig. 10. It consists of one memory cell 
with input gate, forget gate and output gate. The input gate reads data from input xt, while the output gate writes 
output to ht. The forget gate can help the cell reset the stored input data Ct. Their function is

 Ct =ft ∗ Ct−1 + it ∗ tanh (WC · [xt, ht−1] + bC) ,  (6)

Layer name Parameters Activation

Input size 2×2×64

Conv2D 1×2 filter Relu

Conv2D 2×1 filter Relu

Dense 128 neurons Relu

Output size 16×8 Sigmoid

Table 2. Architecture of CNN network.

 

Layer name Parameters Activation

Input size 256×1

Dense 512 neurons Relu

Dense 512 neurons Relu

Dense 128 neurons Relu

Output size 16×8 Sigmoid

Table 1. Architecture of FCDNN network.
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 ht =ot ∗ tanh Ct,  (7)

where it, ft and ot denote the output of the input gate, forget gate and output gate, respectively. ∗ stands for 
element-wise multiplication, W and b are the weight and the bias term, respectively. The network architecture 
is shown in Table 3.

At the training stage, to learn the features of OFDM channels, sets of transmitted symbols and their corresponding 
unrecovered received signals through various OFDM channels, with an SNR of 15 dB, are generated for training 
and validation. In this work, 1000 training samples are generated for each epoch. Then, the sets of symbols in 
OFDM situations at transmitter and receiver are generated to test the anti-multiuser interference performance 
of deep learning (DL) models. The transmitted bits are either 0 or 1. Therefore, the BER is used to represent the 
detection accuracy as

 
Pe = P

[
b̂i ̸= bi

]
. (8)

Computational complexity analysis
For the fully connected layer, the number of parameters is calculated as NF C = (di + 1) do, where do and 
di denote the number of input units and output units of the layer, respectively. For the convolutional layer, 
the number of parameter relates to the filter size, it is calculated as NConv = (dh × dw × di + 1) do, 
where dh and dw  denote the height and width of the filter, respectively. A LSTM layer contains 4 non-linear 
transformation, which leads to 4 non-linear mapping layers. Thus the number of parameters for the LSTM 
layer is NLST M = 4 [do (do + di) + do], In the training, the computational complexity for each time step and 

Layer name Parameters Activation

Input size 256*1 sequence

LSTM 128 neurons

LSTM 128 neurons

Dense 64 neurons Relu

Output size 16×8 Sigmoid

Table 3. Architecture of LSTM network.

 

Fig. 10. Structure of an LSTM block, where Ct−1 and Ct are respectively the cell states at the t − 1-th and t
-th observations, ht−1 and ht are respectively the hidden states of the t − 1-th and t-th nodes, C̃t is the cell 
state update value, xt is the input data, ft), it, and ot are the states of forget gate, input gate, and output gate, 
respectively.
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parameter of these methods is O (1). Therefore, the complexities for the models are O (NF C), O (NConv), and 
O (NLST M ). To illustrate the complexities of the DL networks, the numbers of parameters are listed in Table 4.

Discussion
In this work, we explored the effectiveness of deep learning (DL) algorithms for signal processing and detection 
in uncoded OFDM communication systems. Specifically, we evaluated the performance of offline-trained 
FCDNN, CNN, and LSTM models in detecting transmitted symbols and compared them to the conventional 
LMMSE method. Our simulation results demonstrate that the DL-based methods consistently achieve lower 
bit error rates (BER) than LMMSE across various conditions. We conducted extensive experiments, varying 
key parameters such as SIR, SNR, number of interfering users (NoI), and modulation types. Among the tested 
DL models, LSTM and FCDNN consistently outperformed CNN, though all models encountered performance 
limits, manifesting as error floors under specific scenarios. Additionally, the models were trained across a variety 
of wireless channel simulations and subsequently tested on different parameter sets. This demonstrated the 
robustness of the DL models, particularly in handling high channel variability. Notably, our findings reveal that 
QAM interference has a greater impact on detection accuracy compared to PSK, a result consistent across the 
DL methods.

Data availibility
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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