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Abstract
Purpose Multi-zoom microscopic surface reconstructions of operating sites, especially in ENT surgeries, would allow
multimodal image fusion for determining the amount of resected tissue, for recognizing critical structures, and novel tools for
intraoperative quality assurance. State-of-the-art three-dimensional model creation of the surgical scene is challenged by the
surgical environment, illumination, and the homogeneous structures of skin, muscle, bones, etc., that lack invariant features
for stereo reconstruction.
Methods An adaptive near-infrared pattern projector illuminates the surgical scene with optimized patterns to yield accurate
dense multi-zoom stereoscopic surface reconstructions. The approach does not impact the clinical workflow. The newmethod
is compared to state-of-the-art approaches and is validated by determining its reconstruction errors relative to a high-resolution
3D-reconstruction of CT data.
Results 200 surface reconstructions were generated for 5 zoom levels with 10 reconstructions for each object illumination
method (standard operating room light, microscope light, random pattern and adaptive NIR pattern). For the adaptive pattern,
the surface reconstruction errors ranged from 0.5 to 0.7 mm, as compared to 1–1.9 mm for the other approaches. The local
reconstruction differences are visualized in heat maps.
Conclusion Adaptive near-infrared (NIR) pattern projection in microscopic surgery allows dense and accurate microscopic
surface reconstructions for variable zoom levels of small and homogeneous surfaces. This could potentially aid in microscopic
interventions at the lateral skull base and potentially open up newpossibilities for combining quantitative intraoperative surface
reconstructions with preoperative radiologic imagery.

Keywords Adaptive pattern · Stereo reconstruction microscope · Random pattern · Bayesian optimizer · ENT procedures

Introduction

Inmany surgical interventions, specificallymicroscopicENT
surgeries at the lateral skull base, a surgeon would benefit
from additional intraoperative data [1] offered by dense and
accurate “real-time” surface reconstruction of the operative
site. Registration of these with other pre- or intraoperative
medical imagery could be beneficial for intraoperative sur-
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geon guidance [2]. In microscopic interventions at the lateral
skull base, reconstruction of homogeneous structures like
bone or tissue is challenging due varying zoom levels [3],
operating room lighting conditions and extreme illumination
[4] prone to specularities and shadowing. This significantly
affects invariant feature detection, disparity estimation and
surface stereo reconstruction [5].

Stereoscopic surface reconstruction is a well-established
technology that builds on feature matching between stereo
image pairs using detectors like SIFT [6] and SURF [7],
detecting invariant object features with inhomogeneous
structures and matching blocks of pixels locally (block
matching, BM or semi-globally (SGBM [8, 9])). BM yields
a significantly higher density, but not necessarily a high
accuracy [10]; pairing improper features leads to inaccurate
reconstructions unsuitable for further quantification of the
amount of resected tissue or for further multimodal regis-
tration. The FLANN detector [11], optimized with number
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of trees [12], improves the speed of feature detection, but
cannot consider all true positive features due to computa-
tional tree limits [13]. Brute force approaches that compare
all points to each other are prone to false positives and are
computationally expensive [14].

To overcome the challenge of (tissue) homogeneity highly
discernible patterns are projected on the objects to be
reconstructed. Different methodologies are available for
stereo reconstructions and even augmented reality [15–17],
paradigmatically in ENT procedures at the lateral skull base.
However, these methods are static and are not available for
variable zoom and small (anatomical) structures, as is the
case in this type of surgeries [18].

Enhancing intraoperative setups with proper illumination
requires special methods for feature collection and triangu-
lation. Time of flight [19] requires reliable and static optics
(without zoom); structure from motion [20] will need some
actions of a surgeon to collect valid data, impacting the clin-
ical workflow and extending the procedure time; trifocal
tensor [21] approaches provide a robust but bulky setup, too
complex for surgical environments.

Adaptive infrared patterns are promising to enhance stereo
matching under realistic operating room conditions to enable

dense microscopic reconstructions (MiRe) of homogeneous
surfaces [22, 23]. The adaptive pattern reconstruction model,
obtained from a Leica surgical stereo microscope, is com-
pared to a model reconstructed from CT images via mul-
timodal registration and point to point comparison. The
method is evaluated on a colored realistic 3Dprint of a human
ear for various zoom settings. Different projected patterns
and illumination conditions serve assessing reconstruction
accuracy aiming at developing additional navigated (ENT)
procedures to allow quantitative monitoring surgical proce-
dures of tissue removal during petrous bone surgeries.

Materials andmethods

The application is written for use on Intel i7, 16GB RAM,
Nvidia GTX 1060 powered PC using C++ and incorporating
VTK [24], ITK [25], OpenCV [26], PCL [27]. It can read
DICOM [28] studies, generate 3D models from MiRe and
CT, capture microscope images, perform stereo calibration,
control zoom, multimodal registration and generate near-
infrared (NIR) pattern via Bayesian optimization. Figure1
represents the workflow.

Fig. 1 Flow diagram of the system and user interaction for system
initialization: multi-zoom calibration, marker detection and MiRe on
the left, CT reconstruction and fiducial detection on the right, for co-

registration of CT images to MiRe by minimizing RMSE (root mean
squared error) via an iterative Bayesian optimizer loop. Required user
interactions are shown by the mannequins
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Fig. 2 Real scale ear model with ArUco (A) and X-spot markers (B)
in the cube prior to being hidden by the ArUco markers (B)

Surfacemodel and ground truth CT dataset

A real-scale realistic and colored plastic model of an adult
external human ear (9 × 4cm) was CT scanned as ground
truth. This 3D print is suitable for evaluating surface recon-
structions as shape, color, occlusion and illumination are
demanding. Four 3D-printed holders different in height and
inclination of the uppermost surface are placed on the ear and
carry custom-made multimodal markers: an ArUco [29, 30]
marker for microscope camera pose estimation and an CT
X-Spot spherical markers (1.5 mm diameter, titanium CT
markers, Beekley Medical) placed 1mm below the ArUco
marker origin (Fig. 2).

A ground truth 3D model was created from CT images
with 0.6 mm slice thickness windowed at 2800 HU with the
Marching cubes algorithm [31]; it is shown in Fig. 3 where
the region of interest (ROI) is shown inside the white cuboid.
The cuboid volume was used for the MiRe reconstruction
error measurements.

Leica M500N stereomicroscope

ALeicaM500N surgical stereo operating microscope (Heer-
brugg, Switzerland) was equipped with two high-resolution
cameras (2456 x 2054 pixels, IDS UI-3080CPM-GL
monochrome, IDS GmbH, Obersulm, Germany) connected
to the microscope on two beam splitters introduced into the
microscope optical path for scene view extraction. These
cameras have a maximal NIR sensitivity at 740 nm and pro-
vide left and right image pairs of the surgical scene. The
NIR adaptive pattern projector is mounted to the body of
the microscope to illuminate the microscope’s field of view.
Microscope images are transferred via USB 3.0, and zoom
and focus are controlled by a CAN-bus interface on the plan-
ning station (Fig. 4).

Fig. 3 Segmented ground truth ear CTmodel with the region of interest
contained in the white cuboid. The letters indicate patient coordinates.
Image created with 3D-Slicer [32]

Fig. 4 Entire setup.A all systemcomponents 1:NIR cameras, 2:Micro-
scope lens, 3: NIR projector, 4: NIR power source, 5: Ear model; B
sample pattern projected on the ear phantom

Microscope optical calibration

The microscope is calibrated at 5 different zoom levels that
still allow a focused view on the whole ear model includ-
ing the markers at the microscope’s working distance (below
20cm) in both camera views. These boundary conditions
restricted the use of zoom levels greater than 1.5. Stereo
calibration is done with Zhang’s method [33] by simulta-
neously taking image pairs (19 pairs per zoom) of a 9 × 5
checkerboard (3× 3mm squares) for a wide range of transla-
tions/rotations (up to 60◦). Intrinsic parameters provide focal
length and optical centers of each camera, while extrinsic
parameters based on the intrinsic parameters provide rela-
tions (rotation and translation) between the two cameras.
Both parameters for specific zoom and focus settings are
determined and stored in a lookup table. Figure5 represents
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Fig. 5 Rectified left and right camera views after successful calibration

an example of rectified pairs; the image fractions used for
disparity calculation are marked with red squares.

Disparity was calculated with SGBM [8]. All parame-
ters (i.e., minimum minus disparity, block size=3) were kept
constant for all comparison methods mentioned in “Method
comparisons” section. Experimental variations of block size
did not improve results, but resulted in inferior detection
on reflecting homogeneous surfaces and to disappearance
of small details in the reconstructions.

Power source and near-infrared (NIR) projector

NIR light sources for the pattern projector were evaluated
with a photo-diode power sensor (Thor labs S121C, USA)
at 740 nm and a bandwidth filter (≥700 nm) in an oper-
ating room (OR). No other significant light sources were
found at thiswavelength, with environmental NIR light being
< 10µWat 740 nm. No significant NIR absorption wasmea-
sured for the microscope, too. Thus, NIR light at 740 nm
was useful for the experiment with the microscope. A tem-
perature controlled LED with custom-made active cooling,
powered with a stabilized power supply (QUAT Power LN-
3003, Pforring, Germany), overheating protection provided
3W of infrared illumination.

The custom-built NIR source illuminates the adaptive
pattern projector, a customized APEMAN, DLP (Digital
Light Processing), (resolution 800 × 600 pixels, Apeman
International Co., Ltd., Shenzhen, China). All other optical
components of the DLP were removed to avoid NIR absorp-
tion. NIR LED light intensity output of the projector was
measured 800 mW, sufficient for adaptive pattern projection
and detection (Fig. 6).

Rigid body registration and closest point RMSE

ArUco markers are detected in the MiRe reconstruction as
points for the rigid body registration to the X Spot markers
detected in the CT to set the ground for the further evaluation
of the reconstruction quality. The registration is performed
with an algorithm from Horn [34] for absolute orientation,

Fig. 6 NIR LED with active cooling (A), former DLP optics housing
to fit the NIR LED (B) and relay system (C)

implemented to find the transformation from MiRe to CT
and prepare two models for the closest point RMSE as an
ultimate reconstruction error, explained in “Adaptive pattern
generator with Bayesian optimizer” section .

Adaptive pattern generator with Bayesian optimizer

The adaptive pattern consists of an arrangement of dots in a
rectangular area. Dot size (s) and distance (d) are to be opti-
mized for each zoom level, representing significant effort if
performed manually with respect to the procedure time, due
to different possibilities of dot size and distance to generate
the pattern and minimize the reconstruction error. To ease
this, a Bayesian optimizer [35] was used. A simple Gaussian
process [36, 37] surrogate model with an RBF+Scaling ker-
nel was used to model the mean squared reconstruction error
over the reference object. For each iteration, the goal was to
find an optimal setting for d and s that minimizes the recon-
struction error to our reference CT object providing to the
optimizer parameters, x:=[d, s] where dot size, s, from 2 to
16 pixels, and distance, d, from 1 to 10 pixels in the pattern.
At each evaluation, a MiRe reconstruction was made with
the predefined zoom level and NIR projection created with
the testing parameters x.

The centers of the ArUco markers were located in the
stereo reconstruction (MiRe). With the known relation of
the ArUco to the radiolucent marker in the base of the arti-
ficial ear, the stereo reconstruction was registered to the
3D reconstructed CT surface, see “Rigid body registration
and closest point RMSE” section, for further evaluation and
RMSE extraction. Random 5000 points subset was chosen
from the reconstructed point cloud (ts, s ∈ [1..5000]), and
for each ts in the reconstructed point set, the closest point of
the CT point set was chosen as a correspondence (marked
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as rs). The reconstruction error was calculated as the RMSE
between ts and rs , respectively.

5000∑

s=1

( |ts − rs |
5000

)

The Bayesian optimization process was initialized with 10
random evaluations. The acquisition function was chosen to
be the expected improvement formulation at each step until
the end of the iteration.

The optimized dot distance d and size s values were
obtained and stored in a lookup table for all 5 zoom levels
investigated before applying changes to the 3Dmodel, as this
would impact the MiRe dataset and therefore comparison to
the CT.

Method comparisons

The effects of the different object illumination on the MiRes
were investigated in the following experiments. The artificial
external ear was placed in the view of the optically calibrated
microscope, and the illumination conditions were set using
different methods:

• Standard OR environmental light, no microscope light,
no extra additional light source.

• Standard microscope illumination.
• Projection of random NIR patterns [18, 38].
• Projection of Bayesian optimized adaptive NIR patterns.
[18, 38].

Experiments were performed at 5 zoom levels in which
the whole ear model was visible and in focus with 20cm dis-
tance between an ear placed on a table and the microscope
objective. The model was manually rotated relative to the
microscope to detect possible angulation dependent recon-
struction errors due to potential over-, under illumination,
occlusions and specularities. Illumination power in the vis-
ible and IR domain was constant for all tests. RMSE mean
and standard deviation were calculated between CT model
and MiRe based on randomly selected, normally distributed
5000 closest points inside the ROI for 5 zoom levels, 4 meth-
ods and 10 reconstructions per setting, yielding 200 surface
reconstructions as shown in Table 2.

A heat map was generated in the Z-direction to visualize
differences in structure recognition and depth estimation of
the 3D reconstructions obtained using proposed methods.

For extra validation purposes, the stereo reconstructed 3D
surfaces of the ear by the adaptive pattern were compared
visually to a 3D surface provided by Carl Zeiss Optotechnik
GmbH, Neubeuern, Germany.

Table 1 Bayesian optimizer values per zoom level; the upper and lower
lines in the columns show the best and the worst results for the adaptive
patterns, respectively

Zoom Dot distance (pixel) Dot size (pixel) RMSE (mm)

1.1× 10 1 1.0

6 2 0.7

1.2× 10 1 1.0

14 6 0.7

1.3× 9 1 0.9

16 7 0.5

1.4× 16 1 1.0

14 5 0.5

1.5× 5 1 0.9

15 7 0.5

Results

Results were collected for the described methods using
environmental light showing acceptable overall results as
presented in Table 2, having still significant outliers show-
ing bad disparities as in Fig. 7, part B, caused by the light
strength and the source position, but also due to the lack of
the salient features to compare homogeneous surfaces [39].

Quite on the contrary. We observed a lack of information
whenusing themicroscope’s halogen illumination, seeFig. 7,
part A. This was not an issue for the other light sources used
as their intensity could be down-regulated very quickly and
switched to another approach, as proposed in the discussion.

Random NIR pattern was based on a diffractive optics
showing promising results as presented in Table 2, but it
was impossible to control the distribution or the size of the
features, which brought the noise to the reconstruction as
shown in Fig. 7, part C.

For the adaptive NIR pattern, Table 1 presents Bayesian
optimizer’s worst and best predictions for pattern dot size
and separation per zoom level. Table 1 shows better results
on higher zoom levels and in Fig. 7, part D. The time to
generate MiRe was around 2s, while CPU time to obtain
adaptive pattern parameters, co-registration and calculating
the reconstruction error was below 20s.

First the Bayesian optimizer’s worst and best predictions
for pattern dot separation and dot size per zoom level are
presented, seeTable 1. The time to generateMiRewas around
2s, while CPU time to obtain adaptive pattern parameters,
co-registration and calculating the reconstruction error was
below 20s.

Table 2 represents sum of 10 mean and standard deviation
RMSE per zoom level for proposed methods.

Figure7 represents the heat map of the proposed methods,
showing clear distinction in quality. A significant lack of
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Table 2 Zoom levels with mean and standard deviation RMSE given
in millimeters

Zoom Mean ± SD (mm)

Adaptive Random Environmental

1.1 0.7 ± 0.4 1.9 ± 1.8 1 ± 0.9

1.2 0.7 ± 0.4 1.7 ± 1.7 1.2 ± 1

1.3 0.5 ± 0.3 1.8 ± 1.8 1.1 ± 1.0

1.4 0.5 ± 0.3 1.5 ± 1.6 1.8 ± 1.5

1.5 0.5 ± 0.3 1.6 ± 1.7 1.7 ± 1.4

structures can be seen in panels a and b. SGBM parameters
were varied without significantly improving RMSE (Fig. 8).

Discussion

Fast, dense and accurate reconstructions of anatomical
regions such as helix, antitragus, and antihelix are possi-
ble with Bayesian optimized NIR patterns. Adaptive NIR
infrared patterns for microscopic surface reconstructions
largely reduce homogeneities of the surgical site (skin, blood,
bone, etc.) in the stereo image pairs captured by the stereo
microscope [40]. Projection in near-infrared wavelengths
allows to overcome some of the critical challenges in intraop-
erative stereo image reconstructions such as environmental
lighting conditions and the intense surgical light sources used
to illuminate the surgical site [41].

Further, the adaptive pattern addresses intraoperative
usability by eliminating the need for moving the microscope,
optimizing zoom due to lack of structures caused by the
wrong pattern shape at the given zoom level, illumination
caused by bad lightning at the given distance, repositioning

the patient or changing reconstruction parameters manually
to obtain accurate reconstructions of the surgical field.

The results confirm that, not surprisingly, strong environ-
mental/surgical lighting in the operating room does signifi-
cantly impact MiRe. In some regions, depth information was
lost, while in other regions wrongly calculated, leading to
lack of reconstruction details, in Fig. 7. The environmental
light approach provided an inaccurate disparity map com-
posed of false depth information, leading to inaccurate 3D
point definition, as some parts were without useful textures,
therefore homogeneous.

The entire adaptive pattern process was automatized with-
out affecting the clinical workflow or the outcome of an
intervention. The application with a calibrated microscope
may be run fully automatically intraoperatively. Further
optimization or adaptation to other stereo techniques using
machine learning and synthetic data for disparity calculation
might improve results [42]. This could improve assessment
of disparity in regions which lack information. GPU CUDA
[43] parallel processing could allow “real-time” quantitative
evaluations and surgeon support.

Manual rotation of an object represents the weak point
of the system due to the necessity to involve the user in the
data collection process to assess the accuracy and perform
calibration of the setup if needed. In the future, this could be
resolved with a setup providing controlled linear and rota-
tional motion of the object in the surgical scene. There are
already approaches to perform the stereo rig calibration, but
on the opposite camera side [44].

The adaptive pattern approach has shown its potential.
However, the current setup of a standard surgical microscope
does not allow changing its construction details (i.e., the
stereo camera baseline). Our approach to project NIR pat-
terns onto the surgical site can easily be further optimized
by directly injecting the NIR patterns in the illumination

Fig. 7 Ear model reconstruction/structures for 4 different methods at zoom level 1.5. Ellipses show areas with lack of correct depth information:
A microscope light; B environmental (OR) light; C random/diffractive pattern; and D adaptive pattern
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Fig. 8 Visual comparison of surfaces from A Carl Zeiss Optotechnik
3D surface and B adaptive pattern MiRe showing some advantages
especially in the regions of concha and incisura

pathway of a surgical microscope with minor technologi-
cal efforts. This would lead to an optimal illumination of the
surgical site at all zoom levels, reducing shadowing as the
optical path is used directly. If necessary, microscope optics
would benefit from NIR cutoff filter implementation in the
oculars. Such improvements, however, are beyond the scope
of this work.

The surgical microscope in use was a standard medical
device that was extended by standard extraction cameras.
It was calibrated for 5 zoom levels, which could keep the
anatomical region (external ear) completely in the field of
view. This is in general fine for predefined zooms levels in a
laboratory setting; for intraoperative use, however, when the
whole range of zoom levels is accessed or the microscope
optics are changed by other means: simple camera realign-
ment, beamsplitter reinsertion, etc., the current calibration
might not prove adequate. For real surgical use, extended
camera calibration would be necessary to allow for extrapo-
lating a current zoom/focus setting from an extended lookup
table. For research purposes, however, this would be beyond
the scope of the current project. One might envision other
approaches such as feature detection and pairwise correspon-
dence matching which would allow calibration “on the fly”
[45], and such featuresmight even be projected from an adap-
tive pattern [46] or on screen visualized patterns [47, 48].

Extreme illumination conditions are regularly encoun-
tered in microscopic surgery including under- and over-
illumination of the scene. This is well compensated by the
human eye andmodern video imagery, but can severely affect
stereo reconstruction results due to the lack of depth informa-
tion in such regions [39]. The adaptive pattern was projected
from a micromirror-based DLP projector with a light source
that does not interfere with OR environmental light, being
visible by the two detection cameras of the microscope and
the surgeon oculars in reduced intensity, with the improve-
ment suggestions in the discussion. This device projected
adaptive dot patterns, generated with a Bayesian optimizer

based on RMSE between CT (ground truth) and MiRe clos-
est points, to increase the amount of salient features and to
decrease reconstruction inaccuracies by modification of the
pattern parameters (dot size and dot distance), making it suit-
able for multiple zoom levels. The present results suggest
that this approach can bring improvements in the recon-
struction of demanding homogeneous anatomical regions
while addressing different environmental scenarios without
the necessity for surgeon input, therefore not impacting the
default clinicalworkflowand providing a good base for quan-
tification of a resected tissue.

The adaptive patterns presented here open up the possi-
bility for further automatic evaluation of disparity maps to
find regions with higher errors or missing depth information.
This could be addressed, e.g., by locally refining the adaptive
pattern to yield optimal stereo reconstructions of the surgi-
cal field. ArUco/X spot markers could be replaced by other
multimodal ones or by software solutions as in [49].

Further clinical optimization close in cooperation with
surgeons will provide a useful clinical tool at the end.

Conclusion

The proposed method allows creation of stereo microscopic
reconstructions of areas of relevance for microscopic surg-
eries at the lateral skull base. It overcomes the challenges
of variable zoom levels, homogeneous surfaces and envi-
ronmental illumination conditions via a customized NIR
setup and a real-time intraoperative Bayesian optimized pat-
tern exploiting the reconstruction error between co-registered
ground truth and microscopic stereo reconstructions. To this
end, however, introduction of the NIR light parallel to the
microscope illumination path is a prerequisite to combine the
complete surgical view with the exploitable NIR illuminated
views. This was, however, out of the scope of this project. In
the future, this approach could allow new approaches tomon-
itor the progress of a surgery quantitatively in preoperative
imagery.
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