
Vol.:(0123456789)

Automated Software Engineering (2025) 32:4
https://doi.org/10.1007/s10515-024-00478-1

Tool report: EvoMaster—black and white box search‑based
fuzzing for REST, GraphQL and RPC APIs

Andrea Arcuri1,2 · Man Zhang3 · Susruthan Seran1 · Juan Pablo Galeotti1,4 ·
Amid Golmohammadi1 · Onur Duman1 · Agustina Aldasoro4 · Hernan Ghianni4

Received: 25 April 2024 / Accepted: 21 November 2024
© The Author(s) 2024

Abstract
In this paper, we present the latest version 3.0.0 of EvoMaster, an open-source
search-based fuzzer aimed at Web APIs. We discuss and present all its recent
improvements, including advanced white-box heuristics, advanced search algo-
rithms, support for databases and external services, as well as dealing with GraphQL
and RPC APIs besides the original use case for REST APIs. The tool’s installers
have been downloaded more than 3000 times. EvoMaster is in daily use for fuzzing
millions of lines of code in hundreds of APIs in large Fortune 500 companies, such
as for example the e-commerce Meituan.

Keywords  Fuzzing · SBST · Web API · Tool

1  Introduction

Web services, and in particular RESTful APIs, are widespread in industry, providing
rich APIs available on the internet. Thousands of Web APIs exist.1,2 Besides provid-
ing functionality over the internet, this kind of APIs are often used to build micros-
ervice architectures (Newman 2021; Rajesh 2016). Testing Web APIs is challenging
and expensive in industry (Arcuri 2018b). As such, viable automated techniques to
reduce cost and improve test effectiveness are needed.

EvoMaster is a mature search-based tool aimed at test case generation for system
testing. It has been developed based on the lessons learned from our previous tool
EvoSuite (Fraser and Arcuri 2011), aimed at unit test generation for Java classes.
EvoMaster is open-source (Arcuri et al. 2021) hosted on GitHub,3 and it has been
under development since 2016. EvoMaster was originally designed to perform
white-box fuzzing for REST APIs (Arcuri 2017b, 2019), and used for designing and

Extended author information available on the last page of the article

1  https://​apis.​guru/.
2  https://​rapid​api.​com/.
3  https://​github.​com/​WebFu​zzing/​EvoMa​ster.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-024-00478-1&domain=pdf
https://apis.guru/
https://rapidapi.com/
https://github.com/WebFuzzing/EvoMaster

	 Automated Software Engineering (2025) 32:4 4   Page 2 of 11

evaluating novel search algorithms such as MIO (Arcuri 2017a, 2018c). In 2018, a
tool paper (Arcuri 2018a) presented the technical work and usage of EvoMaster.
However, since then, a lot of work has been done to extend EvoMaster in different
directions and improve its usability for practitioners in industry.

In this paper, we present the newest version of EvoMaster, namely version 3.0.0,
released on GitHub and Zenodo (Arcuri et al. 2024). We provide a brief summary of
all the major features that have been added in the last few years. Of particular inter-
est is its usage by other researchers and among practitioners in industry.

2 � The tool

EvoMaster is currently a command-line tool, built with Kotlin and Java. Fig-
ure 1 shows an example of its usage. Each new release has installer files for all
the major operating systems (i.e., Windows, OSX and Linux). EvoMaster can be
run in two different modes (Arcuri 2020; Martin-Lopez et al. 2021a): black-box
and white-box.4 The black-box mode is easier to use, as it just requires the API
being up and running and having access to its defining schema. As no code analy-
sis is done, the API could be implemented in any programming language. Also,

Fig. 1   Screenshot of command-line execution of EvoMaster on a sample API

4  https://​gloss​ary.​istqb.​org.

https://glossary.istqb.org

Automated Software Engineering (2025) 32:4 	 Page 3 of 11  4

the API could be remote on the internet. On the other hand, white-box testing
requires access to the running process of the API, to allow runtime instrumenta-
tion. Furthermore, it requires the user to manually write a “driver”/configuration
file to specify how to start, stop and reset the API. White-box testing is harder to
set up and it is of more narrow scope (as the instrumentation is programming-
language dependent), but can provide much better results (Arcuri 2020; Zhang
and Arcuri 2023), e.g., in terms of code coverage and fault detection. To the best
of our knowledge, EvoMaster is currently the only open-source fuzzer for Web
APIs that supports white-box testing (Golmohammadi et al. 2023b).

The output of the tool is executable test cases (e.g., in JUnit format). Different
kinds of automated oracles are used to detect faults (Marculescu et al. 2022) (e.g.,
server crashes leading to responses with HTTP status code 500).

To fuzz an API, EvoMaster needs to get as input a specification for it. This
is needed to know what can be called on the API, and what types of inputs it
accepts. Sending random bytes over a TCP connection will likely result in invalid
messages that the API would directly discard. For REST APIs, schemas are typi-
cally defined with the OpenAPI format. For GraphQL, the schema can be que-
ried directly from the API via an introspective query. Different RPC frameworks
(e.g., gRPC and Thrift) use different DSLs to specify the schema (e.g., protobuf
for gRPC). But, ultimately, most RPC frameworks enable the generation of client
libraries from the schema to be able to call the API programmatically.

Let us consider the example of fuzzing the signal-registration gRPC API (part
of the backend of the popular communication app called Signal), which is now
included in the EMB corpus (Arcuri et al. 2023b). EvoMaster can generate test
cases like the one shown in Fig. 2. Here, the remote procedure call fails with
an exception, as one of the inputs is a sequence of bytes (represented with the
ByteString type), although internally the API expects it to represent a valid
UUID. This is an unexpected exception from the point of view of the schema of
this API, revealing so a fault.

Fig. 2   Example of generated JUnit test for the gRPC signal-registration API. For reasons of space, the
code has been slightly formatted

	 Automated Software Engineering (2025) 32:4 4   Page 4 of 11

3 � Enhancements in EvoMaster 3.0.0

EvoMaster is actively maintained, with researchers from Norway, China and
Argentina regularly working on it. Here, we provide a short summary of all
the major features added to EvoMaster in the recent years (not in chronologi-
cal order) since the previous tool report in 2018 (Arcuri 2018a). The interested
reader is referred to the cited articles for more details on these features. These
features include enhancements in the tool’s search engine (i.e., search-algorithms
and white-box heuristics), its application on different programming languages,
specific heuristics for REST APIs, handling of the APIs’ environment such as
databases and external services, as well as its support for other kinds of web ser-
vices such as GraphQL and RPC.

Search-algorithms When addressing a new problem with search algorithms,
like for example system test generation for Web APIs, there is the opportunity to
design novel algorithms that exploit as much domain knowledge as possible. This
can lead to better results for that specific problem domain. That was one of the
original motivations for designing MIO (Arcuri 2017a, 2018c).

One major improvement over the original MIO was the introduction of adap-
tive hypermutation (Zhang and Arcuri 2021a). Due to the massive search space
(e.g., when thinking about sequences of HTTP calls, with complex JSON body
payloads), where possibly many parts of the genotype have no impact on the phe-
notype (e.g., input data that is simply stored into a database, with no influence
on the execution control flow of the tested API), a higher mutation rate might be
beneficial. This is handled adaptively, based on the search phase (e.g., mutation
rate decreasing throughout the search), and based on the feedback from the fitness
function for each mutated gene.

White-box heuristics The performance of a search algorithm is strongly
dependent on the used fitness function. In Search-Based Software Testing (SBST)
research, work has been done to improve the fitness function to achieve higher
code coverage, e.g., using standard techniques like the branch distance, for
numerical and string data. EvoMaster uses these common techniques from the
SBST literature (e.g., like EvoSuite). Furthermore, we designed novel techniques
based on testability transformations (Arcuri and Galeotti 2021, 2020b), in par-
ticular for dealing with JDK API calls.

One of the challenges when fuzzing REST APIs is that their defining schema
(e.g., in OpenAPI format) might be underspecified. For example, if the exist-
ence of a URL query parameter is not specified in the schema, a black-box fuzzer
would have no information on how to use it. However, when doing white-box
testing, dynamic analyses of the API can detect these missing cases, which can
then be used to improve the fuzzing (Arcuriet al. 2023a).

Language support Black-box testing can be applied on any web application
accessed through API calls, regardless of its programming language (e.g., Go and
Python). However, white-box testing is dependent on the programming language,
as code needs to be analyzed. Since its inception, EvoMaster has been focusing
on the JVM, in particular on languages such as Java and Kotlin.

Automated Software Engineering (2025) 32:4 	 Page 5 of 11  4

The JVM is widely used in industry, but there are other languages/runtimes that
are widely popular as well for developing Web APIs, like for example NodeJS and
.NET. To make EvoMaster more popular among practitioners, we have carried out
work to support white-box fuzzing for NodeJS (Zhang et al. 2022b, 2023b) (JavaS-
cript and TypeScript) and .NET (Golmohammadi et al. 2023a) (C#) APIs.

Unfortunately, supporting different programming languages for white-box test-
ing is a gargantuan task, which we found out that most researchers consider only as
technical work. Therefore, such line of research has been discontinued. For the time
being, the support for NodeJS and .NET in EvoMaster can be considered just as an
academic proof-of-concept.

REST resources To test a REST API, there might be the need to create some data
first (e.g., with an HTTP POST request) before being able to test a fetch method
(e.g., an HTTP GET request). Likewise, you need to have some data first before
being able to test other kinds of operations such as delete and update. How read and
write operations are related to the same resources is not necessarily obvious, as each
operation could be handled by different HTTP endpoints.

If an API follows proper REST guidelines, it is possible to infer relations (e.g.,
dependencies) among endpoints based on the schema. This information can be
exploited by the search algorithms to improve performance when evolving test
cases (Zhang et al. 2019, 2021). Relations can also be inferred based on what each
endpoint accesses in the databases (Zhang and Arcuri 2021b).

Databases Web APIs typically interact with databases, like for example Postgres
and MySQL. The execution flow of the API can depend on what returned from the
SQL SELECT commands when retrieving data. But these commands could have
complex constraints, e.g., in the WHERE clauses. Before thoroughly testing a GET
endpoint, there might be the need to first create the right data with POST or PUT
requests. The fitness function of search algorithms in EvoMaster has been extended
to take into account the constraints in these SQL commands, to help creating the
right test data (Arcuri and Galeotti 2020a, 2019).

A further issue is that the data in the database could be “read-only” for the API,
e.g., the data could be created by other services or scheduled tasks/scripts. There
might be no HTTP method to create the needed data to test retrieve operations. To
solve this issue, EvoMaster is currently able to inject data directly into the SQL
databases (Arcuri and Galeotti 2020a, 2019). Database initialization data will be
evolved like any other element in the test cases, like HTTP query parameters and
JSON body payloads.

External services It is common, especially in microservice architectures, that an
API communicates with other APIs to be able to fulfill its functionalities. For test-
ing, this is problematic, as communications with external services are a source of
non-determinism, which can lead to flaky tests. For example, those external services
could return different data at each call, or become temporarily unavailable all of a
sudden. Furthermore, it would be hard to test specific scenarios (especially error-
related ones) if the tester does not have full control of these external services. This is
a common problem in industry, where a typical solution is to use mocking (e.g., with
popular libraries such as WireMock for JVM, to stub HTTP servers used to simulate
those external services).

	 Automated Software Engineering (2025) 32:4 4   Page 6 of 11

In EvoMaster, we have initial support to automatically instantiate WireMock
servers to mock communications with external services (Seran et al. 2023). How
to setup these instances (e.g., how to create JSON payloads in their responses)
becomes part of the search process. The generated tests are then able to start
those WireMock instances, configured with the evolved data in their HTTP
responses.

GraphQL APIs REST is only one kind of Web APIs, albeit arguably the most
popular. An alternative approach for Web APIs is GraphQL (Quiña-Mera et al.
2023), originally introduced by Facebook/Meta. Typical GraphQL APIs provide
a single HTTP endpoint where data can be fetched and manipulated via a graph-
based query language.

EvoMaster has been extended to be able to fuzz GraphQL APIs (Belhadi
et al. 2023). Several components of EvoMaster discussed in Sect. 3 could be
reused, e.g., search algorithms, white-box heuristics, and database support.

However, research was needed to define how fuzzing GraphQL could be
effectively cast to a search problem, and how to define proper automated oracles
for this testing domain (Belhadi et al. 2023).

RPC APIs Besides REST and GraphQL APIs, another common type of APIs
is Remote Procedure Call (RPC) ones. Popular examples in industry are gRPC
(from Google/Alphabet) and Thrift (originally from Facebook/Meta). Albeit less
popular for APIs available on the internet, RPC are very common in enterprise
backends when using microservice architectures.

EvoMaster is currently supporting all different kinds of RPC frame-
works (Zhang et al. 2023a) (e.g., gRPC and Thrift), as long as a client library
is provided (which is a typical case for RPC frameworks). Supporting RPC was
mainly driven by an industry collaboration with Meituan (Zhanget al. 2022a),
a Fortune 500 large e-commerce Chinese enterprise with more than 600 mil-
lion customers. Similar to GraphQL support, most of the internal features of
EvoMaster could be re-used to address this new problem domain. Albeit their
popularity in industry, to the best of our knowledge currently EvoMaster is the
only tool that supports the fuzzing of this type of APIs, besides (Veldkamp et al.
2023).

4 � Usage by other researchers

In the literature, besides by its authors, EvoMaster has been used in several stud-
ies. A typical example is tool comparisons (e.g., Kim et al. 2022, 2023a, b; Liu
et al. 2022; Giamattei et al. 2023; Karlsson et al. 2023). Another example involves
the studying of carving UI tests to generate API tests (Yandrapally et al. 2023).

As EvoMaster is open-source, different authors have extended it to address
different research questions. Examples include handling domain-specific cover-
age (Laaber et al. 2023), applications of hierarchical clustering (Stallenberg et al.
2021) and studying of Artificial Bee Colony optimization algorithms (Sahin and
Akay 2021).

Automated Software Engineering (2025) 32:4 	 Page 7 of 11  4

5 � Usage in industry

At the time of writing, EvoMaster has more than 500 stars on GitHub. According to
the download statistics of GitHub, its installer files have been downloaded more than
3000 times. However, this does not include possible users that fork its repository or
simply download it with Git and build EvoMaster locally.

As part of industry-driven research, we collaborate with different enterprises. An
example is Meituan (Zhanget al. 2022a), previously discussed in Sect. 3 regarding
RPC support. Currently, EvoMaster is integrated into their development and testing
processes. Hundreds of engineers at Meituan reap the benefits of EvoMaster daily,
where it is used to white-box fuzz hundreds of different RPC APIs in their Continu-
ous Integration systems. Several faults have been automatically found using Evo-
Master. Another more recent example is Volkswagen (another Fortune 500 enter-
prise, which is one of the largest car manufacturers in the world), where EvoMaster
has been recently started to be used for black-box fuzzing some of their REST APIs.

Note: these two different enterprises are just examples of direct collaborations,
where we are in direct contact each month with the testers and developers there to
get their feedback on the use of EvoMaster. We currently do not have data on how
many other enterprises in the world are actively using EvoMaster, besides what we
can infer from download statistics and from the profile (e.g., GitHub and LinkedIn)
of the engineers that report bugs or ask for feature requests. Based on this profile
data that we checked, we can see a moderate interest among practitioners in industry.

6 � Related work

In the last few years, several techniques have been developed to automatically test
REST APIs (Golmohammadi et al. 2023b). Several tools in the literature exist, for
example (in alphabetic order): bBOXRT (Laranjeiro et al. 2021), Dredd,5 Fuzz-light-
year,6 Morest (Liu et al. 2022), ResTest (Martin-Lopez et al. 2021b), RestCT (Wu
et al. 2022), Restler (Atlidakis et al. 2019), RestTestGen (Viglianisi et al. 2020)
Schemathesis (Hatfield-Dodds and Dygalo 2022), and Tcases.7 However, to the best
of our knowledge, only EvoMaster supports white-box testing (Golmohammadi
et al. 2023b). All these other tools support only black-box testing, i.e., generating
test cases from the OpenAPI schemas without analyzing the internal code of the
tested APIs. Tool comparisons (Kim et al. 2022; Zhang and Arcuri 2023) show that
EvoMaster achieves among the best performances (in terms of code coverage and
fault detection).

In contrast to REST APIs (Golmohammadi et al. 2023b), the testing of GraphQL
and RPC APIs has received only little attention from the research literature (e.g.,

5  https://​github.​com/​apiar​yio/​dredd.
6  https://​github.​com/​Yelp/​fuzz-​light​year.
7  https://​github.​com/​Cornu​tum/​tcases/​tree/​master/​tcases-​opena​pi.

https://github.com/apiaryio/dredd
https://github.com/Yelp/fuzz-lightyear
https://github.com/Cornutum/tcases/tree/master/tcases-openapi

	 Automated Software Engineering (2025) 32:4 4   Page 8 of 11

Karlsson et al. 2020; Zetterlund et al. 2022; Veldkamp et al. 2023), despite their
widespread usage in industry.

7 � Conclusion

In this paper, we presented the latest version 3.0.0 of EvoMaster. EvoMaster is a
search-based fuzzer aimed at Web APIs, including REST, GraphQL and RPC. It is a
mature open-source tool, under development since 2016. In this paper, we discussed
its main features added in the recent years, together with a discussion of its usage
among other researchers and practitioners in industry. To the best of our knowledge,
it is the only tool in the literature that supports white-box testing in this domain.

There are still many open problems that need to be addressed to achieve better
results (Zhang and Arcuri 2023), including defining better white-box heuristics and
supporting other features of web services, like dealing with NoSQL databases (e.g.,
MongoDB). Future work will aim at addressing these issues. Furthermore, as the
tool is open-source with copious documentation, it can enable other researchers to
use it as starting point for investigating other research directions related to software
testing, or related to where test cases are needed to be generated automatically. To
learn more about EvoMaster, visit www.​evoma​ster.​org.

Acknowledgements  We would like to thank all the people who provided code contributions to EvoMas-
ter throughout the years, including, in alphabetic order: Asma Belhadi, Alberto Martin Lopez, Bogdan
Marculescu, and Annibale Panichella. This work is funded by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (EAST project, grant
agreement No. 864972), and partially funded by UBACYT-2020 20020190100233BA, PICT-2019-
01793. Man Zhang is supported by State Key Laboratory of Complex and Critical Software Environment
(CCSE, Grant No. CCSE-2024ZX-01).

Author contributions  All authors significantly contributed to the development of the described tool, and
are currently actively involved in it. The first draft of the manuscript was written by Andrea Arcuri and
all authors improved on previous versions of the manuscript. All authors read and approved the final
manuscript.

Funding  Open access funding provided by Kristiania University College.

Data availability  EvoMaster is open-source on GitHub,3 with each release automatically published on
Zenodo (e.g., Arcuri et al. 2024) for long-term storage.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

http://www.evomaster.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Automated Software Engineering (2025) 32:4 	 Page 9 of 11  4

References

Arcuri, A.: Many independent objective (MIO) algorithm for test suite generation. In: International Sym-
posium on Search Based Software Engineering (SSBSE), pp. 3–17 (2017a)

Arcuri, A.: RESTful API automated test case generation. In: IEEE International Conference on Software
Quality, Reliability and Security (QRS), pp. 9–20. IEEE (2017b)

Arcuri, A.: EvoMaster: evolutionary multi-context automated system test generation. In: IEEE Interna-
tional Conference on Software Testing, Verification and Validation (ICST). IEEE (2018a)

Arcuri, A.: An experience report on applying software testing academic results in industry: we need usa-
ble automated test generation. Empir. Softw. Eng. 23(4), 1959–1981 (2018b)

Arcuri, A.: Test suite generation with the many independent objective (MIO) algorithm. Inf. Softw. Tech-
nol. 104, 195–206 (2018c)

Arcuri, A.: Restful API automated test case generation with EvoMaster. ACM Trans. Softw. Eng. Methodol.
TOSEM 28(1), 3 (2019)

Arcuri, A.: Automated black-and white-box testing of restful APIs with EvoMaster. IEEE Softw. 38(3),
72–78 (2020)

Arcuri, A., Galeotti, J.P.: SQL data generation to enhance search-based system testing. In: Proceedings of
the Genetic and Evolutionary Computation Conference, pp. 1390–1398. Association for Computing
Machinery, New York, NY, USA, GECCO ’19 (2019). https://​doi.​org/​10.​1145/​33217​07.​33217​32

Arcuri, A., Galeotti, J.P.: Handling SQL databases in automated system test generation. ACM Trans. Softw.
Eng. Methodol. TOSEM 29(4), 1–31 (2020a)

Arcuri, A., Galeotti, J.P.: Testability transformations for existing APIs. In: 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST), pp. 153–163. IEEE (2020b)

Arcuri, A., Galeotti, J.P.: Enhancing search-based testing with testability transformations for existing APIs.
ACM Trans. Softw. Eng. Methodol. TOSEM 31(1), 1–34 (2021)

Arcuri, A., Galeotti, J.P., Marculescu, B., et al.: EvoMaster: a search-based system test generation tool. J.
Open Source Softw. 6(57), 2153 (2021)

Arcuri, A., Zhang, M., Galeotti, J.P.: Advanced white-box heuristics for search-based fuzzing of rest APIs
(2023a). arXiv preprint arXiv:​2309.​08360

Arcuri, A., Zhang, M., Golmohammadi, A., et al.: Emb: a curated corpus of web/enterprise applications and
library support for software testing research. In: 2023 IEEE Conference on Software Testing, Verifica-
tion and Validation (ICST), pp. 433–442. IEEE (2023b)

Arcuri, A., Zhang, M., Belhadi, A., et al.: Emresearch/evomaster: v3.0.0. (2024). https://​doi.​org/​10.​5281/​
zenodo.​10932​122

Atlidakis, V., Godefroid, P., Polishchuk, M.: Restler: Stateful REST API fuzzing. In: ACM/IEEE Interna-
tional Conference on Software Engineering (ICSE), pp. 748–758 (2019)

Belhadi, A., Zhang, M., Arcuri, A.: Random testing and evolutionary testing for fuzzing GraphQL APIs.
ACM Trans. Web 18, 1–41 (2023)

Fraser, G., Arcuri, A.: EvoSuite: automatic generation for object-oriented software. In: ACM Symposium on
the Foundations of Software Engineering (FSE), pp. 416–419 (2011)

Giamattei, L., Guerriero, A., Pietrantuono, R., et al.: Automated functional and robustness testing of micros-
ervice architectures. J. Syst. Softw. 207, 111857 (2023)

Golmohammadi, A., Zhang, M., Arcuri, A.: NET/C# instrumentation for search-based software testing.
Softw. Qual. J. 31, 1–27 (2023a)

Golmohammadi, A., Zhang, M., Arcuri, A.: Testing restful APIs: a survey. ACM Trans. Softw. Eng. Meth-
odol. (2023b). https://​doi.​org/​10.​1145/​36171​75

Hatfield-Dodds, Z., Dygalo, D.: Deriving semantics-aware fuzzers from web API schemas. In: 2022 IEEE/
ACM 44th International Conference on Software Engineering: Companion Proceedings (ICSE-Com-
panion), pp. 345–346. IEEE (2022)

Karlsson, S., Čaušević, A., Sundmark, D.: Automatic property-based testing of GraphQL APIs (2020). arXiv
preprint arXiv:​2012.​07380

Karlsson, S., Jongeling, R., Causevic, A., et al.: Exploring behaviours of restful APIs in an industrial setting
(2023). arXiv preprint arXiv:​2310.​17318

Kim, M., Xin, Q., Sinha, S., et al.: Automated test generation for rest APIs: No time to rest yet. In: Pro-
ceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis, pp.
289–301. Association for Computing Machinery, New York, NY, USA, ISSTA 2022 (2022). https://​doi.​
org/​10.​1145/​35337​67.​35344​01,

https://doi.org/10.1145/3321707.3321732
http://arxiv.org/abs/2309.08360
https://doi.org/10.5281/zenodo.10932122
https://doi.org/10.5281/zenodo.10932122
https://doi.org/10.1145/3617175
http://arxiv.org/abs/2012.07380
http://arxiv.org/abs/2310.17318
https://doi.org/10.1145/3533767.3534401
https://doi.org/10.1145/3533767.3534401

	 Automated Software Engineering (2025) 32:4 4   Page 10 of 11

Kim, M., Corradini, D., Sinha, S., et al.: Enhancing rest API testing with NLP techniques. In: Proceedings of
the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis, pp. 1232–1243
(2023a)

Kim, M., Sinha, S., Orso, A.: Adaptive rest API testing with reinforcement learning. In: 2023 38th IEEE/
ACM International Conference on Automated Software Engineering (ASE), pp. 446–458. IEEE
(2023b)

Laaber, C., Yue, T., Ali, S., et al.: Automated test generation for medical rules web services: a case study at
the cancer registry of norway. In: ACM Symposium on the Foundations of Software Engineering (FSE)
(2023)

Laranjeiro, N., Agnelo, J., Bernardino, J.: A black box tool for robustness testing of rest services. IEEE
Access 9, 24738–24754 (2021)

Liu, Y., Li, Y., Deng, G., et al.: Morest: Model-based restful API testing with execution feedback. In: ACM/
IEEE International Conference on Software Engineering (ICSE) (2022)

Marculescu, B., Zhang, M., Arcuri, A.: On the faults found in rest APIs by automated test generation. ACM
Trans. Softw. Eng. Methodol. TOSEM 31(3), 1–43 (2022)

Martin-Lopez, A., Arcuri, A., Segura, S., et al.: Black-box and white-box test case generation for restful
APIs: Enemies or allies? In: 2021 IEEE 32nd International Symposium on Software Reliability Engi-
neering (ISSRE), pp. 231–241. IEEE (2021a)

Martin-Lopez, A., Segura, S., Ruiz-Cortés, A.: RESTest: automated black-box testing of RESTful web APIs.
In: ACM International Symposium on Software Testing and Analysis (ISSTA), pp. 682–685. ACM
(2021b)

Newman, S.: Building Microservices. O’Reilly Media Inc, Sebastopol (2021)
Quiña-Mera, A., Fernandez, P., García, J.M., et al.: Graphql: a systematic mapping study. ACM Comput.

Surv. 55(10), 1–35 (2023)
Rajesh, R.: Spring Microservices. Packt Publishing Ltd, Birmingham (2016)
Sahin, O., Akay, B.: A discrete dynamic artificial bee colony with hyper-scout for restful web service API test

suite generation. Appl. Soft Comput. 104, 107246 (2021)
Seran, S., Zhang, M., Arcuri, A.: Search-based mock generation of external web service interactions. In:

International Symposium on Search Based Software Engineering (SSBSE). Springer (2023)
Stallenberg, D., Olsthoorn, M., Panichella, A.: Improving test case generation for rest APIs through hierarchi-

cal clustering. In: 2021 36th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 117–128. IEEE (2021)

Veldkamp, L., Olsthoorn, M., Panichella, A.: Grammar-based evolutionary fuzzing for JSON-RPC APIs. In:
The 16th International Workshop on Search-Based and Fuzz Testing. IEEE/ACM (2023)

Viglianisi, E., Dallago, M., Ceccato, M.: Resttestgen: Automated black-box testing of restful APIs. In: IEEE
International Conference on Software Testing, Verification and Validation (ICST). IEEE (2020)

Wu, H., Xu, L., Niu, X., et al.: Combinatorial testing of restful APIs. In: ACM/IEEE International Confer-
ence on Software Engineering (ICSE) (2022)

Yandrapally, R., Sinha, S., Tzoref-Brill, R., et al.: Carving ui tests to generate API tests and API specification.
In: ACM/IEEE International Conference on Software Engineering (ICSE) (2023)

Zetterlund, L., Tiwari, D., Monperrus, M., et al.: Harvesting production graphql queries to detect schema
faults. In: 2022 IEEE Conference on Software Testing, Verification and Validation (ICST), pp. 365–
376. IEEE (2022)

Zhang, M., Arcuri, A.: Adaptive hypermutation for search-based system test generation: a study on rest APIs
with EvoMaster. ACM Trans. Softw. Eng. Methodol. TOSEM 31(1), 1–52 (2021a)

Zhang, M,, Arcuri, A.: Enhancing resource-based test case generation for restful APIs with SQL handling.
In: International Symposium on Search Based Software Engineering, pp 103–117. Springer (2021b)

Zhang, M., Arcuri, A.: Open problems in fuzzing restful APIs: a comparison of tools (2023). https://​doi.​org/​
10.​1145/​35972​05

Zhang, M., Marculescu, B., Arcuri, A.: Resource-based test case generation for restful web services. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pp. 1426–1434 (2019)

Zhang, M., Marculescu, B., Arcuri, A.: Resource and dependency based test case generation for restful web
services. Empir. Softw. Eng. 26(4), 1–61 (2021)

Zhang, M., Arcuri, A., Li, Y., et al.: Fuzzing microservices in industry: experience of applying evomaster at
meituan (2022a). https://​doi.​org/​10.​48550/​ARXIV.​2208.​03988

Zhang, M., Belhadi, A., Arcuri, A.: Javascript instrumentation for search-based software testing: a study
with restful APIs. In: IEEE International Conference on Software Testing, Verification and Validation
(ICST). IEEE (2022b)

https://doi.org/10.1145/3597205
https://doi.org/10.1145/3597205
https://doi.org/10.48550/ARXIV.2208.03988

Automated Software Engineering (2025) 32:4 	 Page 11 of 11  4

Authors and Affiliations

Andrea Arcuri1,2 · Man Zhang3 · Susruthan Seran1 · Juan Pablo Galeotti1,4 ·
Amid Golmohammadi1 · Onur Duman1 · Agustina Aldasoro4 · Hernan Ghianni4

 *	 Andrea Arcuri
	 andrea.arcuri@kristiania.no

	 Man Zhang
	 manzhang@buaa.edu.cn

	 Susruthan Seran
	 susruthan.seran@kristiania.no

	 Juan Pablo Galeotti
	 jgaleotti@dc.uba.ar

	 Amid Golmohammadi
	 amid.golmohammadi@kristiania.no

	 Onur Duman
	 onur.duman@Kristiania.no

	 Agustina Aldasoro
	 aaldasoro@dc.uba.ar

	 Hernan Ghianni
	 hghianni@dc.uba.ar

1	 School of Economics, Innovation, and Technology, Kristiania University College, Kirkegata
24‑26, 0153 Oslo, Norway

2	 Department of Computer Science, Oslo Metropolitan University, Pilestredet 35, 0166 Oslo,
Norway

3	 Beihang University, Beijing, China
4	 University of Buenos Aires, Buenos Aires, Argentina

Zhang, M., Arcuri, A., Li, Y., et al.: White-box fuzzing RPC-based APIs with EvoMaster: an industrial case
study. ACM Trans. Softw. Eng. Methodol. 32(5), 1–38 (2023a)

Zhang, M., Belhadi, A., Arcuri, A.: JavaScript SBST heuristics to enable effective fuzzing of NodeJS web
APIs. ACM Trans. Softw. Eng. Methodol. 32, 1–29 (2023b)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Tool report: EvoMaster—black and white box search-based fuzzing for REST, GraphQL and RPC APIs
	Abstract
	1 Introduction
	2 The tool
	3 Enhancements in EvoMaster 3.0.0
	4 Usage by other researchers
	5 Usage in industry
	6 Related work
	7 Conclusion
	Acknowledgements
	References

