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Multi-level thresholding for image segmentation is one of the key techniques in image processing. 
Although numerous methods have been introduced, it remains challenging to achieve stable and 
satisfactory thresholds when segmenting images with various unknown properties. This paper 
proposes an equilibrium optimizer algorithm to find the optimal multi-level thresholds for grayscale 
images. The proposed algorithm AEO (advanced equilibrium optimizer) uses two sub-populations to 
balance exploration and exploitation during the multi-level threshold search process. Two mutation 
schemes are proposed for the sub-populations to prevent them from being trapped in local optima. 
AEO offers a repair function to avoid generating duplicate thresholds. The performance of AEO 
is evaluated on multiple benchmark images. Experimental results demonstrate that AEO has an 
outstanding ability for multi-level threshold image segmentation in terms of cross-entropy, signal-to-
noise ratio (PSNR), structural similarity index measure (SSIM), and feature similarity index (FSIM).
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Image segmentation is an essential technology in computer vision that partitions an image into related, uniform, 
and non-overlapping regions1–3. These regions consist of image pixels with similar feature values. Its purpose is 
to simplify and structure complex image information, and it establishes the foundation for subsequent image 
analysis, feature extraction, and object recognition4,5. The efficiency and accuracy of image processing can be 
improved by using image segmentation to extract objects and regions of interest6,7.

Image segmentation is widely utilized in various fields8–10. In medical image processing, segmenting organs 
and lesions can aid doctors in diagnosing and planning treatment11,12. In autonomous driving, segmenting 
roads, pedestrians, and vehicles enhances environmental perception and supports decision-making13. In 
remote sensing image analysis, segmenting land cover types supports environmental monitoring and resource 
management14,15. Other applications include security monitoring, robot vision, industrial inspection, and more. 
Image segmentation provides refined and intelligent solutions for these fields16–18.

Classic image segmentation methods include: (1) Boundary detection, including edge detection, boundary 
tracking, etc. These methods detect edges by utilizing the discontinuity in pixel intensity values. (2) Region 
segmentation, including threshold segmentation, region growth, and region merging. Image thresholding is a 
common and simple way to analyze images, and there are two main types of techniques: bi-level and multi-level 
thresholding19,20. Bi-level thresholding produces a binary image where one region corresponds to objects, and 
the complementary region represents the background. In contrast, multi-level thresholding divides an image 
into more than two regions21,22.

For decades, it has been a challenge to choose the optimal multi-level thresholds, which is an NP-hard 
problem23,24. Generally, thresholding can be further divided into parametric and non-parametric methods 
by optimizing a criterion function defined from image histograms25,26. Parametric methods assume that the 
grayscale distribution of images follows a given statistical model, and thresholds are determined by estimating 
the parameters of this distribution. However, these approaches usually result in nonlinear estimation difficulties 
and demand considerable computational resources. Non-parametric methods, on the other hand, find the 
optimal threshold based on certain discriminant selection criteria such as inter-class variance, Bayesian error, 
and entropy. Non-parametric methods are flexible and they have been shown to be more robust and accurate. 
The computational burden of classical exhaustive searches increases significantly as the threshold increases.
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Meta-heuristic algorithms provide an efficient approach to generate near-optimal solutions at a small 
computational cost when solving complex optimization problems27–29. Consequently, the selection of optimal 
thresholds is regarded as a single-objective optimization problem. In recent years, meta-heuristic algorithms 
have been brought to solve multi-level threshold problems, such as particle swarm optimization (PSO)30, 
artificial bee colony algorithm (ABC)31, and differential evolution (DE)32.

Motivation
Although the aforementioned algorithms provide a good solution, they generally lack global search capability and 
tend to produce duplicate thresholds in low-dimensional environments. This paper presents a multi-threshold 
image segmentation model based on equilibrium optimizer (EO). EO is a meta-heuristic algorithm inspired by 
the concepts of equilibrium and dynamic balance in physics. It simulates the interactions among particles in a 
system to find optimal solutions by adjusting their positions. EO has been applied in various research fields and 
applications, including feature selection33, optimization tasks34, job shop scheduling35, and image registration36. 
The original EO is easy to falling into local traps, so we bring a multi-population to balance exploration and 
exploitation. The initial population is divided into two sub-populations: one for exploration and the other for 
exploitation. The sub-populations exchange information regularly and combine their search results to share 
and integrate optimal solutions. Each solution consists of a set of values representing the thresholds. In order to 
evaluate the quality of these solutions, cross-entropy is used as the objective function, and the best solution has 
the smallest value. Duplication may happen because the threshold for image segmentation is limited to the range 
of 1 to 255. Based on this, we propose a repair method for solutions. The followings are the main contributions: 

	1.	� Establish a multi-population approach to balance global search and local optimization for multi-level thresh-
olds.

	2.	� Provide two mutation methods to enable the algorithm to thoroughly search thresholds.
	3.	� Develop a repair strategy to prevent duplicate thresholds within a solution.The structure of this paper is as 

follows: “Related works” reviews the latest research progress in image segmentation. “Multi-level threshold 
image segmentation” details the multi-level image thresholding method based on EO. “Experimental results 
and analysis” tests the performance of the proposed algorithm using multiple images and algorithms. “Con-
clusions” summarizes the work and discusses future prospects.

Related works
Generally, image segmentation is defined as the process of grouping homogeneous pixels of an image into a class, 
and there are many techniques available to accomplish this task. Image segmentation is considered one of the 
most important steps in computer vision and image processing, and it has been applied to different fields, such 
as medical imaging, remote sensing, crack detection, and security monitoring. Table 1 shows a summary of some 
image segmentation techniques proposed in the literature.

AOA is very strong in exploration, and HHO is also quite powerful in exploitation during the early stages. 
Consequently, Qiao et al. utilized the characteristics of these algorithms for local and global searches throughout 
the entire search space to find the optimal solution41. Otsu and Kapur’s thresholding methods are two well-
known methods that maximize the inter-class variance and entropy in grayscale image histograms, respectively. 
Both methods are designed for bi-level thresholding, but a lot of computation is required to adapt them for 
multi-level image thresholding. Rahkar et al. utilized a hybrid algorithm of firefly and PSO to determine the 
optimal threshold for multi-level image thresholding37. Yang and Wu proposed a quantum-behaved PSO 

Reference Field Summary
37 General Hybrid firefly and PSO algorithm for six benchmark images
38 General A quantum-behaved PSO for six benchmark images
39 General Parallel multi-verse optimizer (MVO) for eight benchmark images
40 General EO for seven benchmark images
41 General Hybrid arithmetic optimization algorithm (AOA) and harris hawks optimization (HHO)
42 Medical Snake optimizer (SO) for color image segmentation in agricultural diseases
43 Medical PSO for 2D MRI images
44 Medical PSO for brain tumor images
45 Medical Sailfish optimizer algorithm (SOA) for abdominal, lung, and brain images
46 Remote sensing Ant colony optimization (ACO), PSO, and genetic algorithm (GA) for long-term detection
47 Remote sensing DE for air pollution
48 Remote sensing Cuckoo search (CS) based on Renyi entropy
49 Remote sensing African vultures optimization algorithm (AVOA) for Geological images
50 Crack detection Invasive weed optimization algorithm (IWOA) for bi-level thresholding
3 Crack detection PSO based on the minimum arithmetic-geometric divergence
51 Security monitoring A hybrid algorithm for finding spoiled food
52 Security monitoring PSO for PCB defect detection

Table 1.  Summary of image segmentation methods.
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(NrQPSO) algorithm to find the optimal multi-level threshold for grayscale images38. A non-revisiting scheme 
is used to avoid re-evaluating the candidate solutions that have already been evaluated. To reduce unnecessary 
computational costs, NrQPSO provides an automatic stopping mechanism that measures the exploration progress 
and stops the algorithm in a natural way. Wang et al. proposed a parallel MVO (PMVO)39. The initial solutions 
are arranged in random groups, and the information from each group is shared after each fixed iteration. This 
significantly improves the collaborative nature of the MVO algorithm and reduces the drawbacks of premature 
convergence, search stagnation, and easily falling into the local optimal search space. PMVO demonstrates 
exceptional performance in image segmentation.

Image segmentation is a challenging task in magnetic resonance imaging (MRI) due to various tumor types, 
sizes, locations, and shapes. Gtifa et al. presented an effective method for segmenting brain tumors in 3D that 
utilizes an enhanced PSO43. This algorithm converts 2D images into the topological relationships of slices of 3D 
MRI images. Some brain tumors may exhibit complex ’bottleneck’ shapes, which are essentially circular with 
long, tapered, and blurry tails. This leads to difficulties in image segmentation, particularly around the extended 
tail regions or the ’bottleneck’ areas. Zhang et al. improved a random position search method with a PSO 
algorithm to segment brain tumor images in an attempt to solve this problem44. Shajin et al. proposed a multi-
level threshold SOA based on Levy flight, chaos, and opposition for precise medical image segmentation45. The 
optimal multi-level thresholds are utilized to segment abdominal, lung, and brain images using Otsu entropy 
and Kapur entropy.

Remote sensing images carry a vast amount of critical information, and image segmentation helps analyze 
remote sensing data. Sheoran et al. introduced the application of ACO, PSO, and GA to optimize remote sensing 
image processes46. The detection of long-term changes over time can be achieved by segmenting remote sensing 
images into different sub-regions. Ramadas et al. applied a divergent DE algorithm to segment the collected 
remote sensing images47. The proposed algorithm effectively detects air quality and significantly reduces 
computation time. Pare et al. combined CS with Renyi entropy to determine the optimal threshold48. They 
modify the Levy flight step size to enhance convergence speed, and this algorithm achieves precise segmentation 
with low time complexity.

Gharehchopogh et al. used an improved AVOA49, and employed Kapur entropy, Tsallis entropy, and Otsu 
entropy as evaluation criteria. The quantum rotation gate mechanism increases population diversity during the 
optimization phase and improves the performance by escaping local traps. The association strategy method 
is used to obtain and search for the optimal solution quickly. These two mechanisms increase the diversity of 
solutions produced at all optimization stages, as AVOA mainly focuses on the exploration phase during the early 
iterations.

Some grayscale histograms of reinforced concrete bridge crack images are unimodal, but more often they are 
multimodal. Solving the multimodal search space is a complex and exhaustive task. Abdelkader et al. brought 
a detection method based on adaptive multi-objective optimization50. The proposed method combines the 
flexibility of information theory functions with the invasive weed optimization algorithm (IWOA) for bi-level 
thresholding. This approach improves the performance of image segmentation for reinforced concrete bridge 
crack images. Nie et al. proposed an enhanced PSO algorithm with local random perturbations3. For crack 
detection, they utilize a threshold criterion based on the minimum arithmetic-geometric divergence, which 
adaptively determines the threshold according to the distribution of pixel values in images. The enhanced PSO 
algorithm increases the diversity of candidate solutions and improves global convergence performance.

Goel et al. developed an algorithm based on visual data to assess food quality and deployed it in food storage 
facilities to detect early signs of spoilage51. They introduce various segmentation techniques to identify spoiled 
food effectively. Additionally, they create a hybrid algorithm of moth flame optimization (MFO), gravitational 
search algorithm (GSA), and PSO to enhance K-means clustering and multi-level thresholding. In view of the 
problems of low accuracy, complex equipment, and high costs in the automatic detection of printed circuit 
board (PCB) defects, Chang et al. proposed a method for accurately locating these defects52. They employ PSO 
to enhance the efficiency of image segmentation. Additionally, they integrate the strengths of the fast library for 
approximate nearest neighbors (FLANN) algorithm and the speeded-up robust features (SURF) method. This 
combination enhances the performance of feature matching and reduces registration errors in images.

As a new meta-heuristic algorithm, Abdel-Basset et al. applied EO to image segmentation40. Experiments 
show that EO is superior to whale optimization algorithm (WOA), bat algorithm (BA), sine-cosine algorithm 
(SCA), salp swarm algorithm (SSA), HHO, crow search algorithm (CSA), PSO on the Berkeley dataset in terms 
of peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and maximum absolute error.

In the algorithms mentioned above, such as HHO and ChOA, etc., when they are searching for the optimal 
threshold, these algorithms may fall into the local optima and encounter duplicate thresholds. The advanced 
EO algorithm (AEO) specifically designs mutation and duplicate solution repair mechanism to address multi-
threshold image segmentation.

Multi-level threshold image segmentation
Image segmentation divides an image into a set of non-overlapping regions, each with different features, so 
that some interesting objects are highlighted. This paper concentrates on pixel-based image segmentation, 
accomplished by analyzing image features and pixel distances. Figure 1 illustrates the specific image segmentation 
process.

Objective function
Cross-entropy is a mathematically sound and theoretically justified objective function used in multi-threshold 
image classification that is directly aimed at reducing classification errors. Compared to other criteria, cross-
entropy effectively manages probability distributions and adapts thresholds according to local and global 
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environments. By minimizing the difference between predicted and actual class distributions, cross-entropy 
ensures that the algorithm learns to classify pixels more accurately, so it is particularly well-suited for complex 
classification tasks such as multi-threshold image processing.

We utilize the minimization of cross-entropy as the segmentation criterion and introduce the concept of 
selecting multiple thresholds in grayscale images. Since image histograms can contain valleys and wide peaks 
with different heights, the cross-entropy method addresses these issues by measuring the uniformity of histogram 
information between the original and segmented images.

A lower cross-entropy value indicates lower uncertainty and higher uniformity between the original and 
thresholded images. Let I be the original image and h(i), i = 1, 2, ..., L be the corresponding histogram. The 
threshold (th) is used to construct the thresholded image (Ith) as follows:

	 Ith(x, y) = µ(k, m) if(k < I(x, y) <= m)� (1)

	
µ(k, m) =

∑m−1
i=k

ih(i)∑m−1
i=k

h(i)
� (2)

where I(x, y) is the gray level of the pixel at coordinates (x, y), and k and m are threshold values.

53,54 suggested a more efficient recursive programming approach to find the cross-entropy for gray images, as 
depicted in Equation (3).

	
f(th) =

L∑
i=1

ih(i)log(i) −
nT h∑
i=1

Hi � (3)

	
H1 =

th1−1∑
i=1

ih(i)log(µ(1, th1)) � (4)

	

Hk =
thk−1∑

i=thk−1

ih(i)log(µ(thk−1, thk)), 1 < k < nT h � (5)

	
HnT h =

L∑
i=thnT h

ih(i)log(µ(thnT h, L + 1)) � (6)

where th = [th1, th2, ..., thnT h], nTh is the number of thresholds, and L represents the gray levels of an image.

Advanced equilibrium optimizer
Meta-heuristic algorithms are required to balance exploration and exploitation in multi-level threshold 
segmentation of images. Exploitation results in the algorithms failing to fully cover the search space and reduces 
population diversity. On the other hand, exploration causes a slow convergence of them and impedes the 
ability to find the optimal solution in potential threshold areas. We employ a multi-population EO algorithm 
to segment images with multi-thresholds. The population is split into two sub-populations: one for exploration 
and the other for exploitation. This method increases the search space coverage and prevents the algorithm from 
prematurely converging to a local optimum. The sub-populations regularly share information and combine their 
findings, thereby improving the global search capability and search efficiency. This multi-population strategy 

Figure 1.  The image segmentation process.
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increases the probability of finding the global optimal threshold, and Algorithm 1 describes the pseudo code of 
AEO.

Algorithm 1.  AEO

Equilibrium optimizer
In the original EO, position updates are performed using the equilibrium pool and Equation (7)55.

	
Xi(it + 1) =Xpool(it) + (Xi(it) − Xpool(it))F + G

λ
(1 − F ) � (7)

	
t =(1 − it

MAX_IT
)(2 it

MAX_IT
)

� (8)

	 F =sign(r − 0.5)[e−λt − 1]. � (9)

	
GCP =

{ 0.5r1 if(r2 ≥ 0.5)
0 else � (10)

	 G =F ∗ GCP ∗ (Xpool − Xi) � (11)

where Xi implies the position of individual i, and it represents the current iteration. MAX_IT  represents the 
maximum iteration. Sign is the signum function of Matlab. λ, r, r1, and r2 are random values between [0,1]. 
The equilibrium pool consists of four optimal solutions and their average position (Xavg), and Xpool is selected 
randomly from the pool. 

	1.	� Exploration In Equation (7), if the generated random number r2 is less than 0.5, G won’t be involved in the 
position update, thus reducing population diversity. Sub-population P1 is responsible for exploration, and we 
optimize its equation to: 

	 GCP = 0.5 ∗ rand(1, nT h)� (12)

 Equation (12) ensures that P1 maintains diversity and enhances exploration capability.

	2.	� Exploitation Xavg  in the equilibrium pool increases the random possibility of the population, but it slows 
down convergence. Sub-population P2 cancels this position and Equation (7) is modified to: 
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	 Xi(it + 1) = Xpool(it) + (Xi(it) − Xpool(it))F � (13)

Equation (13) guarantees that P2 converges quickly to the four optimal solutions and enhances its exploitation 
capability.

Mutation

Mutation is instrumental in EO. It increases population diversity by introducing random changes and prevents 
EO from converging to local optimal solutions too early. A larger step size aids in exploring new areas of the 
search space and enhancing global search ability, while a smaller step size helps in refining the search and im-
proving the accuracy of local exploitation. If the four optimal solutions remain unchanged after 10 iterations, 
P1 has not yet discovered the potential optimal solution area. It needs to be forced P1 to change the search area 
through mutation. P2 must fine-tune its search direction to find the optimal solution when it is not updated 
in 10 iterations. P2 follows the mutation process described in Algorithm 2, while P1 mutates in the manner 
shown in Algorithm 3: 

Algorithm 2.  Mutation1

  

Algorithm 3.  Mutation2

In37, PSO focuses more on local search exploitation, while FA excels in global exploration. The hybrid 
algorithm is not always dynamically adjustable, and in some cases, it can result in premature convergence or 
inefficient exploration. AEO’s two mutations provide a consistent balance and robustness in finding high-quality 
solutions, especially for complex problems such as image segmentation, where local fine-tuning and global 

Figure 2.  The examples of the proposed mutations.
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exploration are necessary. The mutation operation perturbs certain parts of the existing solutions, so that AEO 
explores new areas in the search space for improving global search capability and solution quality. The algorithm 
continuously discovers and optimizes solutions during the iteration process. For ease of understanding, Figure 
2 shows examples of two mutations.

Repairing solutions

In the process of multi-threshold image segmentation, the presence of the same threshold will lead to loss of 
detail information and unstable segmentation. Segmentation algorithms cannot accurately distinguish between 
different regions and often ignore important features. However, duplication may occur since the threshold for 
image segmentation is constrained to the range of 1 to 255. To address this issue, we propose a method for 
repairing the solutions, as shown in Algorithm 4 and Figure 3. 

Algorithm 4.  Repairing operation

Computational complexity
The AEO algorithm mainly includes position update and objective function calculation, so its time complexity 
for each iteration is O(MAX_IT *N*dim) and O(MAX_IT *N*g), respectively. g represents the execution 
time of the objective function, while N is the population size. The maximum time complexity of AEO is 
O(MAX_IT *N*dim+MAX_IT *N*g).

Experimental results and analysis
Chimp optimization algorithm (ChOA)56, EO40, HHO53, SSA57 are state-of-the-art image segmentation 
algorithms used to evaluate the performance of the proposed algorithm AEO. The population size of these 

Algorithm Key parameters

EO & AEO a1=2; a2=1; GP=0.5;

HHO E1=2; −1 < E0 < 1;

ChOA C1G1=C1G2=1.95; C1G3=C1G4=2.5; C2G1=G2G2=C2G3=C2G4=2.5;

SSA c1 = 2 * exp (-(4*it/MAX_IT )2)

Table 2.  The key parameters of the compared algorithms.

 

Figure 3.  The examples of the proposed repairing method.
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algorithms is set to 30, with a maximum of 100 iterations. Table 2 exhibits the basic parameter settings of the 
algorithms to ensure fairness in the experiments.

Experimental analysis on benchmark images
Our experiments use nine test images from Berkeley University Dataset58 for testing the performance of our 
algorithm, namely Airplane, Barbara, Cameraman, Chelsea, Coffee, Livingroom, Mandrill, Monarch, and 
Peppers, and it has been widely used to benchmark segmentation algorithms in the literature37–40.

High-level thresholds are usually employed to evaluate the quality of image segmentation algorithms. 
According to the reports by53,56, the numbers of thresholds (nTh) selected are 2, 3, 4, and 5. Before segmenting, 
we first transform color images into 8-bit grayscale images of 256*256 pixels. The data presented in this paper 
are derived from 20 runs of all the algorithms.

From the results in Table 3, it is evident that AEO achieves the optimal solutions on 7, 5, 6, and 6 images when 
nTh=2, 3, 4, and 5, respectively. AEO significantly outperforms the comparison algorithms in cross-entropy. 
EO performs better than HHO and SSA, while ChOA exhibits the poorest performance. We further utilize 
the Friedmanran rank test, a nonparametric statistical method, to compare the differences of multiple related 
results. The average ranks of AEO, EO, HHO, ChOA, and SSA are 1.53, 2.81, 2.81, 5, and 2.86, respectively. 
The superior results of AEO can be attributed to the introduction of two cooperative sub-populations, which 
allow the solution space to be more thoroughly utilized. AEO demonstrates more effective search capabilities 
to achieve better results. The algorithms perform closest to the theoretical optimal solution in Barbara, while 
their performance is the worst in Coffee. AEO excels in correctly distinguishing target regions from background 

Level Image AEO EO HHO ChOA SSA

 2

Airplane 0.2298 0.2299 0.2299 0.2727 0.2299

Barbara 0.0252 0.0277 0.0325 0.0707 0.0285

Cameraman 0.4196 0.4184 0.4194 0.4741 0.4191

Chelsea 0.2930 0.2935 0.2931 0.3782 0.2932

Coffee 0.7046 0.7054 0.7049 0.7969 0.7049

Livingroom 0.5071 0.5076 0.5072 0.6008 0.5073

Mandrill 0.2958 0.2964 0.2967 0.3601 0.2965

Monarch 0.3592 0.3580 0.3563 0.4362 0.3561

Peppers 0.5083 0.5085 0.5087 0.5668 0.5085

3

Airplane 0.2298 0.2301 0.2299 0.2770 0.2299

Barbara 0.0276 0.0252 0.0286 0.0715 0.0282

Cameraman 0.4192 0.4185 0.4193 0.4903 0.4190

Chelsea 0.2930 0.2934 0.2933 0.3508 0.2932

Coffee 0.7046 0.7051 0.7049 0.7859 0.7049

Livingroom 0.5071 0.5077 0.5071 0.5638 0.5072

Mandrill 0.2958 0.2963 0.2961 0.3868 0.2961

Monarch 0.3592 0.3566 0.3648 0.4199 0.3602

Peppers 0.5083 0.5084 0.5083 0.5684 0.5083

4

Airplane 0.2298 0.2301 0.2344 0.2703 0.2314

Barbara 0.0309 0.0297 0.0358 0.0669 0.0321

Cameraman 0.4191 0.4194 0.4187 0.4606 0.4192

Chelsea 0.2930 0.2935 0.2931 0.3962 0.2932

Coffee 0.7046 0.7051 0.7049 0.8135 0.7049

Livingroom 0.5071 0.5076 0.5072 0.5569 0.5072

Mandrill 0.2958 0.2962 0.3009 0.3860 0.2976

Monarch 0.3592 0.3595 0.3577 0.4167 0.3576

Peppers 0.5083 0.5086 0.5113 0.5796 0.5094

5

Airplane 0.2298 0.2300 0.2301 0.4224 0.2301

Barbara 0.0270 0.0262 0.0316 0.0607 0.0283

Cameraman 0.4196 0.4192 0.4190 0.4591 0.4197

Chelsea 0.2930 0.2939 0.2945 0.3761 0.2941

Coffee 0.7046 0.7052 0.7052 0.7661 0.7052

Livingroom 0.5071 0.5075 0.5071 0.5963 0.5072

Mandrill 0.2958 0.2963 0.2961 0.4242 0.2961

Monarch 0.3577 0.3579 0.3572 0.4378 0.3571

Peppers 0.5083 0.5085 0.5129 0.6182 0.5099

Table 3.  The fitness values of the algorithms on the benchmark images. Significant values are in bold.
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areas. AEO accurately segmented images by measuring the difference between predicted and actual probability 
distributions.

We also examine the average CPU time required for each algorithm to complete 100 iterations, as shown in 
Table 4 (in seconds). It can be concluded that EO has fast computation because its running time is shorter than 
ChOA, AEO, HHO, and SSA. The computation time for AEO is longer due to the additional mechanisms to 
prevent local traps, as well as the position correction and sub-population communication. We also found that 
the running time difference between AEO and HHO is less than 0.01 seconds. However, the solution quality of 
AEO is superior to HHO. Nonetheless, its computation time remains manageable. In all cases where AEO is not 
the fastest algorithm, the average CPU time required by AEO is less than 18% compared to the fastest algorithm. 
In short, AEO’s performance is still acceptable for multi-level thresholding image segmentation.

To further evaluate the performance of these algorithms, we use PSNR, SSIM, and feature similarity index 
(FSIM) to check the quality of output images.

PSNR is a metric used to evaluate the quality of a reconstructed image compared to its original version. It 
is particularly useful in image compression, segmentation, and other image processing applications. PSNR is 
expressed in decibels (dB) and can be calculated using the following equations:

	
P SNR =10log10( L

MSE
) � (14)

Level Image AEO EO HHO ChOA SSA

2

Airplane 0.3387 0.2881 0.3483 0.3182 0.3250

Barbara 0.3771 0.3028 0.3619 0.3263 0.3354

Cameraman 0.3408 0.2896 0.3645 0.3164 0.3156

Chelsea 0.3456 0.2892 0.3499 0.3201 0.3183

Coffee 0.3380 0.2878 0.3468 0.3178 0.3242

Livingroom 0.3380 0.2888 0.3462 0.3187 0.3243

Mandrill 0.3496 0.2914 0.3507 0.3227 0.3306

Monarch 0.3381 0.2875 0.3468 0.3195 0.3241

Peppers 0.3364 0.2898 0.3504 0.3187 0.3255

3

Airplane 0.3418 0.2894 0.3509 0.3194 0.3274

Barbara 0.3880 0.3024 0.3591 0.3290 0.3398

Cameraman 0.3408 0.2864 0.3517 0.3175 0.3149

Chelsea 0.3456 0.2910 0.3546 0.3199 0.3188

Coffee 0.3454 0.2849 0.3470 0.3171 0.3258

Livingroom 0.3361 0.2875 0.3451 0.3180 0.3229

Mandrill 0.3478 0.2878 0.3506 0.3210 0.3287

Monarch 0.3425 0.2877 0.3495 0.3174 0.3266

Peppers 0.3371 0.2893 0.3468 0.3196 0.3244

4

Airplane 0.3395 0.2861 0.3467 0.3182 0.3241

Barbara 0.3836 0.3038 0.3606 0.3271 0.3382

Cameraman 0.3403 0.2870 0.3495 0.3212 0.3162

Chelsea 0.3514 0.2905 0.3518 0.3194 0.3204

Coffee 0.3388 0.2859 0.3443 0.3200 0.3230

Livingroom 0.3425 0.2848 0.3481 0.3183 0.3251

Mandrill 0.3460 0.2892 0.3498 0.3214 0.3283

Monarch 0.3374 0.2867 0.3493 0.3205 0.3245

Peppers 0.3418 0.2906 0.3464 0.3169 0.3263

5

Airplane 0.3410 0.2908 0.3472 0.3195 0.3263

Barbara 0.3818 0.3000 0.3590 0.3268 0.3362

Cameraman 0.3413 0.2872 0.3441 0.3200 0.3162

Chelsea 0.3516 0.2888 0.3565 0.3207 0.3204

Coffee 0.3369 0.2846 0.3448 0.3205 0.3140

Livingroom 0.3367 0.2857 0.3473 0.3180 0.3232

Mandrill 0.3483 0.2916 0.3513 0.3206 0.3304

Monarch 0.3400 0.2905 0.3469 0.3175 0.3258

Peppers 0.3463 0.2862 0.3451 0.3162 0.3259

Table 4.  The average running time of the algorithms on the benchmark images. Significant values are in bold.
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MSE = 1

MN

M−1∑
i=0

N−1∑
j=0

[I(i, j) − Ith(i, j)]2 � (15)

where M and N represent the length and width pixels of an image.

SSIM is used to measure the similarity of two images.

	
SSIM(x, y) = (2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2) � (16)

where µx and µy  are the averages of x and y, respectively. σ2
x and σ2

y  are the variances of x and y, respectively. 
σxy  is the covariance of x and y. C1 and C2 are small constants to stabilize the division with a weak denominator. 
Typically, C1 = (K1L)2 and C2 = (K2L)2, with K1 ≈ 0.01 and K2 ≈ 0.03.

FSIM combines phase congruency (PC) and gradient magnitude to evaluate the similarity between two images.

	
F SIM(x, y) =

∑
i
SL(i) · SP (i) · W (i)∑

i
W (i)

� (17)

Level Image AEO EO HHO ChOA SSA

2

Airplane 22.7977 22.7469 22.7824 22.4995 22.7801

Barbara 36.0394 35.2534 35.1534 29.9533 35.4912

Cameraman 22.5898 22.8931 22.6339 22.4283 22.5247

Chelsea 24.4050 24.3953 24.4047 23.1315 24.3965

Coffee 20.8108 20.8181 20.8086 20.6459 20.7034

Livingroom 22.3471 22.3370 22.3446 21.6939 22.3449

Mandrill 22.9328 22.9570 22.9558 21.7140 22.9163

Monarch 19.3626 19.4360 19.5186 18.3581 19.4391

Peppers 22.0450 22.0443 22.0473 21.7446 22.0478

3

Airplane 22.7932 22.7328 22.7616 22.0086 22.7425

Barbara 35.3271 35.7405 36.1063 29.8758 35.7246

Cameraman 22.6926 22.8282 22.6697 21.8937 22.6741

Chelsea 24.4072 24.3952 24.3946 23.4987 34.3949

Coffee 20.8086 20.8023 20.7979 20.7101 20.8032

Livingroom 22.3454 22.3321 22.3471 21.8897 22.3415

Mandrill 22.9246 22.9335 22.9521 21.3973 22.9312

Monarch 19.3540 19.5094 19.3897 18.8436 19.3276

Peppers 22.0438 22.0450 22.0564 21.5978 22.0425

4

Airplane 22.8015 22.7725 22.7148 22.0777 22.7834

Barbara 34.5485 35.3140 34.9118 30.8472 33.8273

Cameraman 22.6905 22.7079 22.7852 22.5535 22.6800

Chelsea 24.4072 24.3935 24.4035 22.9627 24.4057

Coffee 20.8142 20.7775 20.8166 20.5471 20.8187

Livingroom 22.3445 22.3391 22.3495 22.0458 22.3381

Mandrill 22.9316 22.9682 22.9316 21.6042 22.9317

Monarch 19.3617 19.4014 19.4542 18.4922 19.3863

Peppers 22.0468 22.0579 22.0142 21.6335 22.0396

5

Airplane 22.8015 22.7706 22.7613 19.6120 22.7869

Barbara 35.7486 35.8347 35.1857 31.1585 35.5897

Cameraman 22.5993 22.7433 22.7375 22.5143 22.6934

Chelsea 24.4081 24.3862 24.3748 23.1257 24.3974

Coffee 20.8060 20.7972 20.8364 20.8430 20.8025

Livingroom 22.3454 22.3518 22.3455 21.6994 22.3442

Mandrill 22.9331 22.9486 22.9598 19.2814 22.9636

Monarch 19.4204 19.4603 19.5192 18.4894 19.4663

Peppers 22.0498 22.0629 21.9937 21.2420 22.0291

Table 5.  The PSNR of the algorithms on the benchmark images. Significant values are in bold.
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where SL(i) is the similarity measure based on luminance, SP (i) is the similarity measure based on phase 
congruency, and W (i) is the weight assigned to each pixel based on its significance.

Table 5 lists the average PSNR values of the algorithms. From the results given in the table, it can be noted that for 
threshold levels of 2, 3, 4, and 5, AEO achieves the best PSNR in 4, 3, 2, and 2 test images, respectively. For nTh=4 
and 5, EO outperforms AEO in 4 and 3 images. The Friedmanran test reveals that the average ranks of AEO, EO, 
HHO, ChOA, and SSA are 2.42, 2.47, 2.44, 4.89, and 2.78, respectively. AEO demonstrates greater stability than 
EO, with less fluctuation in PSNR values. Even though AEO is inferior to EO when nTh=4 and 5, it can still be 
concluded that the proposed AEO generally produces segmented images with higher quality compared to other 
algorithms. The algorithms perform best in Barbara.

SSIM evaluates the performance of image segmentation algorithms in preserving image structure, brightness, 
and contrast. By comparing local regions between segmented images and original images, it quantifies the 
similarity in texture, edges, and detail retention. High SSIM values indicate that segmentation algorithms 
effectively retain the original features of images. According to the SSIM results in Table 6, it can be observed 
that AEO outperforms other algorithms at threshold levels 2, 4, and 5, and it has the best SSIM in 2, 3, 2, and 4 
out of 9 cases, respectively, which accounts for about 31%. EO and HHO exhibit similar results. Although EO 
achieves the same number of optimal solutions as AEO, its average rank value is 2.39, higher than AEO’s 2.36. 
This indicates that AEO’s stability in SSIM is superior to EO. From threshold levels 2 to 5, the proposed AEO 
provides higher SSIM values and high-quality segmented images based on the obtained thresholds.

Level Image AEO EO HHO ChOA SSA

2

Airplane 0.8272 0.8255 0.8267 0.8430 0.8265

Barbara 0.9080 0.8911 0.8791 0.7319 0.8954

Cameraman 0.7157 0.7224 0.7162 0.7248 0.7156

Chelsea 0.8222 0.8215 0.8224 0.7866 0.8220

Coffee 0.6741 0.6739 0.6737 0.6630 0.6737

Livingroom 0.7968 0.7973 0.7968 0.7771 0.7967

Mandrill 0.8499 0.8502 0.8503 0.8227 0.8503

Monarch 0.7838 0.7864 0.7893 0.7464 0.7861

Peppers 0.7687 0.7688 0.7686 0.7589 0.7687

3

Airplane 0.8271 0.8254 0.8260 0.8193 0.8255

Barbara 0.8912 0.9035 0.9043 0.7265 0.8906

Cameraman 0.7181 0.7211 0.7172 0.7167 0.7175

Chelsea 0.8226 0.8214 0.8219 0.7964 0.8220

Coffee 0.6742 0.6739 0.6741 0.6609 0.6741

Livingroom 0.7967 0.7974 0.7968 0.7824 0.7967

Mandrill 0.8497 0.8497 0.8502 0.8148 0.8497

Monarch 0.7836 0.7884 0.7859 0.7631 0.7826

Peppers 0.7688 0.7688 0.7689 0.7565 0.7688

4

Airplane 0.8274 0.8267 0.8278 0.8259 0.8273

Barbara 0.8726 0.8906 0.8714 0.7578 0.8712

Cameraman 0.7182 0.7178 0.7196 0.7216 0.7181

Chelsea 0.8226 0.8219 0.8224 0.7834 0.8223

Coffee 0.6740 0.6745 0.6737 0.6581 0.6739

Livingroom 0.7967 0.7971 0.7970 0.7874 0.7969

Mandrill 0.8499 0.8504 0.8498 0.8175 0.8498

Monarch 0.7838 0.7853 0.7873 0.7508 0.7855

Peppers 0.7688 0.7688 0.7673 0.7566 0.7683

5

Airplane 0.8274 0.8264 0.8260 0.7237 0.8262

Barbara 0.9001 0.9045 0.8821 0.7765 0.8956

Cameraman 0.7155 0.7183 0.7186 0.7238 0.7185

Chelsea 0.8227 0.8215 0.8216 0.7847 0.8219

Coffee 0.6743 0.6741 0.6735 0.6654 0.6740

Livingroom 0.7967 0.7971 0.7968 0.7778 0.7966

Mandrill 0.8499 0.8501 0.8504 0.7177 0.8496

Monarch 0.7859 0.7871 0.7895 0.7585 0.7853

Peppers 0.7688 0.7687 0.7676 0.7489 0.7687

Table 6.  The SSIM of the algorithms on the benchmark images. Significant values are in bold.
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FSIM assesses the performance of image segmentation algorithms in retaining image details and edge 
information by comparing the phase congruency and gradient magnitude between the original and segmented 
images. High FSIM values indicate excellent performance in these aspects. Table 7 illustrates the comparison 
results of AEO with other algorithms in terms of FSIM. At threshold levels 2, 3, 4, and 5, AEO outperforms the 
comparison algorithms. Especially at threshold levels 2, 3 and 5, AEO has a significant advantage. Moreover, it’s 
worth mentioning that AEO has the lowest average rank value out of all threshold levels, followed by EO, HHO, 
SSA, and ChOA. EO and HHO have similar performance at threshold level 5.

Level AEO EO HHO ChOA SSA

2 0.1866 0.1875 0.1902 0.2350 0.1996

3 0.1900 0.1909 0.1926 0.2390 0.1984

4 0.1964 0.1972 0.1988 0.2448 0.1985

5 0.1907 0.1915 0.1933 0.2387 0.1987

Table 8.  The fitness values of the algorithms on the deep crack images. Significant values are in bold.

 

Level Image AEO EO HHO ChOA SSA

 2

Airplane 0.8624 0.8613 0.8621 0.8588 0.8622

Barbara 0.9136 0.9064 0.9050 0.8610 0.9083

Cameraman 0.8610 0.8678 0.8618 0.8591 0.8615

Chelsea 0.8457 0.8451 0.8457 0.8131 0.8455

Coffee 0.8143 0.8140 0.8142 0.8084 0.8142

Livingroom 0.8429 0.8428 0.8429 0.8286 0.8429

Mandrill 0.8863 0.8869 0.8872 0.8689 0.8868

Monarch 0.8501 0.8489 0.8482 0.8680 0.8491

Peppers 0.8243 0.8243 0.8242 0.8166 0.8242

3

Airplane 0.8623 0.8612 0.8616 0.8459 0.8617

Barbara 0.9063 0.9122 0.9171 0.8586 0.9081

Cameraman 0.8634 0.8664 0.8627 0.8495 0.8631

Chelsea 0.8458 0.8449 0.8454 0.8230 0.8454

Coffee 0.8143 0.8140 0.8140 0.8085 0.8141

Livingroom 0.8429 0.8426 0.8429 0.8341 0.8428

Mandrill 0.8861 0.8862 0.8869 0.8642 0.8859

Monarch 0.8500 0.8478 0.8497 0.8595 0.8492

Peppers 0.8243 0.8243 0.8243 0.8141 0.8243

4

Airplane 0.8624 0.8618 0.8610 0.8510 0.8617

Barbara 0.8990 0.9094 0.9047 0.8709 0.9044

Cameraman 0.8633 0.8633 0.8653 0.8584 0.8640

Chelsea 0.8458 0.8454 0.8458 0.8101 0.8457

Coffee 0.8144 0.8136 0.8143 0.8034 0.8141

Livingroom 0.8429 0.8428 0.8429 0.8349 0.8431

Mandrill 0.8863 0.8872 0.8869 0.8664 0.8868

Monarch 0.8501 0.8500 0.8484 0.8685 0.8495

Peppers 0.8243 0.8244 0.8231 0.8127 0.8238

5

Airplane 0.8624 0.8620 0.8617 0.8128 0.8620

Barbara 0.9111 0.9137 0.9063 0.8727 0.9271

Cameraman 0.8609 0.8640 0.8642 0.8590 0.8630

Chelsea 0.8459 0.8450 0.8449 0.8121 0.8449

Coffee 0.8143 0.8138 0.8145 0.8097 0.8142

Livingroom 0.8429 0.8429 0.8429 0.8279 0.8429

Mandrill 0.8863 0.8866 0.8871 0.8126 0.8862

Monarch 0.8491 0.8491 0.8480 0.8665 0.8487

Peppers 0.8243 0.8243 0.8226 0.8063 0.8237

Table 7.  The FSIM of the algorithms on the benchmark images. Significant values are in bold.
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Experimental analysis on deep crack images
The second set of images is used to determine the performance of the algorithms in crack detection, and it consists 
of 500 images obtained from the Deep Crack Database59. Tables 8, 9, 10, 11 and 12 provide a comprehensive 
overview of the comparison results based on various metrics, including objective function values, running time, 
PSNR, SSIM, and FSIM. The results clearly indicate that the AEO algorithm excels across these performance 
indicators.

Specifically, AEO achieves the lowest objective function value at a threshold of 2, indicating a highly efficient 
segmentation at this setting, while it reaches the highest value at a threshold of 3. When ranking the algorithms 
based on their objective function values, AEO outperforms all others, followed by EO, HHO, SSA, and ChOA. 
Notably, EO demonstrates the fastest execution speed among the algorithms. AEO, although slightly slower, still 
exhibits reasonable efficiency, and outperforms HHO. The execution times across different thresholds do not 
vary significantly, and the algorithms maintain consistent performance regardless of the threshold values.

In terms of PSNR, AEO demonstrates superior performance at thresholds of 3 and 5 compared to 2 and 4, and 
it has ability to maintain high image quality in segmentation. Conversely, the other algorithms generally yield 
their best performance at a threshold of 5. When evaluating SSIM and FSIM, AEO consistently delivers better 
results than the comparison algorithms, it achieves optimal SSIM and FSIM values at a threshold of 2. These 
metrics are crucial as they indicate not just the accuracy of the segmentation, but also how well the segmented 
images preserve structural information relative to the original images.

In conclusion, the findings strongly suggest that AEO stands out as the most effective algorithm among the 
five metrics. This superior performance is attributed to its ability to effectively integrate global exploration with 
local search, and it balances exploration and exploitation better than other algorithms.

Conclusions
Complex algorithms can offer higher accuracy, but they often require more computational resources. It is 
important to consider the application’s constraints when balancing these factors. High-quality segmentation 

Level AEO EO HHO ChOA SSA

2 0.7787 0.7771 0.7762 0.7475 0.7678

3 0.7748 0.7733 0.7728 0.7467 0.7649

4 0.7760 0.7745 0.7738 0.7468 0.7658

5 0.7735 0.7721 0.7716 0.7447 0.7634

Table 12.  The FSIM of the algorithms on the deep crack images. Significant values are in bold.

 

Level AEO EO HHO ChOA SSA

2 0.7437 0.7415 0.7389 0.7072 0.7308

3 0.7420 0.7396 0.7374 0.7046 0.7287

4 0.7404 0.7385 0.7363 0.7055 0.7281

5 0.7423 0.7403 0.7378 0.7065 0.7297

Table 11.  The SSIM of the algorithms on the deep crack images. Significant values are in bold.

 

Level AEO EO HHO ChOA SSA

2 22.5741 22.5124 22.4377 21.3755 22.1540

3 22.5883 22.5204 22.4585 21.3653 22.1580

4 22.4684 22.4141 22.3532 21.3466 22.0764

5 22.5871 22.5308 22.4640 21.4487 22.1889

Table 10.  The PSNR of the algorithms on the deep crack images. Significant values are in bold.

 

Level AEO EO HHO ChOA SSA

2 172.7738 145.7688 175.6381 160.3513 159.6313

3 173.0267 145.9586 175.7741 160.4077 159.7977

4 172.9613 146.0909 175.8209 160.5211 159.8578

5 172.6752 145.9023 175.9485 160.5550 159.7108

Table 9.  The average running time of the algorithms on the deep crack images. Significant values are in bold.
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without excessive computational overhead can be achieved with the help of optimization techniques and hybrid 
models. This study introduces an advanced EO method for image segmentation. The proposed approach uses two 
sub-populations to search the threshold space and exchange information. We conduct a series of experiments 
to evaluate its performance and compare it with HHO, EO, ChOA, and SSA. The experimental results confirm 
the high quality of segmented images based on PSNR, FSIM, SSIM, and fitness values. The selection of control 
parameters significantly impacts the performance of AEO. Incorrect parameter tuning can lead to premature 
convergence (overfitting) or excessively long computational times. AEO can overfit when it focuses too much on 
specific training data features, particularly in tasks involving high-dimensional or noisy datasets. The algorithm’s 
performance on training data is excellent but performs poorly on unseen test data due to its failure to generalize. 
AEO acquires better feature extraction, object recognition, and image enhancement through parameter tuning. 
The population size is a key parameter for balancing exploration and exploitation. While larger populations 
improve exploration and diversity, they also increase computational costs. The optimal population size is usually 
set at 30 to 100 individuals. Iterations are crucial to the success of an algorithm in reaching the global optimal 
solution. More iterations generally improve performance but at the expense of increased computational time. 
The optimal number of iterations depends on the complexity of the problem, and it is typically in the range of 
50 to 200 iterations. In our experiments, we adopt the settings commonly used in most image segmentation 
problems, precisely a population size of 30 and an iteration number of 100. The primary drawback of AEO is 
the incorporation of mutation mechanisms, which results in a longer running time compared to the original 
EO. Parallelization is a promising solution for addressing these challenges by reducing the running time of the 
AEO algorithm without compromising its accuracy. By parallelizing AEO, it could utilize modern multi-core 
processors, GPUs, or distributed systems to speed up execution by processing multiple tasks simultaneously. 
AEO’s performance could be further optimized by parallelizing fitness evaluations and population updates and 
using distributed systems.

In the future, AEO may be used in a variety of fields, including image editing, computer vision, and dam 
safety warnings, demonstrating its versatility and efficiency. For example, in geological exploration, AEO can 
play a crucial role in analyzing satellite or aerial imagery to identify geological features, such as mineral deposits, 
fault lines, and vegetation cover.

Data availability
Data is available from the corresponding author on reasonable request.
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