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Prostate cancer (PCa) is the second most common malignancy affecting men globally. Recent advances 
in metabolomics have highlighted significant alterations in specific amino acid (AA) metabolism 
linked to PCa, indicating their potential utility in diagnosis and therapy. However, no direct causal 
association between serum AA levels and PCa risk has been established. A total of 35 patients with 
PCa and 30 individuals with benign prostatic hyperplasia (BPH) were recruited for this study. Targeted 
metabolomic analysis was performed using ultra-high-performance liquid chromatography-tandem 
mass spectrometry on serum samples. Two-sample Mendelian randomization (MR) was applied to 
explore potential causal links between serum AA levels and PCa risk, including mediator effects using 
dual-phase MR and assessing reverse causality through reverse MR. Results Targeted metabolomic 
profiling identified six amino acids—glutamate (Glu), Ser, histidine (His), arginine (Arg), aspartic acid 
(Asp), and glycine (Gly)—that showed significant area under the ROC curve in differentiating between 
BPH and PCa cases. Notably, Glu demonstrated an inverse association with PCa risk, distinct from the 
other AAs identified. However, definitive evidence supporting a causal relationship between low Glu 
levels and increased PCa risk was not observed. Our results suggest a protective role of Glu against PCa 
development, which may have implications for disease prognosis. Increasing dietary Glu intake may 
present a potential preventive or therapeutic approach for PCa. 
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Abbreviations 
AA  Amino acid.
AUC  Area under the ROC curve.
BPH  Benign prostatic hyperplasia.
BMI  Body Mass Index.
GWAS  Genome-wide association study.
MR  Mendelian randomization.
IVs  Instrumental variables.
IVW  Inverse Variance Weighted.
LD  Linkage disequilibrium.
OPLS-DA  Orthogonal partial least squares discriminant analysis.
PCa  Prostate cancer.
PSA  Prostate-specific antigen.
ROC  Receiver operating characteristic.
SNPs  Single nucleotide polymorphisms.
TCA  Tricarboxylic acid.
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UPLC-MS/MS  Ultra-high-performance liquid chromatography-tandem mass spectrometry.
VIP  Variable importance in the projection.
WME  Weighted Median Method.

According to the American Cancer Society’s 2023 estimates, prostate cancer (PCa) is the most prevalent 
malignancy among men globally, ranking second in cancer-related mortality. It accounts for 29% of all new 
cancer diagnoses and 11% of cancer-related deaths in males worldwide1,2. PCa cells exhibit diverse behavior, 
ranging from indolent to highly invasive3. Current screening methods, including digital rectal examination, 
transrectal ultrasound, and serum prostate-specific antigen (PSA) testing4,5, suffer from limitations such as 
false positives and negatives, complicating the differentiation between benign and malignant PCa6. Moreover, 
treatment options for advanced PCa, such as anti-androgen therapy and chemotherapy, often face resistance7, 
underscoring the urgent need for improved diagnostic methods.

Recent advancements in metabolomics have enabled deeper exploration of metabolic alterations in PCa 
cells, revealing their pathophysiological mechanisms. PCa cells exhibit significant variations in amino acid (AA) 
metabolism and biosynthesis, which reflect their adaptation to hypoxia, oxidative stress, and heightened metabolic 
demands, thereby contributing to PCa progression8,9. Observational studies have identified associations between 
AAs and PCa risk, with case-control studies highlighting distinct AA profiles in patients compared to controls10. 
Emerging biomarkers for PCa have been identified, involving pathways related to ethanolamine, arginine (Arg), 
and branched-chain amino acids (BCAAs)11. Moreover, genetically inferred circulating alanine (Ala) levels 
have been linked to altered PCa risk12, and elevated aspartate (Asp) levels have been suggested as potential 
contributors to PCa development13. This study employs targeted metabolomics to identify unique variations 
in AA composition among patients with PCa. However, the findings of observational epidemiological studies 
are prone to biases, including confounding and reverse causation. Therefore, establishing a causal link between 
altered AA metabolism and PCa risk requires a more robust approach.

Mendelian randomization (MR) offers a powerful genetic approach to address biases inherent in traditional 
epidemiological studies by using genetic variants associated with exposures as instrumental variables (IVs)14. 
This method mitigates issues of reverse causality and confounding due to the random allocation of genotypes 
during gamete formation15,16. In this study, we applied a two-sample MR design to investigate the potential causal 
relationships between AA levels and PCa risk, aiming to elucidate the genetic determinants of AA dynamics in 
PCa progression.

Methods
Study participants
The retrospective cross-sectional analysis was conducted at Xuzhou No. 1 People’s Hospital and included 30 
patients with benign prostatic hyperplasia (BPH) and 35 patients diagnosed with PCa. Patients were selected 
based on PSA screening and clinical evaluations performed by a urologist. The diagnosis of PCa was confirmed 
through either prostate biopsy or surgery following hospital admission. Exclusion criteria included a family 
history of hereditary diseases, significant hepatic or renal dysfunction, cardiovascular disorders, hematological 
conditions, concurrent systemic tumors, or recent use (within three months) of immunosuppressants, hormones, 
or lipid-lowering drugs. The study protocol was approved by the Ethical Review Committee of Xuzhou No. 1 
People’s Hospital (approval number xyyll[2023]153), and informed consent was obtained from all participants. 
All patient samples were fully de-identified to maintain privacy and comply with ethical standards. BPH 
diagnoses were confirmed by negative biopsy results, excluding the presence of PCa. Further participant details 
are summarized in Table 1.

Serum sample collection
Following subject enrollment and obtaining informed consent, participant body mass index (BMI) was recorded. 
All participants were instructed to fast after 10 p.m. (no food or water). Venous blood samples were collected at 6 
a.m. the next morning, ensuring a fasting state. Collected blood samples were immediately centrifuged at 1500 g 
for 10 min at 4 °C to separate the serum. The obtained serum was stored at −80 °C until subsequent analyses.

Sample preparation for UPLC-MS/MS analysis
For ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis, 
the stored serum samples were first thawed at 4 °C and homogenized by vortexing for 10 s. Twenty AAs and 
internal standards (as shown in Table 2) were obtained from Hangzhou Hanko Biotechnology Co., Ltd. Mobile 
phases were prepared as follows: Reagent A: 2% formic acid in acetonitrile, used to enhance ionization efficiency 
during the mass spectrometry process. Reagent B: 0.1% formic acid in water, used to maintain appropriate pH 
levels during analysis. Reagent C (Buffer): 0.5 M ammonium acetate solution, used to stabilize the pH during 
sample preparation. Reagent D: Acetonitrile, used as a solvent for the mobile phase preparation. Mobile phase 
A consisted of 500 µL of reagent D mixed with 500 mL of purified water, while mobile phase B contained 500 
µL of reagent D mixed with 500 mL of acetonitrile. To precipitate proteins, 50 µL of serum, 50 µL of internal 
standards, and 50 µL of pre-chilled ultra-pure water (4  °C) were combined. This mixture was centrifuged at 
18,000 g for 5 min at 4 °C, and 10 µL of the supernatant was transferred to a new tube. Subsequently, 70 µL of 
reagent C (buffer) and 20 µL of reagent A were added, followed by a second centrifugation at 21,000 g for 10 min. 
The resulting supernatant was mixed with 990 µL of ultra-pure water, vortexed, and 100 µL of the mixture was 
transferred into a vial containing a 300 µL insert for analysis.
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AA extraction and analysis using UPLC-MS/MS
The prepared sample solution was analyzed using the UPLC-MS/MS system (Waters Xevo-TQS). The setup 
utilized the Waters Acquity UPLC® I Class along with a CORTECS UPLC C18 column (1.6 μm, 2.1 × 150 mm). 
The mass spectrometer (Waters XEVO® TQS) operated in positive ion mode. Samples were loaded onto a 96-well 
autosampler plate in a specific sequence: blank samples, linear gradient standards, quality control samples, and 
test samples. Analysis began with three runs of blank samples, followed by ascending testing standards, with 
quality control samples analyzed every twenty test samples. Mobile phase A was replaced every two days, in 
conjunction with ion source cleaning for the mass spectrometry unit. Calibration standard concentrations (C1 to 
C6) were set using the system software according to the values in the calibration table. The AA detection showed 
a strong linear relationship across a concentration range of 1.0–6000.0 nmol/L, with a linear determination 
coefficient (R²) consistently greater than 0.99. Quantification limits for the compounds ranged between 1.0 
and 10.0 nmol/L, with intra-day and inter-day precision (relative standard deviation) maintained below 15%. 

Abbreviation Common Name Internal standards

Asn Asparagine L-Aspartate-d3

His Histidine DL-Histidine-d3

Arg Arginine L-Arginine-13C6,15N4

Ser Serine L-13C3-Serine

Gly Glycine 15N;2-13 C-Glycine

Gln Glutamine L-Glutamine-d5

Lys Lysine L-Lysine-d4

Thr Threonine L-Threonine-d5

Ala Alanine 2H4-Alanine

Glu Glutamate 2H2-Glutamate

Pro Proline DL-Proline-d3

Cys Cysteine DL-Cystine-d6

Tyr Tyrosine 13C6-Tyrosine

Val Valine 2H8-Valine

Met Methionine 2H4-Methionine

ILe Isoleucine 2H3-Leucine

Leu Leucine 2H3-Leucine

Phe Phenylalanine 13C6-Phenylalanine

Trp Tryptophan L-Tryptophan-d3

Asp Aspartic acid L-Aspartate-d3

Table 2. 20 amino acids and internal standards.

 

Parameters BPH PCa P

No. of subjects 30 35

Age (years) 72.60 ± 8.58 74.31 ± 6.78 0.360a

BMI (kg/m2) 23.12 ± 3.51 24.58 ± 3.47 0.099b

Smoking status, n (%) 1(3.3%) 2(5.7%) 0.648c

PSA (ng/mL) 16.12 ± 17.25 21.70 ± 17.16 0.060a

Gleason score 3 + 3 - 4

3 + 4 - 4

3 + 5 - 1

4 + 3 - 2

4 + 4 - 7

4 + 5 - 10

5 + 3 - 3

5 + 4 - 3

5 + 5 - 1

Tumor size(cm3) 107.21 ± 69.87 119.83 ± 60.83 0.114a

Table 1. Characteristics of participants’ pathology and clinical profile. Data were presented as Mean ± SEM; a: 
Mann-Whitney U test, b: unpaired Student’ s t-test, c: chi-square test, and the statistically significant P-values 
were highlighted in bold.
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Additionally, the coefficient of variation for both high and low-quality control samples of AAs was kept below 
15%.

Clinical statistical analysis
To compare continuous data distributions, the chi-square test was employed. Data normality was expressed as 
the mean ± standard error of the mean (SEM). Statistical significance for AAs, age, BMI, and PSA levels was 
determined using the Mann-Whitney U test and unpaired Student’s t-test, with Bonferroni correction applied 
for multiple comparisons. Diagnostic efficacy was assessed using receiver operating characteristic (ROC) curves, 
with the area under the curve (AUC) calculated in R. The Spearman method was used to analyze correlations 
among non-normally distributed bivariate variables. Orthogonal partial least squares discriminant analysis 
(OPLS-DA) was employed to improve group classification by excluding variables misaligned with the model. 
Key metabolites were identified by variable importance in projection (VIP) scores, with VIP values greater than 
1 considered significant. Statistical significance was set at P < 0.05, with AUC values near 1 indicating high 
diagnostic accuracy, while values around 0.5 suggested accuracy comparable to random chance.

GWAS data sources
The genome-wide association study (GWAS) datasets for AAs and PCa were obtained from the IEU GWAS 
database (https://gwas.mrcieu.ac.uk/). The AA dataset included 122,776 participants, while the PCa dataset 
comprised 462,933 individuals. All participants were of European descent, with datasets ensuring non-
overlapping independent samples. Figure 1 illustrates the overall framework of this study.

Selection of instrumental variables for MR analysis
In this MR analysis, three assumptions were crucial: (1) IVs must be strongly associated with the exposure 
(i.e., serum AA levels); (2) IVs should not be related to confounding factors; and (3) IVs should influence the 
outcome only through the exposure. Single nucleotide polymorphisms (SNPs) significantly associated with 
serum AAs were selected at a genome-wide significance level (P < 5 × 10−8). When the number of SNPs was 
insufficient, the P-value threshold was adjusted to 5e-6 for Arg, serine (Ser), and threonine (Thr), and to 5 × 10−5 
for glutamate (Glu) and Asp. Linkage disequilibrium was assessed using the European population from the 1000 
Genomes Project, and SNPs with r² < 0.001 and a physical distance greater than 10,000 kb were retained. SNPs 
with minor allele frequency < 0.01 and those with an F-statistic < 10 were excluded to avoid weak instrument 
bias. Additionally, MR Steiger analysis verified the causal direction for each SNP to exclude those indicative of 
reverse causation.

Statistical analysis
The primary method for evaluating the causal relationship between exposure and outcome was the IVW 
approach. In addition, two supplementary MR methods, namely the weighted median method (WMM) 
and MR-Egger regression, each predicated on distinct modeling assumptions, were applied. The objective of 
utilizing these varied MR approaches was to examine the consistency and dependability of the associations 

Fig. 1. Overview of the Study Design. Schematic representation of the study workflow, encompassing serum 
sample collection, targeted metabolomics analysis using UPLC-MS/MS, and MR analysis to investigate causal 
relationships between amino acid levels and PCa risk.
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across different theoretical frameworks. Within the IVW framework, the Cochran’s Q statistic was employed to 
probe the heterogeneity among the IVs, whereas the MR-Egger regression’s intercept term served to investigate 
potential horizontal pleiotropy among the IVs. To explore the possibility of a causal impact of PCa on AA levels 
within the body, we applied the described MR methodologies. In this reverse MR setup, PCa functioned as the 
exposure with Glu considered the outcome. SNPs linked to PCa, acting as IVs, were identified with genome-
wide significance (P < 5 × 10−8), ensuring no LD (r2 < 0.01) with other SNPs over a 10,000 kb range. The entirety 
of these analyses was conducted utilizing R Language 4.2.1.

Results
Clinical attributes of participants
The study cohort included 65 subjects: 30 individuals with BPH and 35 with PCa. Clinical attributes of all 
participants are detailed in Table 1. Statistical analysis showed no significant differences in age, BMI, smoking 
status, tumor size, or PSA levels between the BPH and PCa groups. These findings highlight the limitations of 
PSA as a sole diagnostic marker, emphasizing the need for improved diagnostic approaches in urology.

Discriminatory disparities in AA composition among BPH and PCa patients
To investigate differences in serum AA profiles between BPH and PCa patients, we conducted a comparative 
analysis. This cross-sectional evaluation revealed that glycine (Gly), Arg, Glu, and histidine (His) levels were 
significantly lower in PCa patients compared to BPH controls. Conversely, higher levels of glutamine (Gln), Ala, 
Ser, aspartic acid (Asp), and phenylalanine (Phe) were observed in PCa patients (Fig. 2A). Using OPLS-DA, 
we were able to distinguish between the two groups based on these metabolic differences (Fig. 2B). Variables 
of VIP scores further confirmed the significance of metabolites such as Glu, Ser, His, Arg, Asp, Gly, and Thr in 
distinguishing BPH from PCa (Fig. 2C).

Fig. 2. Comparison of UPLC-MS/MS-based amino acid profiles between the BPH group and the PCa group 
reveals significant differences. A Comparison of serum AA concentrations between the BPH group and the 
PCa group, analyzed using the Mann-Whitney U test. Significant differences were observed for specific AAs, as 
indicated by *P < 0.05, ***P < 0.001. B OPLS-DA score plot illustrating the discrimination between serum AA 
profiles from the BPH group (blue) and the PCa group (red). C VIP scores derived from the OPLS-DA model, 
showing the importance of serum AAs in distinguishing between the two groups (VIP > 1 was considered 
significant). Sample sizes were n = 30 for the BPH group and n = 35 for the PCa group.
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Diagnostic performance of potential AA biomarkers
We evaluated the diagnostic performance of six AAs (Glu, Ser, His, Arg, Asp, and Gly) as potential biomarkers 
using ROC curve analysis. The analysis showed strong diagnostic potential, with each AA achieving an AUC 
value above 0.6 and a P-value below 0.05 (Fig.  3). Glu exhibited particularly high sensitivity and specificity 
(AUC = 0.963, sensitivity = 82.9%, specificity = 96.7%), followed by Ser (AUC = 0.800, sensitivity = 82.9%, 
specificity = 80.0%), His (AUC = 0.813, sensitivity = 100%, specificity = 50.0%), Arg (AUC = 0.750, 
sensitivity = 51.4%, specificity = 90.0%), Asp (AUC = 0.731, sensitivity = 74.3%, specificity = 73.3%), and Gly 
(AUC = 0.739, sensitivity = 65.7%, specificity = 83.3%).

Two-sample MR analysis of AAs and PCa
Using the IVW approach for MR analysis, we investigated the potential causal associations between serum AAs 
and PCa risk. The results highlighted a significant causal relationship between Glu and PCa (P < 0.05), while no 
significant associations were found for other AAs (P > 0.05). Detailed results are presented in Tables 3 and 4. A 
focused MR analysis on the relationship between Glu and PCa confirmed a significant association (P < 0.05) 
through the IVW method, while results from the WMM were nearly significant (P ≈ 0.05) with an odds ratio 
(OR) of less than 1 (Fig. 4A). An inverse correlation was observed between Glu levels and PCa risk (Fig. 4B). 

Fig. 3. Comparison of ROC curve analysis for selected amino acids reveals significant differences in their 
ability to discriminate between the BPH group and the PCa group. Evaluation of diagnostic performance 
for individual amino acids as potential biomarkers in distinguishing prostate cancer from benign prostatic 
hyperplasia. A Glutamate (Glu) (AUC = 0.963, sensitivity = 82.9%, specificity = 96.7%). B Serine (Ser) 
(AUC = 0.800, sensitivity = 82.9%, specificity = 80.0%). C Histidine (His) (AUC = 0.813, sensitivity = 100%, 
specificity = 50.0%). D Arginine (Arg) (AUC = 0.750, sensitivity = 51.4%, specificity = 90.0%). E Aspartic acid 
(Asp) (AUC = 0.731, sensitivity = 74.3%, specificity = 73.3%). F Glycine (Gly) (AUC = 0.739, sensitivity = 65.7%, 
specificity = 83.3%).
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Fig. 4. Two-sample MR analysis results reveals the association between Glu levels and PCa risk. A Forest plot 
displaying MR estimates and 95% confidence intervals for the causal effect of Glu levels on PCa risk. B Scatter 
plot depicting the relationship between genetically predicted Glu levels and the risk of PCa using different MR 
methodologies (inverse-variance weighted, MR-Egger, and weighted median). C Leave-one-out sensitivity 
analysis indicating the stability of the association between Glu and PCa risk, demonstrating that no single SNP 
disproportionately influenced the results.

 

Exposure ID No. of SNPs OR 95% CI P value

Arginine met-a-347 7 0.997 (0.987–1.008) 0.674

Histidine met-d-His 9 1.001 (0.999–1.005) 0.193

Serine met-a-464 13 0.996 (0.987–1.005) 0.415

Glutamate met-a-466 31 0.996 (0.992–1.000) 0.049

Aspartate met-a-388 16 1.001 (0.996–1.005) 0.649

Glycine met-d-Gly 30 0.999 (0.998–1.000) 0.056

Table 4. MR analysis for 6 amino acids in blood associations with prostate cancer risk. The statistically 
significant P-values were highlighted in bold.

 

Exposure ID Population Sample size Number of SNPs Year Author

Arginine met-a-347 European 7,528 2,545,579 2014 Shin

Histidine met-d-His European 114,895 12,321,875 2020 Borges CM

Serine met-a-464 European 7,796 2,545,555 2014 Shin

Glutamate met-a-466 European 7,804 2,545,537 2014 Shin

Aspartate met-a-388 European 7,721 2,545,425 2014 Shin

Glycine met-d-Gly European 114,972 12,321,875 2020 Borges CM

Table 3. Summary of the amino acid data sets.
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Leave-one-out analysis showed that no single SNP had an undue influence on the outcome (Fig. 4C). Sensitivity 
analyses, including the MR-Egger intercept and Cochran’s Q test, produced P-values greater than 0.05, indicating 
minimal bias.

Reverse MR analysis of Glu and PCa
To explore a possible reverse causal relationship, we conducted an MR analysis positioning PCa as the exposure 
and Glu as the outcome. The results indicated no significant association between PCa and Glu levels (P > 0.05, 
Fig. 5A) and showed no apparent correlation (Fig. 5B). This finding was further corroborated by a leave-one-out 
analysis, which demonstrated the stability and robustness of the results against individual variations (Fig. 5C).

Discussion
Tumor cells thrive in harsh environments, including nutrient scarcity and hypoxia, while evading immune 
detection17. Traditional invasive biopsies, though accurate, often face challenges related to patient compliance 
and high costs. Non-invasive diagnostic methods, such as serum cancer embryonic antigen tests, lack sensitivity 
and specificity, making them unreliable for tumor detection18,19. Consequently, developing precise and broadly 
applicable techniques for tumor assessment remains crucial. Metabolomics, with its non-invasive nature, 
reliability, and cost-effectiveness, offers a promising approach by directly linking metabolic disturbances to tumor 
presence9,20. AAs are vital for cancer cell biosynthesis and survival21. Prior research has indicated the potential 
of AAs as biomarkers for enhancing PCa screening, emphasizing alterations in AA metabolism associated with 
PCa11–13. In this study, we analyzed serum AA profiles from patients with BPH and PCa using UPLC-MS/
MS and identified significant differences in AA concentrations between the two groups. Specifically, our VIP 
analyses identified Glu, Ser, His, Arg, Asp, Gly, and Thr as key AAs, with ROC curve analysis highlighting Glu 
as a promising marker for distinguishing PCa from BPH (AUC = 0.963, sensitivity = 82.9%, specificity = 96.7%).

Glu, a nonessential AA, is crucial for metabolism, brain function, and immune response regulation22–24. 
Glu supplementation may offer health benefits due to its influence on the tricarboxylic acid (TCA) cycle and 
ATP production, impacting body weight regulation and hormone release25,26. Gln, synthesized from Glu, is 
abundant in blood and muscle tissues and plays an important role in cancer biology9,27. In PCa, mitochondrial 
DNA mutations often impair energy processes like TCA and oxidative phosphorylation, prompting tumor cells 
to rely on alternative metabolic pathways28. Oncogenes, such as Myc and androgen receptors, promote Gln 
uptake, influencing its metabolism and contributing to PCa cell proliferation29. Investigations into PCa cells 
have uncovered anomalies in Gln metabolism and the TCA cycle29,30. PC-3 PCa cells, characterized by high 
aggressiveness, exhibit increased Gln utilization, emphasizing the role of Gln in cancer progression31. In our 
study, patients with PCa exhibited decreased Glu and increased Gln levels, suggesting a potential protective effect 

Fig. 5. Reverse MR analysis reveals the association between PCa as exposure and Glu as outcome. A Forest 
plot illustrating MR estimates and corresponding 95% CI values for the causal effect of PCa as an exposure 
on Glu levels. B Scatter plot showing the relationship between genetically predicted PCa levels and Glu 
concentrations using different MR approaches. C Leave-one-out sensitivity analysis for the reverse MR 
analysis, confirming the robustness of the findings by demonstrating minimal influence from individual SNPs.
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of Glu against PCa. UPLC-MS/MS-based targeted metabolomics enabled the precise quantification of Glu and 
Gln, which are structurally similar, allowing for independent evaluation of their levels. Prior studies have linked 
elevated Glu levels to higher PCa mortality risk, while increased Gln may contribute to cancer progression and 
angiogenesis13,32. These findings support the role of Glu as a potential protective factor against PCa.

Our study employed MR to address biases and confounding factors common in traditional epidemiological 
research33. Previous MR studies have identified associations between genetically inferred serum levels of Ala 
and Asp with altered PCa risk12,13. In our study, MR analysis using the IVW approach indicated an inverse 
association between Glu levels and PCa risk, while no significant associations were found for the other AAs. 
A two-sample MR analysis, utilizing independent datasets for Glu and PCa, provided robust evidence for this 
association. Sensitivity analyses, including MR-Egger and Cochran’s Q test, produced P-values greater than 0.05, 
demonstrating minimal bias. The leave-one-out analysis confirmed that no individual SNP unduly influenced 
the overall findings. In a reverse MR analysis exploring PCa as the exposure and Glu as the outcome, no 
significant causal relationship was found, further supporting our conclusions regarding Glu’s protective effect. 
Early diagnosis is critical for effective PCa management, but traditional screening methods such as PSA testing 
are prone to overdiagnosis and overtreatment, complicating treatment decisions and affecting outcomes34,35. 
Although PSA has been a cornerstone of PCa diagnosis for decades, its specificity is compromised in elderly men 
with BPH, reducing its diagnostic accuracy36,37. In this context, we included BPH patients as the control group 
to identify metabolic differences that could serve as more reliable markers for distinguishing BPH from PCa. 
Our findings suggest that Glu could serve as an adjunct to PSA in early PCa screening and risk stratification, 
potentially enabling more tailored treatment strategies. However, a key limitation of this study is the lack of 
biopsy-confirmed BPH cases, which restricts the ability to fully explore the association between Glu levels and 
histopathological changes. Future studies should include pathological analyses to validate these associations.

In our MR analysis, results from the MR-Egger approach differed from those obtained using IVW and 
Weighted Median methods, highlighting potential issues such as pleiotropy. The MR-Egger method, while 
designed to estimate causal effects even with pleiotropic variants, is susceptible to biases introduced by 
invalid IVs or outliers. However, our findings indicated no substantial pleiotropy, as evidenced by the MR-
Egger intercept (P > 0.05). This divergence underscores the complexity of genetic influences on AA levels and 
their association with PCa risk, emphasizing the need to consider the assumptions and limitations of each MR 
approach. This discussion serves to acknowledge these complexities and underscores the importance of using 
multiple methodologies to strengthen our conclusions. Additionally, our study did not directly measure the 
impact of physical activity on serum AA levels, which could be an influential factor. Although preliminary 
assessments showed no significant differences in activity levels between groups, incorporating more detailed 
measures of physical activity in future research may provide further insights into its role in cancer risk and AA 
metabolism.

Conclusions
Although AA dysregulation in cancer is well documented, identifying specific serum AAs as risk or protective 
factors has proven challenging. Our study suggests that lower serum Glu levels may be associated with a reduced 
risk of PCa, highlighting a potential protective role. These findings warrant further investigation and suggest that 
increasing Glu levels might represent a future strategy for PCa prevention and treatment.

Data availability
The published article includes all data generated or analyzed during the course of this study. The codes generated 
or utilized during the study are available upon request from the corresponding author.
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