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Abstract 

Background: Jointly analyzing multiple phenotype/traits may increase power 
in genetic association studies by aggregating weak genetic effects. The chance 
that at least one phenotype is missing increases exponentially as the number of phe-
notype increases especially for a real dataset. It is a common practice to discard individ-
uals with missing phenotype or phenotype with a large proportion of missing values. 
Such a discarding method may lead to a loss of power or even an insufficient sample 
size for analysis. To our knowledge, many existing phenotype imputing methods are 
built on multivariate normal assumptions for analysis. Violation of these assumptions 
may lead to inflated type I errors or even loss of power in some cases. To overcome 
these limitations, we propose a novel phenotype imputation method based on a new 
Gaussian copula model with three different loss functions to address the issue of miss-
ing phenotype.

Results: In a variety of simulations and a real genetic association study for lung func-
tion, we show that our method outperforms existing methods and can also increase 
the power of the association test when compared to other comparable phenotype 
imputation methods. The proposed method is implemented in an R package available 
at https:// github. com/ jane- zizhen- zhao/ Copul aPhen oImpu te1.0

Conclusions: We propose a novel phenotype imputation method with a new Gauss-
ian copula model based on three loss functions. Results of the simulation studies 
and real data analyses illustrate that the proposed method outperforms comparable 
methods.

Keywords: Genetic studies, Loss function, Inflated type I error, Gaussian copula, 
Phenotype imputation

Introduction
Genome-wide association studies (GWASs) involve collecting genotypes and phe-
notypes from a set of individuals, which is followed by a series of statistical tests to 
identify genetic variants that are significantly associated with phenotypes. However, 
the number of individuals whose phenotypes are collected usually has a large effect 
on the power of detecting these genetic variants, especially when phenotypes are dif-
ficult to collect completely, or there are multiple phenotypes associated with a dis-
ease. When we consider the analysis of multiple correlated phenotypes observed on 
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unrelated individuals, the vast majority of statistical methods to test genetic associa-
tions rely on all samples having fully observed phenotypes. As the number of pheno-
types increases, the chance that the number of observations with at least one missing 
phenotype increases exponentially. It is a common practice to discard individuals 
with missing phenotypes or phenotypes with a large proportion of missing values. 
Such a discarding method may lead to a loss of power or even an insufficient sample 
size for analysis. In such a situation, the sample size might be insufficient to achieve 
the desired statistical power or even we do not have enough data to analyze.

Researchers have tried to impute missing phenotypes to increase sample size and 
even power for GWASs, such as Dahl et  al. [1], who proposed a Bayesian multiple-
phenotype mixed model (MPMM) to impute missing phenotypes in related samples 
and Hormozdiari et al. [2], who took advantage of the correlation structure to impute 
phenotypes with missing data. However, the key assumption of these methods is 
based on a multivariate normal distribution for quantitative traits. In many instances, 
employing the multivariate normal distribution may not be suitable for modeling the 
distributions of various traits. This is because the multivariate normal distribution 
can only represent a limited range of trait distributions. For quantitative traits, mar-
ginal distributions of correlated traits may be asymmetric or have a heavy tail. For 
example, it is common that one of the phenotypes follows a normal distribution and 
the other follows a gamma distribution. This indicates that even though these pheno-
types are all quantitative traits occurring in a same study, a general multivariate nor-
mal distribution assumption is not appropriate. Allison et al. [3] and Epstein et al. [4] 
noted that violation of this assumption can lead to inflated type I error and reduced 
power in an association test.

There has been an increasing interest in modeling multivariate observations by 
employing flexible functional forms for distribution functions. Additionally, there is a 
focus on estimating parameters that effectively capture the dependence among differ-
ent components. Understanding the dependence structure among multiple phenotypes 
is essential for imputing the phenotype of interest and conducting association analysis. 
In statistical literature, the most comprehensive method for characterizing depend-
ence among correlated random variables is through the use of copulas [5]. Copulas are 
multivariate distribution functions whose one-dimensional margins are uniform on the 
[0, 1] interval [6]. Copulas are useful for constructing joint distributions, especially when 
working with non-normal random variables [7] where copulas can be used to model the 
joint distributions of any type of continuous phenotype [8, 9]. Copulas not only have the 
capability to model the dependence structure independently of the marginal distribu-
tions but are also valuable in handling high-dimensional scenarios.

Gaussian copula has attracted significant attention in recent literature for genetic map-
ping studies. Li et  al. [10] described a unified method for mapping genes that influence 
quantitative traits by the use of the Gaussian copula in the variance-components frame-
work. Song et al. [8] introduced Gaussian copula generalized linear models for an extension 
to multivariate longitudinal responses. He et al. [11] used a Gaussian copula to model the 
joint distribution of the disease status variable and secondary phenotype. Zhao and Udell 
[12] proposed a new Gaussian copula algorithm to impute missing values. This method is 
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less accurate when the sample size is relatively small because it uses an approximate EM 
algorithm to estimate copula parameters from incomplete mixed data.

In this paper, we leverage the distribution of correlated phenotypes constructed by a 
Gaussian copula, while the multivariate distribution of phenotypes under our flexible model 
can be estimated from a smaller complete dataset in which all phenotypes have been fully 
collected, and then used to impute missing phenotypes in an incomplete dataset. Missing 
phenotype values are inferred through a conditional probability density function within the 
general decision-making framework realized by three different loss functions. Our method 
is more efficient than the copula method of Zhao and Udell because we estimate param-
eters with maximized likelihood through theoretically derived probability density function 
from a smaller complete dataset, while Zhao and Udell’s method relies on the EM algo-
rithm for parameter estimation. Another advantage of our approach is that it utilizes only 
phenotype information, not genetic information, allowing the imputed phenotypes to be 
used for association testing without risking data reuse. Additionally, our method can han-
dle a variety of multivariate phenotypes with different distributions, making it more flexible 
than existing methods.

Methods
We consider a sample with n unrelated individuals. Each individual has K correlated 
quantitative traits. Let Y i = (yi1, . . . , yiK )

T denote the phenotype vector for the ith indi-
vidual, where yik denotes the kth trait value of the ith individual. We divide the sample 
into two parts. The first part includes Y 1, . . . ,Y n1 with no missing phenotype. The second 
part includes Y n1+1, . . . ,Y n with at least one missing phenotype for each individual. Let 
Y

(−K )
i = (yi1, . . . , yi,K−1)

T denote the ith individual’s phenotype vector without the Kth 
phenotype. Without loss of generality, we assume that Y (−K )

n1+1, . . . ,Y
(−K )
n  have no missing 

phenotypes and Yn1+1,K , . . . ,Yn,K have missing values.
We propose to use Gaussian copula to model the correlation among these K traits and 

let Fk(yk;αk) and fk(yk;αk) be the cumulative distribution function (cdf) and probabil-
ity density function (pdf) of yk . Usually, we assume yk follows normal distribution with 
N (yk; θk , σ

2
k ) , αk = (θk , σ

2
k ) , for quantitative traits.

Let µj = Fj(yj;αj), j = 1, 2, ...,K  , CR = �R(�
−1(µ1), . . . ,�

−1(µK )) denotes the joint 
distribution of (µ1, . . . ,µK ) where �−1 is the inverse cumulative distribution function of 
a standard normal distribution and �R is the joint cumulative distribution function of a 
multivariate normal distribution with mean vector zero and covariance matrix equal to the 
correlation matrix R. Thus, CR is the cdf of Y = (y1, . . . , yK )

T , denoted as H(y1, . . . , yK ) . 
Specifically, the distribution of Y  will degenerate to a multivariate normal distribution when 
the marginal distributions of Y  are normal based on the Gaussian copula model.

Given the joint distribution function of Y  , the corresponding density function can be 
obtained by taking derivatives with respect to CR [10]. When the trait is continuous, the 
joint density function of Y  can be written as:

(1)h(y1, . . . , yK ) = cR(µ1, . . . ,µK )

K
∏

k=1

fk(yk;αk)
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where cR(µ1, . . . ,µK ) = |R|−
1
2 exp{ 12q

T (IK − R−1)q} and µj = Fj(yj;αj) , 
q = (q1, . . . , qK ) is a vector of inverse-normal scores qj = �−1(µj), j = 1, 2...,K  , and 
IK  is a K-dimensional identity matrix. Specially, the conditional density of yK  given 
y1, . . . , yK−1 can be written as:

When the K traits include K1 discrete and K2 = K − K1 continuous traits, the joint den-
sity function can be obtained in the following:

Let µ2 = (µK1+1, . . . ,µK ) where µj = Fj(yj;αj) for j = K1 + 1, . . . ,K  and 
µj1 = Fj(yj−;αj) and µj2 = Fj(yj;αj) where Fj(yj−;αj) is the left-hand limit of Fj at yj 
which is equal to Fj(yj − 1;αj) for j = 1, . . . ,K1.

The joint density of Y  is given by:

where

for µ1 = (µ1, . . . ,µK1) , µ2 = (µK1+1, . . . ,µK ) where µj = Fj(yj;αj) for 
j = K1 + 1, . . . ,K  , and q2 = (qK1+1, · · · , qK ).

An example of the joint density of Y  is provided in the Supplementary Methods for 
the case where there are three phenotypes, including one binary phenotype (with val-
ues either 0 or 1) and two continuous phenotypes, i.e., K = 3 and K1 = 1.

The conditional distribution of yiK  given yi1, . . . , yi(K−1) can be written as:

Our method for imputation can be divided into the following two steps:
Step 1: The parameters are estimated in two stages based on complete observations 

Y 1, . . . ,Y n1:
1) For each marginal distribution, αk is estimated using y1k , . . . , yn1k where the esti-

mator is denoted as α̂k . For example, if yik follows a normal distribution N (θk , σ
2
k ) for 

quantitative traits, θ̂k = 1
n1

∑n1
i=1 yik and σ̂ 2

k = 1
n

∑n
i=1(yik − ȳk)

2 . If yik follows gamma 
distribution Ga(ζk , ηk) for quantitative traits, a numerical method can be employed to 
estimate parameters ζk and ηk.

(2)h(yK |y1, . . . , yK−1) =
cR(µ1, . . . ,µK )fk(yk;αk)

∫

cR(µ1, . . . ,µK )dFk(yk;αk)

(3)
h(y1, . . . , yK ) =

K
∏

k=K1+1

fk(yk;αk)×

2
∑

j1=1

· · ·

2
∑

jK1=1

(−1)j1+···+jK1

× C∗
R(µ1,j1 , · · · ,µK1,jK1

,µK1+1, . . . ,µK )

C∗
R(µ1,µ2) =(2π)−

K1
2 |R|−

1
2

∫ �−1(µ1)

−∞

· · ·

∫ �−1(µK1
)

−∞

× exp

{

−
1

2
(y1, q2)R

−1(y1, q2)
T +

1

2
q2

Tq2

}

dy1

(4)

h(yiK |yi1, . . . , yi(K−1)) =
∑2

j1=1 · · ·
∑2

jK1=1(−1)j1+···+jK1C∗
R(µ1,j1 , · · · ,µK1,jK1

,µK1+1, . . . ,µK )fK (yiK ;αK )
∑2

j1=1 · · ·
∑2

jK1=1(−1)j1+···+jK1
∫ 1
0 C∗

R(µ1,j1 , · · · ,µK1,jK1
,µK1+1, . . . ,µK )dµK
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2) When all traits are continuous, the dependence parameter R is estimated by 
substituting α̂k for αk in the likelihood and then maximizing the following function:

The estimator of R is denoted by R̂ = 1
n1

∑n1
i=1QiQ

T
i  where Qi = [qi1, · · · , qiK ]

T .
Step 2: We use the second part of the sample to impute the missing pheno-

types yn1+1,K , . . . , ynK  after we obtain the density of multivariate distribution 
h(yi1, . . . , yiK ; ϕ̂) where ϕ̂ = (α̂1, . . . , α̂K , R̂) from Step 1. We assume that the density 
of multiple traits for each individual is the same in these two data sets Y 1, . . . ,Y n1 
and Y n1+1, . . . ,Y n . As a result, the above joint density h(yi1, . . . , yiK ; ϕ̂) holds for 
Y n1+1, . . . ,Y n.

One way to impute phenotype is to consider the Kth phenotype as future data and 
use observed data yi1, . . . , yi,K−1 for i = n1 + 1, · · · , n to infer the missing data where 
it sets up under the general decision-making framework. To this end, we use L(a, b) 
to denote a generic bivariate function indicating the loss of using b to predict a, 
referred to as an loss function. For every individual i = n1 + 1, · · · , n , the objective is 
to find a statistic ŷiK  , such that

where the minimization is taken over all measurable function Q of Y (−K )
i  . To determine 

the quantity of missing values, we need to resolve the optimization problem (5) when we 
consider the following three typical loss functions [13]: 

1. The most popular loss function is the square loss also known as mean square 
error L(a, b) = (b− a)2 under which prediction of the Kth phenotype is simply 
ŷiK = E(yiK |yi1, . . . , yi,K−1) (denoted as C-MSE).

2. A frequently discussed loss function is the quantile loss function 
L(a, b) = [|a− b|(τ I{a>b} + (1− τ )I{a<b})] . We denote the conditional distribution 
function of yiK  given yi1, . . . , yi,K−1 by Fi

Y
(−K )
i

(y) . Then, ŷiK  is the solution of equation 

Fi

Y
(−K )
i

(y)− τ = 0 where τ is the quantile usually assumed to be 0.5 for the median 

(denoted as C-QL).
3. The third loss function is the 0–1 loss function L(a, b) = 1− δa(b) where δa(·) is a 

probability measure concentrated at a. When a represents the observed value and b 
represents the predicted value, δa(·) equals 1 if a = b (i.e., the prediction is correct) 
and 0 otherwise (i.e., the prediction is incorrect). The prediction ŷiK  is the value that 
maximizes the conditional density f i

Y
(−K )
i

(y) and it is equal to ŷiK  which is the value 

that makes h(yi1, . . . , yiK ) maximized given Y (−K )
i  (denoted as C-(0–1)).

Under our assumption, the prediction for the Kth phenotype under these three loss 
functions can all be obtained by a numerical method based on conditional density 
(2).

n1
∑

i=1

log[cR(F1(yi1; α̂1), . . . , FK (yiK ; α̂K ))]

(5)EL(yiK , ŷiK ) = min
Q

EL
(

yiK ,Q(Y
(−K )
i )

)

,
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Results
Simulation design

We perform extensive simulations to evaluate the performance of our proposed imputa-
tion method based on the copula approach and compare it with two imputation meth-
ods: (1) the phenotype imputation method (PIM) [2] which leverages the correlation 
structure between phenotypes to perform the imputation, and (2) the PHENIX method 
[1], which uses a computationally efficient variational Bayesian algorithm to fit the mul-
tiple-phenotype mixed model. Furthermore, we compare the performance of our copula 
method with an existing copula method proposed by Zhao and Udell [12].

We generated genotype data at a genetic variant according to the minor allele fre-
quency (MAF) under Hardy-Weinberg equilibrium. Denote Y ·k = (y1k , · · · , ynk)

T as the 
kth phenotype of n individuals. Denote g as the genotype (count of the minor alleles) 
at a single nucleotide polymorphism (SNP) for an individual. To examine the perfor-
mance of our method, we set the MAF of the SNP as 0.3 and consider the following 
three scenarios:

Scenario 1. We consider four cases: K = 2 , K = 3 , K = 4 , and K = 7 , where contin-
uous phenotypes are generated from multivariate normal distribution N (θ ,�) , where 
we set θ1 = · · · = θK = β0 + β1g and vec(�) = (1, ρ, ρ, 1)′ for K = 2 , where vec(�) is 
the stack of the columns of the matrix � , vec(�) = (1, ρ, ρ, ρ, 1, ρ, ρ, ρ, 1)′ for K = 3 , 
vec(�) = (1, ρ, ρ, ρ, ρ, 1, ρ, ρ, ρ, ρ, 1, ρ, ρ, ρ, ρ, 1)′ for K = 4 , and a similar 49× 1 vector 
vec(�) for K = 7 . We further investigate the performance of our proposed methods by 
increasing the number of phenotypes to a broader range of K = 4 to K = 15 . vec(�) is a 
similar k2 × 1 vector for each K.

Scenario 2. We consider four cases: K = 2 , K = 3 , K = 4 , and K = 7 , where 
continuous phenotypes are generated from multivariate gamma distribution 
MG(η, ζ ;�) . We set ζ1 = · · · = ζK = 1 and η1 = · · · = ηK = exp(β0 + β1g) , 
vec(�) = (1, ρ, ρ, 1)′ for K = 2 , vec(�) = (1, ρ, ρ, ρ, 1, ρ, ρ, ρ, 1)′ for K = 3 , 
vec(�) = (1, ρ, ρ, ρ, ρ, 1, ρ, ρ, ρ, ρ, 1, ρ, ρ, ρ, ρ, 1)′ for K = 4 , and a similar 49× 1 vector 
vec(�) for K = 7.

Scenario 3. We consider K = 7 phenotypes which are generated from a mixture of 
multivariate normal, beta, and gamma distributions (two phenotypes are generated from 
a multivariate normal distribution, two phenotypes are generated from a multivariate 
gamma distribution, and three phenotypes are generated from a beta distribution). The 
phenotypes from normal and gamma distributions are generated as described in Sce-
nario 1 and 2, respectively. The phenotypes following a beta distribution are generated 
using a Gaussian copula method with the shape parameters α1 = α2 = α3 = β1g and 
β1 = β2 = β3 = 1 , setting a similar 49× 1 vector vec(�) for the variance and covariance 
among the 7 phenotypes.

In the above scenarios, we set β0 = 0 and the value of β1 is determined by the herit-
ability h2 = 2β2

1p(1− p)/[1+ 2β2
1p(1− p)] , which is the proportion of phenotypic vari-

ation explained by the SNP. We simulate data sets with n = 1000 , varying the level of 
relatedness between individuals and the heritability of the traits. For genetic covariance 
between traits, we consider a range of positive and negative correlations ( ρ ) between 
traits. Additionally, we vary the heritability ( h2 ) of the traits by adjusting the relative 
contributions of the genetics. Twenty percent of the Kth phenotype values are set to 
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missing completely and the true values of missing data are used to evaluate the perfor-
mance of the proposed method. We assess performance by measuring the correlation 
between imputed phenotypes and their true hidden values, which is known as imputa-
tion correlation [1].

To investigate the performance of our methods under varying missing rates, we con-
duct simulation studies by considering the proportion of missingness in phenotypes 
from 5% to 25% . Seven phenotypes are generated from a mixture distribution (com-
prising two multivariate normal phenotypes, two multivariate gamma phenotypes, and 
three beta phenotypes) as well as from a multivariate normal distribution with pheno-
type correlation ρ = 0.5 and heritability h2 = 0.05.

To investigate the computational efficiency of our methods, we simulate seven pheno-
types from a mixture distribution (two phenotypes follow multivariate normal distribu-
tions, two phenotypes follow multivariate gamma distributions, and three phenotypes 
follow beta distributions) and a multivariate normal distribution, respectively. We con-
sider various sample sizes, ranging from large to huge (2,000 to 10,000), with correlation 
among phenotypes ρ = 0.5 and heritability h2 = 0.05).

We use simulated phenotype and genotype data (sample size n = 500 ) to evaluate 
power for detecting associations using five multiple-phenotype genetic association tests: 
TATES [14], MANOVA [15], M-Phen [16], AFC [17] and Tippet [18]. Genotype data of 
each individual at a genetic variant are generated according to the minor allele frequency 
(MAF) under Hardy-Weinberg equilibrium. K Phenotype values are generated from 
multivariate normal distributions and multivariate gamma distributions as aforemen-
tioned, respectively. Two or three phenotypes under 20% missingness are generated by 
following multivariate normal distributions and multivariate gamma distributions. We 
set h2 = .008 , n = 500 , MAF = 0.3 , ρ = 0.5 and K = 3 . In each scenario, we use 1000 
replicates.

In addition, we evaluate type I error rates for five multiple-phenotype genetic asso-
ciation tests TATES [14], MANOVA [15], M-Phen [16], AFC [17] and Tippet [18] with 
phenotypes imputed with PIM, PHENIX, and our proposed methods. Seven phenotypes 
are generated by following a multivariate normal distribution, a multivariate gamma dis-
tribution, and a mixture distribution (two phenotypes follow multivariate normal distri-
butions, two phenotypes follow multivariate gamma distributions, and three phenotypes 
follow beta distributions), respectively. We set ρ = 0.5 , h2 = 0.0 , MAF = 0.3 , sample 
size n=1000, and using 1000 replicated samples.

To compare the performance of our methods with the Gaussian copula method using 
the EM algorithm (Copula-EM) for phenotype imputation [12], three and seven pheno-
types are generated from multivariate normal distributions and multivariate gamma dis-
tributions, respectively, with h2 = 0.05 and ρ = 0.5 , while varying the sample size from 
100 or 200 to 600.

Simulation results

We apply our method with three typical loss functions C-MSE, C-(0–1), C-QL and two 
comparsion methods (PHENIX and PIM) to each scenario of the simulated data sets to 
infer the missing phenotypes. The results are shown in Fig. 1 for the correlation of the 
phenotypes ρ at 0.5 and Fig. 2 for the correlation of the phenotypes ρ at −0.5 varying 
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the heritability of the phenotypes, i.e., the relative contributions of the genetic variant 
from zero to 0.1. The overall pattern from these two figures shows that our methods 
outperform or have similar performance to the other two methods over the range of her-
itability. Specifically, the performance of all methods is similar under the multivariate 
normal assumption and our methods outperform the other two methods for the multi-
variate gamma assumption, where they have incorrect distribution assumptions for the 
PIM and PHENIX methods. It shows that our methods are more flexible than these two 
methods, i.e., placing no restrictions on the distribution of the data.

As heritability increases, the imputation correlation seems to increase slightly for posi-
tive correlation of phenotypes ρ = 0.5 and decrease slightly for negative correlation of 
phenotypes ρ = −0.5 . This occurs because the overall correlations between phenotypes 
are a mixture of genetic (g) and correlations ( ρ ). For positive ρ , the overall correlations 
increase as heritability increases and weaken as heritability increases for negative ρ 
because the genetics and correlations tend to cancel each other out.

Figure  3 presents the results of imputation correlation comparisons among the five 
methods when the heritability h2 is held constant (0.05) but ρ is varied from −0.5 to 0.5. 
As the correlation ρ increases from −0.5 to 0, the imputation correlation of all meth-
ods decreases, but then increases again as the correlation ρ increases from 0 to 0.5. The 

Fig. 1 The imputation correlation of five methods (PHNIX, PIM, C-MSE, C-(0–1) and C-QL) for phenotype 
values ( n = 1000 ) simulated from multivariate normal distribution (top) and multivariate gamma distribution 
(bottom) at ρ = 0.5 with varied heritability of the traits by adjusting the relative contributions of genetic 
variants where the correlation of the imputed values with the true values is plotted on the y axis for each 
method
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reason is that it makes the correlation among phenotypes weak as ρ increases from nega-
tive to zero and strong as ρ increases from zero to 0.5, while the point estimates of the 
missing phenotypes depend on the strength of the correlation among phenotypes. Fig-
ures  1, 2, and 3 show that our methods seem to perform roughly equally well or bet-
ter than the other two methods. From these three figures, we can also see that method 
C-(0–1) is slightly worse than methods C-MSE and C-QL. Both C-MSE and C-QL have 
similar imputation correlations. The reason is that the definition of the 0–1 loss function 
is too strict. In summary, our method remained the best-performing approach regard-
less of whether the phenotypes followed a multivariate normal or multivariate gamma 
(MG) distribution, even when the correlations among phenotypes varied.

When we increase the number of phenotypes to K = 4 and K = 7 (Fig. 4) or even 
a broader range of phenotypes from K = 4 to K = 15 (Supplementary Figure 1), our 
methods have similar or better performance than PIM and PHENIX for most of K. 
Specifically, when four phenotypes are generated from multivariate gamma distri-
butions, our method performs similarly to PIM and PHENIX when negative corre-
lations among the phenotypes are present, but outperforms both PIM and PHENIX 
when positive correlations exists among the phenotypes. When seven phenotypes 
are generated from multivariate normal distributions, our method performs better 

Fig. 2 The imputation correlation of five methods (PHNIX, PIM, C-MSE, C-(0–1) and C-QL) for phenotype 
values ( n = 1000 ) simulated from multivariate normal distribution (top) and multivariate gamma distribution 
(bottom) at ρ = −0.5 with varied heritability of the traits by adjusting the relative contributions of genetic 
variants where the correlation of the imputed values with the true values is plotted on the y axis for each 
method
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than PIM and PHENIX in the presence of positive correlations among the phenotype, 
while PIM and PHENIX only outperform our method when the negative correlations 
among the phenotypes were in the range of −0.4 to −0.2.

Fig. 3 The imputation correlation of five methods (PHNIX, PIM, C-MSE, C-(0–1) and C-QL) for phenotype 
values ( n = 1000 ) simulated from multivariate normal distribution (top) and multivariate gamma distribution 
(bottom) at h2 = 0.05 is evaluated across a range of positive and negative correlations among phenotypes. 
The y-axis represents the correlation between the imputed and true values for each method

Fig. 4 The imputation correlation of five methods (PHENIX, PIM, C-MSE, C-(0–1) and C-QL) for phenotype 
values ( n = 1000 ) simulated from a multivariate gamma distribution (left) and multivariate normal 
distribution (right) at h2 = 0.05 with varying numbers and correlations of phenotypes is presented. The y-axis 
shows the correlation between the imputed and true values for each imputation method
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Our method performs better than or similarly to PIM and PHENIX when the 
number of phenotypes ranges from 5 to 14 (Supplementary Figure 1). PHENIX and 
PIM only outperform our method when the number of phenotypes is 4 or 15. The 
phenotypes in Supplementary Figure 1 are generated from multivariate normal dis-
tributions, which satisfy the key assumptions of PHENIX and PIM. However, when 
phenotypes are generated from multivariate gamma distributions or a mixture of 
multivariate normal, multivariate gamma, and beta distributions, the performance of 
PHENIX and PIM declines even further, as these scenarios violate the key multivari-
ate normal assumption required for their effectiveness (data not shown).

When a mixture distribution is employed to generate seven phenotypes including 
two multivariate normal phenotypes, two multivariate gamma distributions phe-
notypes, and three beta distributions phenotypes (Fig.  5), our methods consistently 
outperform PHENIX as heritability varies from 0.02 to 0.1. In addition, our methods 
perform better than PHENIX when the sample size increases from 500 to 1000. PHE-
NIX only outperforms our methods when the heritability is low (i.e. 0.01) or when 
the sample size is small (200, 300, or 400). The performance of PHENIX declines with 
phenotypes generated from a mixture distribution, primarily because this distribu-
tion violates the assumptions of multivariate normal which is required for its effec-
tiveness. The PIM method performs similarly to our method because it leverages the 
correlation structure to impute phenotypes with missing data. However, the normal-
ity assumption can impact the performance of PIM when the actual distribution of 
the data deviates from the multivariate normality as shown in Figs. 1, 2 and 3, where 
phenotypes are generated from multivariate gamma distributions.

When considering different missing rates in phenotypes, our methods outperform 
the PHENIX method at most missing rates for phenotypes generated from the mix-
ture distribution, except at 0.1 missing rate when phenotypes are generated from a 
mixture distribution (comprising two multivariate normal phenotypes, two mul-
tivariate gamma phenotypes, and three beta phenotypes). Conversely, our methods 
consistently outperform PHENIX across all missing rates when the phenotypes are 
generated from a multivariate normal distribution. The strong performance of our 

Fig. 5 The imputation correlation of five methods (PHENIX, PIM, C-MSE, C-(0–1) and C-QL) for phenotype 
values simulated from a mixture of multivariate normal, beta, and gamma distributions is evaluated for 
varying h2 when n = 1000 , and varying sample size from n = 200 to 1000. The y-axis represents the 
correlation between the imputed and true values for each method
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methods across different missing rates demonstrates their robustness and general 
applicability (Fig. 6).

Figure 7 presents the computational time (in seconds) for our methods and the two 
existing methods, PIM and PHENIX, with varying sample sizes from 2,000 to 10,000. 
For seven phenotypes with a sample size of 10,000, both PIM and our methods com-
plete the imputation in less than 100 s using an HP laptop with a 1.70 GHz CPU and 
32.0 GB of RAM. PIM along with our C-MSE and C-(0–1) methods, are the most 
efficient, followed by our C-QL method. In contrast, PHENIX is computationally 
intensive.

As we know that large sample size can help us achieve the desired statistical power, the 
primary purpose of imputation is to fill in the remaining missing phenotypes, helping to 
maximize the effective sample size to improve power in GWASs. As such, it is important 
to show that our approach leads to effective statistical tests by using one phenotypes at 
a time or by using multiple phenotypes simultaneously in association tests. It is a wide 
consensus that the data after imputation can increase power in association tests.

Fig. 6 The imputation correlation of five methods (PHENIX, PIM, C-MSE, C-(0–1) and C-QL) for phenotype 
values ( n = 1000 ) simulated from a mixture of multivariate normal, beta, and gamma distributions. In 
this plot, the y-axis represents the correlation of the imputed values with the true values, while the x-axis 
represents the proportion of missingness in phenotypes, varying from 0.05 to 0.25

Fig. 7 The computation time of five methods (PHENIX, PIM, C-MSE, C-(0–1) and C-QL) for phenotype values 
simulated from a multivariate normal and a mixture of multivariate normal, beta, and gamma distributions 
for varying sample size when h2 = 0.05 and ρ = 0.5 , where the y-axis represents the computation time in 
seconds and x-axis represents the sample size (N)
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In Fig. 8, we use simulated phenotype and genotype data (sample size n = 500 ) to 
evaluate power for detecting associations using five different multiple-phenotype 
test methods TATES [14], MANOVA [15], M-Phen [16], AFC [17] and Tippet [18] 
where we set ρ = 0.3 and h2 = 0.01 . We found that the imputed data could lead to 
an increase in power and our methods (C-MSE, C-(0–1), and C-QL) have simi-
lar power with two other comparative methods under scenario 1. Under scenario 2, 
using C-MSE and C-QL leads to the highest power compared to other methods. This 
may be because the basic assumption of PHNIX and PIM is against the distribution 
assumption of scenario 2 and C-(0–1) has a relatively strict loss function. Compared 
to imputed data, tests based on unimputed data have a loss of power, which is consist-
ent with the fact that the use of imputation can increase the power of GWAS. In sum-
mary, the tests based on C-QL and C-MSE achieve the best power.

The type I error evaluation from our simulation studies confirmed that violating 
normality assumptions inflates type I error rates in genetic association tests for exist-
ing methods, PIM and PHENIX. Both PIM and PHENIX show inflated type I error 
rates when seven phenotypes are generated from multivariate gamma distributions, 
with even more severe inflation when the phenotypes are generated from a mixture 
distribution (two multivariate normal phenotypes, two multivariate gamma pheno-
types, and three beta phenotypes). In contrast, the type I error rates for all methods 

Fig. 8 Bar charts of the power for the five different multiple phenotype association methods (TATES, 
MANOVA, M-Phen, AFC and Tippet) based on different imputation options
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remain well-controlled when phenotypes are unimputed or imputed using our pro-
posed methods (Table 1).

To compare the performance of our methods with the Gaussian copula method using 
the EM algorithm (Copula-EM) for phenotype imputation [12], three and seven pheno-
types are generated from multivariate normal distributions and multivariate gamma dis-
tributions, respectively. When the phenotypes follow multivariate normal distributions, 
our methods outperform Copula-EM consistently for the three-phenotype case and 
show even greater improvement when the sample size is 100 for the seven-phenotype 
case. When phenotypes follow multivariate gamma distributions, our methods outper-
form Copula-EM at larger sample sizes, such as 500 for seven phenotypes or 600 for 
three phenotypes. This indicates that our methods are particularly robust when dealing 
with multivariate normal distributions, excelling in both small and large sample sizes. 
Although our methods are effective for non-normal data, they require a sufficiently large 
sample size to maintain their advantage over Copula-EM in these situations (Supple-
mentary Figure 2).

Application to the COPDGene
Chronic obstructive pulmonary disease (COPD) is one of the most common lung dis-
eases characterized by long-term poor airflow and is a major public health problem [19]. 
The COPDGene Study is a multicenter genetic and epidemiologic investigation to study 
COPD [20]. This study is sufficiently large and appropriately designed for genome-wide 
association analysis of COPD. In this study, we considered more than 5000 non-His-
panic White (NHW) participants who completed a detailed protocol, including ques-
tionnaires, pre- and postbronchodilator spirometry, high-resolution CT scanning of 
the chest, exercise capacity (assessed by six-minute walk distance), and blood samples 

Table 1 The type I error rates of genetic association tests with phenotypes imputed with different 
methods. ( α=0.05, 95% confidence interval of α : (0.0362, 0.0638); heritability h2 = 0; correlation of 
phenotypes ρ =0.5; 1000 replicated samples; sample size n = 1000)

1Dist.: Phenotypes’ distributions; MVN: 7 phenotypes follow multivariate normal distribution (MVN); MG: 7 phenotypes 
follow multivariate gamma distribution; Mixed: 7 phenotypes follow a mixture of multivariate normal, beta, and gamma 
distributions

Bold values indicate inflated type I errors

Dist. 1 Association tests Unimputed PHENIX PIM C-MSE C-(0–1) C-QL

MVN TATES 0.055 0.057 0.045 0.040 0.052 0.043

MANOVA 0.049 0.036 0.043 0.038 0.037 0.042

M-Phen 0.051 0.044 0.059 0.060 0.057 0.062

AFC 0.055 0.046 0.037 0.043 0.058 0.061

Tippel 0.049 0.061 0.055 0.056 0.049 0.044

MG TATES 0.051 0.066 0.071 0.039 0.053 0.060

MANOVA 0.054 0.065 0.073 0.051 0.047 0.043

M-Phen 0.045 0.080 0.075 0.044 0.050 0.053

AFC 0.055 0.065 0.063 0.047 0.056 0.059

Tippel 0.050 0.074 0.077 0.060 0.054 0.039

Mixed TATES 0.055 0.077 0.085 0.037 0.042 0.045

MANOVA 0.049 0.079 0.084 0.056 0.052 0.061

M-Phen 0.049 0.088 0.079 0.057 0.061 0.060

AFC 0.036 0.068 0.070 0.048 0.060 0.054

Tippel 0.048 0.090 0.085 0.056 0.061 0.053
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for genotyping. The participants were genotyped using the Illumina OmniExpress plat-
form. The genotype data have gone through standard quality-control procedures for 
genome-wide association analysis detailed at http:// www. copdg ene. org/ sites/ defau lt/ 
files/ GWAS_ QC_ Metho dology_ 20121 115. pdf. Variants with MAF< 1% were excluded 
in the data set.

Based on the literature studies of COPD [21, 22], we selected seven key quantitative 
COPD-related phenotypes, including FEV1 (% predicted FEV1), emphysema (Emph), 
emphysema distribution (EmphDist), gas trapping (GasTrap), airway wall area (Pi10), 
exacerbation frequency (ExacerFreq), six-minute walk distance (6MWD), and 4 covari-
ates, including BMI, age, pack-years (PackYear), and sex. EmphDist is the ratio of emphy-
sema at −950 HU in the upper 1/3 of lung fields compared to the lower 1/3 of lung 
fields where we performed a log transformation on EmphDist in the following analysis, 
referred to [21]. A complete set of 6576 individuals was used in the analyses. The missing 
rates of the 7 COPD-related phenotypes are 13.17% (GasTrap), 0% (ExacerFreq), 5.89% 
(Emph), 6.81% (Pi10), 8.06% (EmphDist), 1.58% (6MWD) and 0.39% (% predicted FEV1). 
In Fig. 9, the histograms of the seven key quantitative COPD-related phenotypes show 
distinct marginal distributions. Pi10, EmphDist, and 6MWD approximate a normal dis-
tribution. GasTrap resembles a chi-square distribution, while ExacerFreq and Emph fit 
a gamma distribution. FEV1, on the other hand, follows a beta distribution. These var-
ied distributions highlight the need for phenotype imputation with copula method in a 
realistic setting, as it allows for more accurate modeling of the complex dependencies 
between phenotypes with differing marginal distributions.

Fig. 9 Histograms of seven key quantitative COPD-related phenotypes

http://www.copdgene.org/sites/default/files/GWAS_QC_Methodology_20121115.pdf
http://www.copdgene.org/sites/default/files/GWAS_QC_Methodology_20121115.pdf
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To evaluate the performance of our proposed methods on a real data set, we applied 
all 5 methods (TATES, MANOVA, M-Phen, AFC, and Tippet) to the COPDGene of the 
NHW population to carry out GWAS of COPD-related phenotypes (imputed pheno-
types). In the analysis, participants with missing data for any genotypic variants were 
excluded. We first imputed the missing phenotypes and then adjusted each of the 7 
phenotypes for the 4 covariates using linear models. We calculated the p-value based 
on these 5 methods for the adjusted phenotypes. To identify SNPs associated with the 
phenotypes, we adopted the commonly used genome-wide significance level 5× 10−8 . 
The results were summarized in Tables 2, 3, 4, 5, and there were a total 14 SNPs in each 
table. All 14 SNPs had previously been reported to be associated with COPD by eligible 
studies [23–35] and [36]. From these tables, we can see that the p value of unimputed 
data is always larger than the p value of each imputed dataset. Among the five imputa-
tion methods, our method is the imputation method with either the smallest p value or 
having a similar p value as the imputation method with the least p value in most of the 
scenarios. PHENIX has a similar performance as ours in some scenarios (Table 6).

Discussion
Most of the recently developed imputation methods essentially focus on quantitative 
traits based on multivariate normal distribution. It is desirable to relax these restrictive 
assumptions in some natural way, allowing for features such as skewness and multimo-
dality while simultaneously generalizing widely used and well-understood parametric 
models. Choosing an appropriate distribution to model these correlated traits is critical 
to the performance of these methods. In this paper, we used Gaussian Coupla to model 
the distribution of phenotype which is especially attractive for its flexibility. Based on 
the Gaussian Copula model assumption, we proposed three imputation methods under 
three different loss functions. We used a variety of simulation studies and applications to 

Table 2 The corresponding p values of significant SNPs of MANOVA in the analysis of COPDGene 
using different imputation methods

1Chr:bp denotes chromosome and base pair position
2SNP denotes Single Nucleotide Polymorphism
3Bold-faced value indicates the smallest p value based on unimputed and imputed data

Chr:bp1 SNP2 Unimputed PHENIX PIM C-MSE C-(0–1) C-QL

4:145431497 rs1512282 1.69E−9 1.47E−11 1.96E−11 2.40E−11 2.42E−11 2.40E−11

4:145434744 rs1032297 6.52E−14 4.71E−15 6.93E−15 2.02E−15 2.12E−15 2.02E−15

4:145474473 rs1489759 1.11E−16 4.96E−16 2.08E−16 7.46E−17 7.90E−17 7.47E−17

4:145485738 rs1980057 6.68E−17 6.00E−17 2.48E−17 8.00E−18 8.46E−18 8.00E−18

4:145485915 rs7655625 7.12E−17 1.39E−16 5.95E−17 2.16E−17 2.28E−17 2.16E−17

15:78882925 rs16969968 1.32E−11 4.49E−14 2.71E−14 1.51E−14 1.41E−14 1.51E−14

15:78894339 rs1051730 1.41E−11 4.44E−14 2.74E−14 1.40E−14 1.36E−14 1.40E−14

15:78898723 rs12914385 1.76E−12 1.20E−14 3.44E−15 1.85E−15 1.70E−15 1.85E−15

15:78911181 rs8040868 2.74E−12 5.78E−15 2.11E−15 1.73E−15 1.61E−15 1.73E−15

15:78878541 rs951266 1.77E−11 9.20E−14 6.88E−14 3.03E−14 2.95E−14 3.03E−14

15:78806023 rs8034191 2.14E−10 1.03E−12 1.70E−13 2.25E−13 2.19E−13 2.25E−13

15:78851615 rs2036527 3.99E−10 4.63E−13 1.04E−13 1.09E−13 1.06E−13 1.09E−13

15:78826180 rs931794 2.35E−10 7.92E−13 1.75E−13 2.22E−13 2.17E−13 2.22E−13

15:78740964 rs2568494 1.05E−7 2.63E−10 2.41E−10 1.94E−10 1.89E−10 1.94E−10
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the lung study to compare the performance of our three methods with that of the exist-
ing methods. Our results show that our methods perform better than PIM and PHENIX 
which are two existing imputation methods.

Normalizing phenotypes before imputation can satisfy the requirement of certain 
imputation methods such as PHENIX and PIM, which require multivariate normal dis-
tributions. However, normalization can introduce artifacts, especially if the original data 

Table 3 The corresponding p values of significant SNPs of TATES in the analysis of COPDGene using 
different imputation methods

1Chr:bp denotes chromosome and base pair position
2SNP denotes Single Nucleotide Polymorphism

Bold values indicate the smallest p value for the genetic association tests using imputed and unimputed data for each SNP

Chr:bp1 SNP2 Unimputed PHENIX PIM C-MSE C-(0–1) C-QL

4:145431497 rs1512282 5.77E−9 1.27E−9 1.41E−9 5.13E−10 5.19E−10 5.13E−10

4:145434744 rs1032297 6.22E−13 1.20E−12 3.50E−13 8.17E−14 8.59E−14 8.17E−14

4:145474473 rs1489759 2.52E−16 4.09E−15 7.08E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

4:145485738 rs1980057 9.35E−17 6.82E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

4:145485915 rs7655625 1.64E−16 1.36E−15 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

15:78882925 rs16969968 2.98E−8 9.90E−11 6.26E−10 1.88E−10 1.87E−10 1.88E−10

15:78894339 rs1051730 2.63E−8 6.91E−11 4.30E−10 1.26E−10 1.27E−10 1.26E−10

15:78898723 rs12914385 5.14E−10 1.18E−12 3.03E−12 1.29E−12 1.24E−12 1.29E−12

15:78911181 rs8040868 2.40E−9 1.89E−12 1.15E−11 4.70E−12 4.52E−12 4.70E−12

15:78878541 rs951266 5.17E−8 1.91E−10 1.18E−9 3.54E−10 3.54E−10 3.54E−10

15:78806023 rs8034191 1.02E−7 5.77E−10 1.87E−9 9.48E−10 9.49E−10 9.48E−10

15:78851615 rs2036527 1.56E−7 4.06E−10 2.07E−9 7.45E−10 7.44E−10 7.45E−10

15:78826180 rs931794 1.18E−7 4.37E−10 2.18E−9 9.49E−10 9.49E−10 9.49E−10

15:78740964 rs2568494 2.88E−5 5.85E−7 1.37E−6 4.90E−7 4.77E−7 4.90E−7

Table 4 The corresponding p values of significant SNPs of M-Phen in the analysis of COPDGene 
using different imputation methods

1Chr:bp denotes chromosome and base pair position
2SNP denotes Single Nucleotide Polymorphism

Bold values indicate the smallest p value for the genetic association tests using imputed and unimputed data for each SNP

Chr:bp1 SNP2 Unimputed PHENIX PIM C-MSE C-(0–1) C-QL

4:145431497 rs1512282 1.03E−9 7.33E−12 9.15E−12 1.11E−11 1.12E−11 1.11E−11

4:145434744 rs1032297 7.69E−14 7.44E−15 7.22E−15 2.55E−15 2.66E−15 2.55E−15

4:145474473 rs1489759 1.22E−16 4.44E−16 1.11E−16 1.11E−16 1.11E−16 1.11E−16

4:145485738 rs1980057 8.14E−17 1.11E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

4:145485915 rs7655625 9.13E−17 1.11E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

15:78882925 rs16969968 7.84E−12 3.26E−14 2.20E−14 1.10E−14 1.08E−14 1.10E−14

15:78894339 rs1051730 8.16E−12 3.10E−14 2.02E−14 9.44E−15 9.33E−15 9.44E−15

15:78898723 rs12914385 1.48E−12 1.59E−14 4.55E−15 2.11E−15 2.00E−15 2.11E−15

15:78911181 rs8040868 2.59E−12 6.99E−15 2.89E−15 2.11E−15 2.00E−15 2.11E−15

15:78878541 rs951266 1.02E−11 6.71E−14 5.87E−14 2.24E−14 2.20E−14 2.24E−14

15:78806023 rs8034191 7.74E−11 4.17E−13 7.84E−14 9.41E−14 9.26E−14 9.41E−14

15:78851615 rs2036527 1.77E−10 2.69E−13 6.29E−14 6.04E−14 5.94E−14 6.04E−14

15:78826180 rs931794 9.09E−11 2.99E−13 7.59E−14 9.14E−14 9.00E−14 9.14E−14

15:78740964 rs2568494 4.23E−8 8.91E−11 1.01E−10 7.35E−11 7.21E−11 7.36E−11
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has complex, non-linear relationships. The transformation process may mask the true 
distribution and dependencies of the phenotypes, leading to biased imputation results. 

Table 5 The corresponding p values of significant SNPs of AFC in the analysis of COPDGene using 
different imputation methods

1Chr:bp denotes chromosome and base pair position
2SNP denotes Single Nucleotide Polymorphism

Bold values indicate the smallest p value for the genetic association tests using imputed and unimputed data for each SNP

Chr:bp1 SNP2 Unimputed PHENIX PIM C-MSE C-(0–1) C-QL

4:145431497 rs1512282 1.1× 10
−8

< 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

4:145434744 rs1032297 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

4:145474473 rs1489759 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

4:145485738 rs1980057 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

4:145485915 rs7655625 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

15:78882925 rs16969968 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

15:78894339 rs1051730 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

15:78898723 rs12914385 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

15:78911181 rs8040868 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

15:78878541 rs951266 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

15:78806023 rs8034191 1.40× 10
−8

< 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

15:78851615 rs2036527 2.90× 10
−8

< 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

15:78826180 rs931794 6.30× 10
−8

< 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

15:78740964 rs2568494 5.00× 10
−6 5.00× 10

−7
8.00× 10

−7
< 1.00E−16 < 1.00E−16 < 1.00E−16

Table 6 The corresponding p values of significant SNPs of Tippet in the analysis of COPDGene for 
different imputation methods

1Chr:bp denotes chromosome and base pair position
2SNP denotes Single Nucleotide Polymorphism

Bold values indicate the smallest p value for the genetic association tests using imputed and unimputed data for each SNP

Chr:bp1 SNP2 Unimputed PHENIX PIM C-MSE C-(0–1) C-QL

4:145431497 rs1512282 8.00× 10
−9

< 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

4:145434744 rs1032297 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

4:145474473 rs1489759 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

4:145485738 rs1980057 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

4:145485915 rs7655625 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

15:78882925 rs16969968 4.90× 10
−8

< 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

15:78894339 rs1051730 4.20× 10
−8

< 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

15:78898723 rs12914385 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

15:78911181 rs8040868 5.00× 10
−9

< 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

15:78878541 rs951266 8.10× 10
−8

< 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

15:78806023 rs8034191 1.70× 10
−7

< 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

15:78851615 rs2036527 2.41× 10
−7

< 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

15:78826180 rs931794 1.94× 10
−7

< 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16 < 1.00E−16

15:78740964 rs2568494 3.42× 10
−5

3.00× 10
−6

2.00× 10
−6

< 1.00E−16 < 1.00E−16 < 1.00E−16
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Imputing directly on the original data can preserve the inherent distribution and rela-
tionships within the data. Our proposed copula based method can handle diverse dis-
tributions without the need for normalization, potentially providing more accurate 
imputations.

Our proposed copula-based phenotype imputation method is not restricted to cases 
where missing data is independent and missing completely at random (MCAR). In fact, 
our method is also valid when the missingness is at random (MAR), where the prob-
ability of missingness may depend on observed phenotypes but not on the unobserved 
(missing) data itself. Our method leverages the Gaussian copula to capture the underly-
ing correlation structure among the observed and missing phenotypes, which allows us 
to model the dependencies and impute missing values based on the observed data. In 
summary, the proposed copula-based imputation method is valid for MCAR and MAR 
missing data patterns.

For the missing not at random (MNAR) scenario, however, the method may face chal-
lenges, as it assumes that the missingness mechanism does not depend on unobserved 
values once conditioned on the observed data. Like most imputation methods, our 
method assumes that the missing data mechanism does not depend on the unobserved 
values in the case of MNAR, which typically requires additional assumptions or exter-
nal information for phenotype imputation. Addressing phenotype imputation when the 
missingness is not at random (MNAR) will be the focus of our future work, as we aim to 
explore how to extend our copula-based phenotype imputation method to accommo-
date this more complex scenario.

The selection of an appropriate loss function is pivotal in determining the efficacy and 
performance of the proposed method. If the data is approximately normal and the goal 
is to minimize overall imputation error across the dataset, square loss (MSE) is recom-
mended due to its balance between simplicity and effectiveness in handling continuous 
variables. If the data exhibit non-normal distribution or significant outliers, or there is a 
need to accurately estimate specific quantiles or extreme values, quantile loss could be 
more appropriate as it allows focusing on specific parts of the distribution. 0–1 loss is 
generally recommended for imputation tasks involving categorical variables due to its 
binary nature.

The proposed methods we discussed have implicitly been used to infer the last missing 
quantitative phenotype in the paper. If more quantitative missing phenotype occur in 
the same study, our methods can be easily extended to impute these missing phenotype 
one by one. We also note that we can readily impute qualitative phenotype based on the 
proposed Gaussian Copula model. On the other hand, qualitative phenotypes do often 
play an important role among all correlated phenotypes for some diseases in practice. 
Thus, taking full advantage of qualitative phenotypes to infer the missing quantitative 
phenotypes can increase the accuracy of imputation and thus improve the power for 
testing associations between phenotype and genetic variants.

We are currently exploring how to impute the qualitative phenotype under the Gauss-
ian Copula model based on other loss functions and will report the results in the future.
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