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ABSTRACT
The increasing demand for disease modeling, preclinical drug testing, and long waiting
lists for alternative organ substitutes has posed significant challenges to current
limitations in organoid technology. Consequently, organoid technology has emerged
as a cutting-edge tool capable of accurately recapitulating the complexity of actual
organs in physiology and functionality. To bridge the gaps between basic research
and pharmaceutical as well as clinical applications, efforts have been made to develop
organoids from tissue-derived stem cells or pluripotent stem cells. These developments
include optimizing starting cells, refining culture systems, and introducing genetic
modifications.With the rapid development of organoid technology, organoid composi-
tionhas evolved from single-cell tomulti-cell types, enhancing their level of biomimicry.
Tissue structure has become more refined, and core challenges like vascularization
are being addressed actively. These improvements are expected to pave the way for
the construction of organoid atlases, automated large-scale cultivation, and universally
compatible organoid biobanks.However,major obstacles remain to be overcomebefore
urgently proof-of-concept organoids can be readily converted to practical applications.
These obstacles include achieving structural and functional summarily to native tissue,
remodeling the microenvironment, and scaling up production. This review aims to
summarize the status of organoid development and applications, highlight recent
progress, acknowledge existing limitations and challenges, and provide insights into
future advancements. It is expected that this will contribute to the establishment of
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a reliable, scalable, and practical platform for organoid production and translation,
further promoting their use in the pharmaceutical industry and regenerative medicine.

Subjects Bioengineering, Cell Biology, Developmental Biology, Gastroenterology and Hepatology
Keywords Organoid, Up-scaling, Expansion, Disease modeling, Transplantation, Bioreactor,
Gene-editing, Universal biobanking, Induced pluripotent stem cells, Somatic stem cells

INTRODUCTION
With recent technological advances, organoids have emerged as the leading in vitro model
for the detailed exploration of themolecular landscape of human organs. This advancement
enables in-depth and systematic dissection of human biological systems and disease
mechanisms, accelerating drug discovery and the development of therapeutic strategies.
Organoids are in vitro organ substitutes generated exclusively from either somatic stem cells
(SSC) or pluripotent stem cells (PSCs) through self-organization, which forms a complex
three-dimensional (3D) architecture with physiological features that closely resemble native
organs. These features make organoid models more accessible and practical compared to
animal models, providing deeper insights into organ biology and the progression of related
disease development (Rossi, Manfrin & Lutolf, 2018).

Organoids derived from SSCs are biocompatible with the host tissue or organ, making
them convenient sources, particularly for autologous transplantation. However, SSCs
present practical challenges, including difficulties in separation and purification, as well
as limited capacity for in vitro expansion and lineage differentiation. As an alternative,
PSC-derived induced pluripotent stem cells (iPSCs) offer significant potential for broad
applications due to their theoretically permanent replication power (Cao et al., 2021). More
importantly, their unique multilineage differentiation potential allows the generation of
multiple organ-forming cell components, enabling the reconstruction of vascularized
multicellular organoids with neuroendocrine (Lamers et al., 2021) and immune systems
(Xu et al., 2018) under specific differentiation and co-culture protocols. These organoids
can mimic the physiological compositions and functions of native organs, expanding their
potential for pharmacological and therapeutic application (Takebe et al., 2017). However,
preparing individual cell types remains time-consuming, labor-intensive, and impractical
for widespread use. Recently, gene editing has enabled a single initial PSC population to
differentiate into multiple cell composition under pre-designed gene network regulation,
ultimately forming engineered tissue with expansion capabilities. Although still in its
early stages, this breakthrough offers important insights for constructing a more efficient,
labor-reduced, and scalable organoid production system.

In the past 20 years, emerging evidence has shown that organ-like substitutes can
recapitulate human pathologies, offering breakthroughs in disease modeling and drug
development (Rossi, Manfrin & Lutolf, 2018). Several pioneering studies have demonstrated
that patient-derived organoids could mimic the genetic and pathological features of
the original diseased tissue (Dekkers et al., 2013; Dutta, Heo & Clevers, 2017; Huch et al.,
2015; Lancaster et al., 2013; Nie et al., 2018a; Ouchi et al., 2019; Zhou et al., 2017). More
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recently, gene modification techniques, such as CRISPR/Cas9, have enabled the use of
organoids from healthy donors to establish disease models including cancer (Matano et al.,
2015; Sun et al., 2019). Proof-of-concept studies also suggest that organoids can serve as
alternative grafts for regenerative medicine, helping to rescue or recovery damaged issues
(Nie et al., 2018b; Shirai et al., 2016), offering new hope for treating previously incurable
diseases. However, variations in cell sources and protocols between research groups lead to
differences in organoid structure and function, affecting the accuracy and reproducibility of
these reported disease models. This inconsistency is a major challenge for rapidly growing
organoid industry (Rossi, Manfrin & Lutolf, 2018).

In recent years, expectations for the practical applications of organoids have grown
steadily. However, this fulfillment relies greatly on critical breakthroughs in the
reliability, reproducibility, and practicability of organoid generation. Therefore, the key
challenges remain in bridging the gap between in vitro organoids and native organs,
as well as translating laboratory studies into practical production and applications.
This review summarizes recent progress in organoid generation, focusing on disease
modeling and transplantation therapies. Simultaneously, we discuss challenges related to
addressing architectural and functional complexity, enhancingmaturation and establishing
reproducible and scalable culture systems. Notably, we highlight advances in organoid
atlases, automated cultures, and universally compatible iPSC-organoid biobanks, which
could greatly improve drug development and personalized treatments in the future.

SURVEY METHODOLOGY
We searched PubMed for articles on trends and challenges in organoid modeling and
expansion with pluripotent stem cells and somatic tissue. Keywords included ‘‘Organoid,
up-scaling, expansion, disease modeling, transplantation, bioreactor, gene-editing,
universal biobanking, induced pluripotent stem cells, somatic stem cells, three-dimension,
multicellular organization, extracellular matrix’’ yielding over 8,000 results. The articles
were screened individually to assess relevance to our research. After organizing and
analyzing the results, we downloaded 240 literature reviews. Of these, 178 articles were
cited in this review, while 62 articles were excluded as irrelevant. Most of the literature cited
was published in the past decade. This review aims to serve as a reference for researchers
working on organoid research and developing tools for drug screening and transplantation
therapy using iPSC-derived multicellular organoids.

Current achievements
Here we summarize the current state of research on organoid production, the impact of
co-culture systems, the in vitro microenvironment on organoid production, and current
research hotspots in organoid culture. Additionally, we reviewed the current applications
of organoids in disease modeling and their potential as disease therapeutic tools.

Organoid microenvironment simulation (multicellular organization and
extracellular matrix)
Co-culturing isolated tissue stem cells or dissected tissue fragments is the principal
strategy for generating SSC-derived organoids. Without additional modifications, such
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as gene editing, these organoids are relatively easy to manage and maintain, showing
strong potential for mimicking adult tissue biology. Among pioneering studies, a single
LGR5+ stem cell population was shown to reconstitute mouse and human intestines
or liver organoids when cultured with defined niche factors (mainly growth factors and
Matrigel) (Huch et al., 2015; Sato et al., 2009). Using single-cell sequencing, a novel protein
C receptor-positive (Procr+) cell population was identified from an adult mouse pancreas,
which robustly formed islet-like organoids when cultured at clonal density (Wang et al.,
2020). Notably, these SSC-derived organoids could be expanded in a defined culture
system without genome instability and could be differentiated into functional cells in
vitro or upon transplantation in vivo (Huch et al., 2015; Wang et al., 2020). However,
identifying SSC markers and isolating and purifying SSCs are often challenging and
labor-intensive. In addition, SSCs exclusively produce organoids with a single epithelial
population, lacking the complex multilineage compositions found in real organs, such
as the vascular, immune, and nervous systems (Calandrini & Drost, 2021; Mohammadi et
al., 2021). Although technically challenging, PSC-derived organoids are becoming more
accessible and practical. With proper differentiation protocols, PSCs could develop into
various desired cell types within specific tissues. Notably, complex multilineage organoid
systems could be developed from a single PSC source, capturing cellular heterogeneity and
interactions necessary to replicate the pathology of human organs (Silva et al., 2019). To
date, multiple organoid types have been generated from PSCs (Table 1), demonstrating
their wide-ranging applications.

Single-cell population organoids do not fully replicate the complexity of real
organs because they lack native stromal cells and blood vessels, which are essential
for tissue development and maturation (Yu, 2020). To recapitulate the multicellular
interactions in the liver, initial attempts used human mesenchymal stem cells (MSCs)
and umbilical vein endothelial cells (HUVECs) to substitute the liver’s intrinsic stromal
components, such as hepatic stellate cells, and endothelial cells. This approach successfully
established vascularized multicellular liver organoids through self-cell sorting and
architectural rearrangements, and these organoids exhibited enhanced liver function
due to their multicellular system-autonomous endogenous signaling (Takebe et al.,
2013). Subsequently, to avoid allogeneic cell source integration, the generation of
liver parenchymal and major supportive cell lineages was induced from a single PSC.
Interestingly, this all-iPSC-based multicellular organoid demonstrated a higher level of
structural and functional similarity to primary liver tissue compared to the former model,
suggesting that self-assembly with an autologous cell population may promote maturation
in general, although the underlyingmechanism remains to be clarified (Takebe et al., 2017).

However, organoids created by co-culturing separate pre-established cell types are
considered structurally irregular and disordered compared to native organs, where
multilineages are developed simultaneously. Moreover, the asynchronously developed
aggregation may lack specific intercellular signal interactions found in tissues, which
are essential for fully recapitulating biological functions. Therefore, multicellular co-
development was recently achieved when gene editing was adopted. By precisely regulating
gene networks through PROX1 and ATF5 overexpression and CYP3A4 activation, a single
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Table 1 Summary for PSC or tissue derived organoids and their application.

Organoid
types

Initial cells 3D culture:
embedded in
gel or suspended
in a plate

Applications &
Significance

Author(s),year

Liver PHHs & liver NPCs BME Hepatotoxicity test Messner et al., 2013
hiPSCs Matrigel Generation of a vascular-

ized and functional human
liver bud from PSCs

Takebe et al., 2013

Patient liver cells BME Modelling of primary liver
cancer

Broutier et al., 2017

hiPSCs ULA plate Modelling of liver develop-
ment

Takebe et al., 2017

PMHs ULA plate Recapitulation of liver re-
generation potential

Peng et al., 2018

PMH & PHH Matrigel Recapitulation of the pro-
liferative damage-response
of hepatocytes

Zilch et al., 2018

hiPSCs ULA plate Modelling of hepatitis B
virus infection

Nie et al., 2018a

hPSCs Matrigel Prediction of toxicity and
the evaluation of drugs for
hepatic steatosis

Mun et al., 2019

Patient liver cells BME Drug screening for anti-
HBV activity and drug-
induced toxicity

De Crignis et al., 2021

PHHs Matrigel High-throughput screen-
ing of chemical and food-
derived compounds with
anti-hyperuricemic bioac-
tivity

Hou et al., 2022

hiPSCs Matrigel High-throughput Shrestha et al., 2024
Pancreas Mouse pancreatic epithelial cells Matrigel Modelling of pancreatic

development
Huch et al., 2013

Patient tumor cells Matrigel Modelling of pancreatic
tumorigenesis

Boj et al., 2015

Mouse islet EpCAM+ cells Matrigel Rescuing streptozotocin
(STZ)-induced diabetes in
mice

Wang et al., 2020

hiPSCs Matrigel Rescuing streptozotocin
(STZ)-induced diabetes in
mice

Yoshihara et al., 2020

hPSCs Matrigel Modelling of the develop-
ment of exocrine pancreas

Huang et al., 2021

hPSCs Matrigel Modelling of the develop-
ment of hepato-biliary-
pancreatic

Koike et al., 2019

(continued on next page)
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Table 1 (continued)

Organoid
types

Initial cells 3D culture:
embedded in
gel or suspended
in a plate

Applications &
Significance

Author(s),year

Lung hPSCs Matrigel Modelling of lung devel-
opment

Dye et al., 2015

hPSCs Matrigel Modelling of lung devel-
opment

Miller et al., 2018

hPSCs Matrigel Modelling of fibrotic lung
disease

Strikoudis et al., 2019

Patient pulmonary cells Matrigel Modelling of non-small
cell lung cancer

Shi et al., 2020

Patient pulmonary cells Matrigel Prediction of the targeted
and the chemotherapeutic
drugs

Hu et al., 2021

hPSCs ULA plate & Matrigel Modelling of SARS-CoV-2
infection on lung

Han et al., 2021

hPSCs Matrigel Modeling fibrotic alveolar
transitional cells

Ptasinski et al., 2023

Intestine mASCs Matrigel Building crypt-villus struc-
tures in vitro without a
mesenchymal niche

Sato et al., 2009

hiPSCs Matrigel Modelling of human intes-
tine development

Spence et al., 2011

hiPSCs Matrigel Modelling of congenital
loss of intestinal enter-oe
ndocrine cells

Fordham et al., 2013

hPSCs Hydrogel Repairing of intestinal in-
jury

Cruz-Acuña et al., 2017

Patient intestinal cells Matrigel Testing of anti-
inflammatory drugs

d’Aldebert et al., 2020

Patient intestinal cells Matrigel Drug screening for intesti-
nal diseases

Cho et al., 2021

hPSCs ULA plate & Matrigel Modelling of SARS-CoV-2
infection on colon

Han et al., 2021

Patient intestinal cells Matrigel Modelling of Cronkhite-
Canada Syndrome

Poplaski et al., 2023

Brain mESCs ULA plate Modelling of the develop-
ment of polarized cortical
tissue

Eiraku et al., 2008

hPSCs ULA plate Modeling of microcephaly Lancaster et al., 2013
hPSCs ULA plate Modelling of neural devel-

opment and disease pro-
gressing

Birey et al., 2017

Patient glioblastoma cells ULA plate Modelling of glioblas-
tomas

Jacob et al., 2020b

hPSCs ULA plate Modelling of SARS-CoV-2
infection on brain

Jacob et al., 2020a

hiPSCs Matrigel Modelling of brain devel-
opment

Gabriel et al., 2021

(continued on next page)
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Table 1 (continued)

Organoid
types

Initial cells 3D culture:
embedded in
gel or suspended
in a plate

Applications &
Significance

Author(s),year

hiPSCs Matrigel in a perfusion plate Assessment of develop-
mental neurotoxicity

Acharya et al., 2024

hiPSCs Matrigel Modeling of HIV-1 infec-
tion and NeuroHIV

Donadoni et al., 2024

Retina hESCs ULA plate & Matrigel Modelling of optic cups
and layered stratified neu-
ral retina development

Nakano et al., 2012

hiPSCs Geltrex Modelling of retinal devel-
opment

Xie et al., 2020

hESCs ULA plate Modelling of retinal devel-
opment

Savoj et al., 2022

hiPSCs ULA plate Modelling of Alzheimer’s
disease neuropathology

James et al., 2024

Skin mPSCs ULA plate Modelling of skin diseases
and revealing of hair folli-
cle induction, hair growth

Lee et al., 2018

hPSCs ULA plate Modelling of the cellular
dynamics of developing
human skin

Lee et al., 2020a

hiPSCs Matrigel Testing of skin-related
drugs

Ebner-Peking et al., 2021

Mouse epidermal cells ULA plate Modelling of self-
organization into tissue
patterns of stem cells in
organoids

Lei et al., 2023

hiPSCs ULA plate Modelling of human skin
development, disease and
reconstructive surgeries

Shafiee et al., 2023

Kidney Embryonic kidney cells Cell pellet Modelling of organotypic
renal structures by self-
organization

Unbekandt & Davies, 2010

mESCs & hiPSCs ULA plate Modelling of kidney
organogenesis

Taguchi et al., 2014

hiPSCs Matrigel Screening of nephrotoxic-
ity

Takasato et al., 2015

Human kidney tubular
epithelial cells

Matrigel & BME Modelling of infectious,
malignant and hereditary
kidney diseases

Schutgens et al., 2019

Patient renal cells Matrigel Modelling of renal cancer Grassi et al., 2019
hESCs ULA plate Modelling of flow-

enhanced vascularization
Homan et al., 2019

Mouse ureteric bud
progenitors

Matrigel Modelling of congenital
anomalies of kidney and
urinary tract

Zeng et al., 2021

hiPSCs Matrigel Modeling of Fabry disease
nephropathy

Cui et al., 2023

hiPSCs Matrigel Modeling of FAN1-
deficient kidney disease

Lim et al., 2023

(continued on next page)
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Table 1 (continued)

Organoid
types

Initial cells 3D culture:
embedded in
gel or suspended
in a plate

Applications &
Significance

Author(s),year

Bone hPDCs Agarose microwell Rescue tibia defects of
mice

Nilsson Hall et al., 2020

hPSCs Matrigel Bone healing Tam et al., 2021
PHOs Matrigel Modelling of skeletal de-

velopment
Abraham et al., 2022

Human cartilage and bone tissues Matrigel Modeling of tissue devel-
opment and disease

Abraham et al., 2022

BMSCs Hydrogel Rapid bone defect regener-
ation and recovery

Xie et al., 2022

Heart hPSCs Matrigel Two pro-proliferative
small molecules without
detrimental impacts

Mills et al., 2019

mESCs Matrigel Modelling of carcinogene-
sis

Lee et al., 2020b

hESCs ULA plate & Matrigel Modelling of the devel-
opment of early heart and
foregut

Drakhlis et al., 2021

hPSCs ULA plate Modeling of cardiac de-
velopment and congenital
heart disease

Lewis-Israeli et al., 2021

hiPSCs ULA dish & Matrigel Recapitulate morpholog-
ical/functional aspects of
the heart

Lee et al., 2022

hPSCs ULA plate Modeling of syntheticheart
development and cardiac
disease

Volmert et al., 2023

Notes.
BME, basement membrane extract; D, dimensional; ESC, embryonic stem cell; h, human; iPSC, induced pluripotent stem cell; m, mouse; NA, not available; PHCs, pri-
mary human cholangiocytes; NPCs, non-parenchymal cells; PHHs, primary human hepatocytes; PHOs, primary human osteocytes; PMHs, primary mouse hepatocytes;
PSCs, pluripotent stem cells (iPSC & ESC); ASCs, adult stem cells; ULA, ultra-low attachment.

iPSC population can now develop into both liver parenchymal and nonparenchymal cell
populations at the same time during cell aggregation. Importantly, these liver organoids
were well vascularized, exhibited mature hepatic functions, and responded effectively
to perturbations and feedback regulation (Velazquez et al., 2021). However, current
multicellular organoid systems still face challenges. Notably, they lack immune cells and
exhibit differences in cell distribution and ratios compared to natural organs, which vary
depending on the protocols used in different laboratories (Ouchi et al., 2019; Velazquez
et al., 2021). To improve organoid models, a deeper understanding of the multilineage
developmental trajectories in a specific organ and the development of advanced gene
editing tools are needed. This will help build precise cell types in organoids with faithful
ratios, spatial distributions, and organization patterns.

Among in vitro culture environments, the extracellular matrix (ECM) may be the most
crucial and adjustable factor that influences organoid features such as spatial architecture,
growth, maturation, and even carcinogenesis. Matrigel is currently the most used natural
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ECM and is known for promoting organoid constitution and growth. However, its
undefined composition and potential risks from immunogen and pathogen limit its
clinical applications (Rossi, Manfrin & Lutolf, 2018). The development of designermatrices,
particularly synthetic hydrogels with fine-tunable and controlled biophysical properties, has
rapidly advanced in recent years. For instance, modular synthetic polyethylene glycol (PEG)
hydrogels have been designed for culturing intestinal organoids. Notably, regulating the
stiffness of the matrix backbone, known as mechanically dynamic system, researchers can
influence the expansion, differentiation, and organogenesis of these organoids (Gjorevski et
al., 2016). Subsequently, a composition-defined PEG-based hydrogel system was designed
based on functional analysis of cellular adhesion in pancreatic cancer cells. This system
revealed the functional role of critical ECM signaling in supporting both normal and
cancerous pancreatic organoid growth (Below et al., 2022). Despite these efforts, identifying
all the relevant ECM signalingmolecules require formimicking native tissue developmental
trajectory or disease progression remains a major challenge. For this purpose, naturally
derived matrices from decellularized tissues are being explored. An ECM hydrogel derived
from decellularized porcine small intestine mucosa/submucosa was found to support
the formation and growth of a wide range of endoderm-lineage organoids (Giobbe et
al., 2019). In addition, several studies have identified the supportive roles of ECM from
various tissues, including the liver (Zahmatkesh et al., 2021), pancreas (Bi et al., 2020),
kidneys (Garreta et al., 2024) and brain (Simsa et al., 2021) in promoting the formation
and maturation of PSC-organoids in specific germ layers. While the tissue ECM provides
the most supportive and comprehensive signaling for organoid culture, closely mimicking
the native microenvironment, the undefined compositions of these tissues necessitate
thorough identification and rigorous biosafety verification before they can be used in
clinical application.

Notably, the native organ microenvironment plays a crucial role in regulating the
dynamic development of tissue homeostasis, regeneration, and pathogenesis, with each
organ requiring a specific microenvironment. To address this, researchers have turned to
microfluidic culture systems because of their advantages in miniaturization, integration,
and low reagent consumption. These systems not only model the dynamic 3D in vivo
microenvironment but also enable precise control of multiple parameters of the variables
in the environment, such as the concentration gradient of the fluid shear stress. This
allows for the creation of a controllable physiological environment for specific organoid
development and maintenance (Jalili-Firoozinezhad, Miranda & Cabral, 2021). However,
most established microfluidic culture systems cannot satisfy all the elements that make
up a complex in vivo microenvironment. For example, while some reports have revealed
the unique cellular organization, ECM composition, and signaling in organoids at specific
growth or differentiation stages, aspects such as blood flow, oxygen, andmetabolic exchange
are often overlooked in most culture system designs. Combining the utility of 3D scaffolds,
micropatterning, and advanced culture technologies such as organ-on-chip systems to
more accurately mimic in vivo dynamics remains a significant challenge (Zhang et al.,
2017). With optimized parameter design and intelligent controls, an integrated culture
system would undoubtedly enhance the resemblance between organoids and native organs.
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Applications of organoids (disease modeling and transplantation therapy)
Undoubtedly, ongoing research efforts to promote the structural and functional similarity
between organoids and natural organs are aimed at realizing their vast potential for
biomedical applications, particularly in drug testing and therapy. To some extent, in
vitro models could recapitulate important aspects of human organs in physiology and
pathology, providing a valuable tool for studying organ development, pathogenesis, and
drug responses, areas that are difficult or impossible to explore directly in human subjects
(Bock et al., 2021).

Challenges in cancer research and drug development ismainly due to their heterogeneity,
including diverse mutational, epigenetic, and metabolic profiles, as well as the complexity
of the tumor environment (McGranahan & Swanton, 2017). Tumor organoids, directly
derived from patient-resected tumors and biopsies, offer a novel approach to capturing
the original characteristics of tumors. They are considered more cost-effective and
efficient compared to traditional animal models or patient-derived tumor xenografts.
Pancreatic cancer is one of the most lethal malignancies owing to its late diagnosis and
limited treatment option. To better understand the developmental cues of pancreatic
tumorigenesis, patient-derived pancreatic organoids have been established as a tractable
system to identify molecular and cellular characteristics at various stages of the disease.
Both in vitro and transplantation experiments have confirmed a similar cluster of genes and
pathways altered during disease progression, suggesting the faithfulness of this organoid
model (Boj et al., 2015). In another study, a more detailed comparison between tumor and
tumor-derived organoidswere identified, including differentiation status, histoarchitecture,
phenotypic heterogeneity, and patient-specific physiological changes. Notably, the observed
correlation between tumors and their matched organoids in terms of sensitivity to histone
methyltransferase EZH2 inhibitors highlights the potential of organoids for personalized
drug screening and precise therapy. Moreover, the same group demonstrated these results
using PSC-derived pancreatic tumors with mutations in KRAS and TP53 (Sun et al., 2019).
Another group established human CRC tumor-derived organoids that well represent both
morphological and molecular heterogeneities of original tumors. A robust organoid-based
drug screening systemwas developed to efficiently identify repurposed drugs for CRC (Mao
et al., 2024).Similarly, liver organoids generated from patients with Alagille syndrome were
used to model in vivo pathology (Huch et al., 2015). Collectively, PSCs combined with gene
editing largely broadens the organoid source, not limiting it to patient donors, and are
particularly practical for establishing cancer models with defined mutation signatures.

Organoids have been extensively used for hereditary and infectious disease modeling.
For instance, intestinal organoids generated from patients with cystic fibrosis, a disease
caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR),
were used for drug screening for individual patients (Dekkers et al., 2013). Similarly,
liver organoids generated from patients with alpha-1-antitrypsin deficiency and Alagille
syndrome have been used tomodel in vivo pathology (Huch et al., 2015). Extensive research
has been conducted on these pathogens since the emergence of a new coronary pneumonia
ailment. Lung organoids and brain organoids (Cakir et al., 2019; Velasco et al., 2019) have
proven to be effective tools for studying SARS-CoV-2-related pathogenesis and treatment
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strategies. Brain organoids are also used to model microcephaly (Lancaster et al., 2013)
and Zika infection (Zhou et al., 2017). Kidney organoids have significantly enhanced
the capability to discover novel disease mechanisms and validate candidate drugs for
clinical translation in polycystic kidney disease (PKD) (Liu et al., 2024). Many research
groups, including ours, have explored the potential of hPSC-derived liver organoids to
model hepatitis B virus (HBV) infection and steatohepatitis (Nie et al., 2018a; Ouchi et al.,
2019). Our findings highlight the importance of using multicellular organoids to increase
susceptibility to HBV infection, which is believed to be the key step in recapitulating the
virus life cycle (Cao et al., 2021). Nevertheless, additional cellular components, such as
immune cells, are required to create a more accurate modeling system. Another promising
application of organoids is in the study of rare diseases, where CRISPR-based gene editing
and patient-derived iPSCs offer a personalized approach to disease modeling, such as
alpha-1-antitrypsin deficiency and Rett syndrome (Gomes et al., 2020; Gómez-Mariano
et al., 2020). These models allow researchers to explore rare genetic conditions at the
molecular level, often revealing new therapeutic strategies for diseases that were previously
under-researched.

Organoids play a crucial role in drug metabolism and toxicology research by offering
human-relevant models that simulate the absorption, distribution, metabolism, and
excretion of drugs (Wang et al., 2021a). Liver organoids, which exhibit key drug-
metabolizing enzymes such as cytochrome P450, provide a more accurate platform for
predicting drug behavior in preclinical trials, improving the drug development pipeline.
Additionally, liver and kidney organoids are increasingly used in toxicology studies to
predict organ-specific toxicities. This approach reduces reliance on animal models and
enhancing the precision of safety evaluations (Czerniecki et al., 2018; Zhang et al., 2023).

Functional organoids hold promise as alternative substitutes for transplantation in
therapeutic strategies. Our group is among the first to perform the transplantation of
multicellular PSC-derived liver organoids to treat liver damage in a mouse model. We
confirmed the integration and maturation of these vascularized organoids within the host,
and demonstrated that they could improve survival and liver function in mice with acute
liver failure (ALF), providing a proof-of-concept regimen for treating severe or late-stage
liver diseases (Nie et al., 2018b; Nie et al., 2018a). Importantly, our findings of in vivo
environment-conducted organoid maturation were consistent with the results of another
transplantation trial, in which cholangiocyte organoids displayed transcriptional diversity
from primary human cholangiocytes after culture; furthermore, they could regain their in
vivo signatures when transplanted back in their physiological position (Sampaziotis et al.,
2021). Similarly, PSC-derived kidney organoids were found to induce neovascularization
and significant maturation of glomeruli and tubules after subrenal transplantation (Hickey
et al., 2019). ESCs- derived retinal organoids have been used to transplant organoid-
derived RGCs into the murine eyes, achieving long-distance regeneration and functional
connectivity remains a challenge (Rao et al., 2025). Despite the considerable potential of
regenerative medicine, generating a sufficient number of high-quality organoids remains a
significant challenge for most research groups.
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Difficulties and challenges
Scaled culture system
Over the years, organoid culture systems have proven to be a revolutionary paradigm
for drug development and regenerative medicine, but they have not yet been widely
applied in the pharmaceutical and industrial fields. One major obstacle is the scalability
and reproducibility. To amplify batch production, a microwell-array culture platform
was initially proposed for massive organoid production in a single culture, with over
20,000 micro spots in a single well with an optimized size and space design, which would
theoretically support a clinically relevant batch scale (>108 cells/batch). However, this
production system did not resolve the substantial issues associated with scaling organoid
quantities. Moreover, the labor-intensive and inefficient manual operation for iPSC
differentiation and the co-culturing of multiple cell populations was barely feasible and
reproducible for practical batch-to-batch applications (Cao et al., 2021).

Expanding the number of organoids in scaled culture systems is considered a more
practical and effective strategy for organoid production. As listed in

Table 2, various pioneering studies have shown that organoids derived from certain
tissue-derived stem and fetal cells (especially from the liver) have long-term expansion
capabilities in vitro, although their lifespan is often limited. As a promising source,
PSC-derived organoids have demonstrated a more powerful expansion capability, with
increasing achievements, including those in the endodermal layer (Akbari et al., 2019;
Giobbe et al., 2019; Mun et al., 2019; Yamamoto et al., 2017). However, these seemingly
promising results have common drawbacks. Organoids are exclusively cultured in Matrigel
or tissue-derived hydrogel layers. This method hampers organoid manipulation and
testing, as well as clinically relevant applications such as transplantation and post-tissue
engineering. Additionally, the static culture system restricts timely material and signaling
transport between organoids and the culture environment.

Given the significant challenges in optimizing conditions for organoid expansion,
bioreactor-based suspension culture systems have recently attracted attention. These
systems, which are widely used for large-scale cell culture in the pharmaceutical industry,
offer potential solutions. The dynamic culture model of the bioreactor enhances the
exchange of oxygen, nutrients, and metabolites. This improvement is believed to
solve the limitations of static culture and markedly improve organoid survival and
development (Schneeberger et al., 2020). More importantly, the relatively homogeneous
spatial distribution of these components and signaling molecules greatly improves the
homogeneity and reproducibility of the organoid products. Transferring static 3D culture
to a dynamic spinner flask results in the growth of LGR5-positive liver stem cells achieved
a dramatic 7-fold expansion enhancement. This new system also markedly upregulates
functional maturation following differentiation (Schneeberger et al., 2020). The success of
hPSCs suspension expansion over the past decade (Burrell et al., 2019) has inspired the
possibility of extending the 3D culture system to include direct lineage differentiation. In
this context, a 3D hPSC expansion system efficiently differentiated definitive endoderm
(DE) cells—common intermediates in endoderm lineage differentiation—into 3D floating
aggregates in a single batch using a bioreactor. This process yielded 1× 108DEcells with over
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Table 2 Up-to-date strategies for organoid expansion of tissue derived cells from the three germ layers.

Organoid
types

Initial cells 3D Expansion
systems: Embedded
in a gel or
suspension in
a plate

Expansion
capability: Passage
days/expansion
duration

Medium and
supplements

Author(s),year

Liver hiPSC-Heps, HU-
VECs, hMSCs

Matrigel 4–6 d/NA EGM, HCM, dexam-
ethasone, OSM, HGF

Takebe et al., 2013

PMHs & PHHs Matrigel 7–10 d/>6 mo AdDMEM/F12
medium, B27, N-
Acetylcysteine, gastrin,
RSPO1, Noggin,
Wnt, EGF, FGF7,
FGF10, HGF, TGFa,
Nicotinamide, A83-01,
CHIR99021, Y27632

Hu et al., 2018

PHHs BME gel 7-10d/9–12 mo AdDMEM/F12
medium, B27, N-
Acetylcysteine, gastrin,
RSPO1, Noggin, Wnt,
EGF, FGF10, FGF19,
HGF, Nicotinamide,
A83-01, FSK, Y27632

Artegiani et al., 2019

hiPSC-derived
EpCAM+hepatic
progenitors

Matrigel 7d/3 mo AdDMEM/F12
medium, B27, N-
Acetylcysteine, gastrin,
RSPO1, Noggin, Wnt,
EGF, FGF10, HGF,
Nicotinamide, A83-01,
FSK, Y27632

Akbari et al., 2019

hPSCs Matrigel 10d/17 d AdDMEM/F12
medium, N2, B27,
N-Acetylcysteine,
gastrin, RSPO1,
EGF, FGF10, HGF,
Nicotinamide, A83-01,
FSK

Mun et al., 2019

hPSCs transduced
with PROX1,
ATF5 and CYP3A4

Matrigel 48h/NA APEL medium Velazquez et al., 2021

hESCs & hiPSCs Matrigel/ULA Plate 5–6d/>48d DMEM/F12 medium,
GlutaMAX, HEPES,
N2, B27, BSA, N-
Acetylcysteine, gas-
trin, Nicotinamide,
CHIR99021, FSK,
FGF10, HGF, A03-01,
R-spondin1, EGF

Kim et al., 2022

(continued on next page)
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Table 2 (continued)

Organoid
types

Initial cells 3D Expansion
systems: Embedded
in a gel or
suspension in
a plate

Expansion
capability: Passage
days/expansion
duration

Medium and
supplements

Author(s),year

Patient liver cancer
cells

Matrigel 14–21d/NA DMEM/F12,
GlutaMAX, PS,
N-Acetylcysteine,
HEPES, EGF, FGF7,
FGF10, HGF, Dex,
Y27632

Sun et al., 2024

Pancreas Mouse adult duct
cells

Matrigel 7d/9mo AdDMEM/F12
medium, B27, N-
Acetylcysteine, gastrin,
EGF, RSPO1, Noggin,
FGF10, Nicotinamide

Huch et al., 2013

Patient tumor cells Matrigel 7–8d/NA AdDMEM/F12
medium, HEPES,
GlutaMAX, PS,
Primocin, N-
Acetylcysteine, Wnt3a,
RSPO1, Noggin,
EGF, gastrin, FGF10,
Nicotinamide, A83- 01

Boj et al., 2015

Mouse islet
EpCAM+cells

Matrigel NA DMEM/F12 medium,
PS, B27, ITS, EGF,
heparin, FGF2, VEGFa

Wang et al., 2020

hiPSCs Matrigel 6-7d/30d 3D Kelco Gel Stem
TeSR, FSK, dexam-
ethasone, TGF- β RI
kinaseinhibitor II/Alk5
inhibitor II, Nicoti-
namide, 3,3′,5-triiodo-
l-thyronine sodium
salt (T3), B27, R428,
zinc sulfate, N-Cys

Yoshihara et al., 2020

hESCs & hiPSCs Feeder cells 3–5d/>11d DMEM, B27, EGF,
bFGF, 616452,
I-BET151

Ma et al., 2022

Patient pancreatic
cancer cells

Matrigel NA DMEM/F12, HEPES,
Glutamax, Primocin,
A83–01, EGF, mNog-
gin, FGF10, Gastrin,
N-Acetylcysteine,
Nicotinamide, B27, R-
spondin1 CM, Afam-
in/Wnt3A CM

Demyan et al., 2022

Colon mASCs Matrigel 7–8d/NA AdDMEM/F12
medium, Crypt culture
medium, EGF, RSPO1,
Noggin

Sato et al., 2009

(continued on next page)
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Table 2 (continued)

Organoid
types

Initial cells 3D Expansion
systems: Embedded
in a gel or
suspension in
a plate

Expansion
capability: Passage
days/expansion
duration

Medium and
supplements

Author(s),year

hPSCs Matrigel 13–14d/>140d RPMI1640 media,
dFBS-DMEM/F12,
FGF4, Wnt3a, Activin
A, RSPO1, Noggin,
EGF, L-Glutamine,
HEPES, N2, B27, PS

Spence et al., 2011

hiPSCs Matrigel NA/2mo AdDMEM/F12
medium, GlutaMAX,
HEPES, PS, B27, Y-
27632, Streptomycin,
Noggin, EGF, RSPO1,
Wnt3a

Fordham et al., 2013

hPSCs Hydrogel 10–14d/40d AdDMEM/F12
medium, N2, B27,
HEPES, L-Glutamine,
PS, Noggin, SB431542,
FGF2, Sant-2, SU5402,
SHH, SAG

Cruz-Acuña et al., 2017

hPSCs Matrigel & ULA plate 2–3d/6mo DMEM/F12 medium,
LDN193189,
CHIR99021, EGF,
B27, GlutaMAX,
HEPES, PS

Han et al., 2021

Patient intestinal
cells

Matrigel NA Wnt-3a or
hAFM/Wnt-3a
conditioned medium,
RSPO1, Noggin, EGF,
B27, N-Acetylcysteine,
Nicotinamide,
SB202190, A83-01,
prostaglandin E2,
gastrin, Primocin

Cho et al., 2021

Patient colon can-
cer cells

Matrigel 7–10d/NA DMEM/F12,
GlutaMAX, PS,
N-Acetylcysteine,
HEPES, B27, Noggin,
EGF, A83-01, gastrin,
SB202190

Parseh et al., 2022

Kidney Mouse embryonic
kidney cells

Cell pellet NA KCM, MEM, FBS, PS,
Y27632, Glycyl-H1152,

Unbekandt & Davies, 2010

mESCs & hiPSCs ULA plate 2 d/18d IMDM, F12 medium,
N2, B27, PS, BSA, glu-
tamine, ascorbic acid,
1-thioglycerol

Taguchi et al., 2014

hiPSCs Matrigel 2–3d/3mo APEL medium,
CHIR99021, FGF9,
bFGF, heparin

Takasato et al., 2015

(continued on next page)
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Table 2 (continued)

Organoid
types

Initial cells 3D Expansion
systems: Embedded
in a gel or
suspension in
a plate

Expansion
capability: Passage
days/expansion
duration

Medium and
supplements

Author(s),year

hESCs ULA plate 2-3d/43d DMEM/F12 medium,
CHIR99021, FGF9,
Noggin. Dorsomor-
phin

Homan et al., 2019

Patient renal cell
carcinomas cells

Matrigel 14–21d/NA AdDMEM/F-
12, Antibiotic-
Antimycotic,
GlutaMAX, HEPES, B-
27, N-Acetylcysteine,
Nicotinamide,
SB202190, Y-27632,
EGF

Li et al., 2022

Human fetal kid-
ney cells

Matrigel NA Advanced DMEM,
HEPES, Glutamax,
Pen/Strep, B-27
supplement minus
Vitamin A, N-
acetylcysteine,
R-spondin 1, EGF,
A8301, CHIR99021,
FGF10, GDNF,
Heparin, LDN193189
dihydrochloride,
Y27632

Gerli et al., 2024

Brain mESCs ULA plate NA/25d DMEM/F12 medium,
Neurobasal, pyruvate,
2-mercaptoethanol,
Dkk-1, Lefty-1,
Y27632, BMPRIA-
Fc, SB431542, L-
glutamine, B27

Eiraku et al., 2008

hPSCs ULA plate NA/10mo DMEM/F12 medium,
Neurobasal, N2,
GlutaMAX, NEAA,
Heparin, B27, 2-
mercaptoethanol,
insulin, retinoic acid

Lancaster et al., 2013

hPSCs ULA plate NA/>50d DMEM/F12
medium, KSR,
NEAA, GlutaMAX,
2-mercaptoethanol,
PS, FGF2

Birey et al., 2017

hPSCs ULA plate 2-3d/30d Cortical differentiation
medium, Glasgow-
MEM, KSR,
NEAA, pyruvate,
2-mercaptoethanol, PS

Velasco et al., 2019
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Table 2 (continued)

Organoid
types

Initial cells 3D Expansion
systems: Embedded
in a gel or
suspension in
a plate

Expansion
capability: Passage
days/expansion
duration

Medium and
supplements

Author(s),year

hiPSCs Matrigel NA/>42d DMEM/F12 medium,
Neural basal medium,
N2, B27, RA,
GlutaMAX, MEM,
Dorsomorphin,
insulin, SB431542, PS,
2-mercaptoethanol

Gabriel et al., 2021

hESCs ULA Plate 19d/>25d DMEM/F12 medium,
Neurobasal medium,
PS, GlutaMAX, B27
without Vit A, EGF,
FGF2

Pagliaro et al., 2023

Human fetal cen-
tral nervous system
(brain and spinal
cord) cells

ULA Plate 14-21d/NA AdDMEM/F12
medium, Neurobasal
medium, PS,
GlutaMAX, HEPES,
B27 without VA, N2,
MEM, FGF10, EGF,
Primocin

Hendriks et al., 2024

Retina hESCs ULA plate & Matrigel NA/18d NR culture medium,
G-MEM, KSR,
NEAA, pyruvate,
2-mercaptoethanol,
PS, IWR1e, FBS, SAG,
CHIR99021

Nakano et al., 2012

hPSCs Matrigel 2d/24d DMEM/F12 medium,
B27 (without vita-
min A), antibiotic-
antimycotic, Gluta-
MAX, NEAA

Regent et al., 2020

hiPSCs Geltrex 2d/>30d DMEM/F12 medium,
FBS, taurine, B27,
NEAA, GlutaMAX,
antibiotic-antimycotic,
retinoic acid

Xie et al., 2020

hESCs ULA plate 3d/>80d GMEM, KSR, N2,
ascorbic acid

Savoj et al., 2022

hiPSCs Maxgel 8d/>120d DMEM/F12, N2,
NEAA, GlutaMAX,
heparin, BMP4

Bohrer et al., 2023

hiPSCs rhVTN-N NA/>42d E6 medium, N2 Gozlan et al., 2023
Skin mPSCs ULA plate NA/>56d AdDMEM/F12

medium, N2,
GlutaMAX, Normocin,
LDN, FGF2, BMP4,
SB431542

Lee et al., 2018
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Table 2 (continued)

Organoid
types

Initial cells 3D Expansion
systems: Embedded
in a gel or
suspension in
a plate

Expansion
capability: Passage
days/expansion
duration

Medium and
supplements

Author(s),year

hPSCs ULA plate NA AdDMEM/F12
medium, Neurobasal,
E6 basal medium,
GlutaMAX, B27, N2,
2-mercaptoethanol,
Normocin, BMP4,
SB431542, bFGF

Lee et al., 2020a

Human primary
epidermal cells
from foreskintis-
sues

Matrigel NA/42d AdDMEM/F12
medium, BSA,
B27, HEPES,
GlutaMAX, N-Acetyl-
Lcysteine,Forskolin,
EGF, Wnt3a, A83-01

Wang et al., 2021b

miPSCs Matrigel 2d/29d AdDMEM/F12
medium, HEPES,
Glutamax, B27,
N-acetylcysteine-1,
Noggin, Rspondin-1,
FGF1, heparin,
Forskolin

Kwak et al., 2024

Bone hPSCs Matrigel 2–3d/NA DMEM, FBS, L-
glutamine, NEAA, SP,
ITS-X, ascorbic acid,
2-mercaptoethanol,
bFGF, TGF- β1,
BMP2, GDF5, PS

Tam et al., 2021

PHOs Matrigel NA/>4mo DMEM, Endothelial
medium, FBS, Gluta-
MAX, ascorbic acid,
BOM, MCSF, RANKL

Abraham et al., 2022

hiPSCs ULA plate 14d/>62d APEL2, PFHM II,
FGF2, BMP4

Lamandé et al., 2023

BMSCs from rats ULA plate NA Chondrogenic Induc-
tion, sodium pyru-
vate, TGF- β3, dex-
amethasone, ITS pre-
mix, ascorbic acid-2-
phosphate

Shen et al., 2024

Heart hPSCs Matrigel NA/15d DMEM, B27, Gluta-
MAX, L-ascorbic acid
2-phosphate, PS, glu-
cose, palmitic acid

Mills et al., 2019

mESCs Matrigel NA/15d DMEM/F12 medium,
PS, KSR, sodium
pyruvate, 2-
mercaptoethanol,
l-glutamine,
progesterone, β-
estradiol, insulin,
transferrin, selenite,
FGF4

Lee et al., 2020b
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Table 2 (continued)

Organoid
types

Initial cells 3D Expansion
systems: Embedded
in a gel or
suspension in
a plate

Expansion
capability: Passage
days/expansion
duration

Medium and
supplements

Author(s),year

hPSCs ULA plate NA/21d CGMmedia,
B27, thrombin,
cardiotrophin-1, EGF,
FGF-2, Wnt-3A, EDN1

Ho et al., 2022

hiPSCs gelatin NA/25d RPMI 1640, BSA,
lascorbic acid 2-
phosphate, sodium
DL-lactate

Seguret et al., 2024

Notes.
BME, basement membrane extract; D, dimensional; d, day; ESC, embryonic stem cell; h, human; iPSCs, induced pluripotent stem cells; KSR, Knockout Serum Replace-
ment; m, mouse; mo, month; NA, not available; PHCs, primary human cholangiocytes; PHHs, primary human hepatocytes; PHOs, primary human osteocytes; PMHs,
primary mouse hepatocytes; PS, penicillin streptomycin; PSCs, pluripotent stem cells (iPSCs &ESCs); ULA, ultra-low attachment.

92% purity, facilitating downstream production of various endodermal lineages, including
hepatic, pancreatic, and intestinal lineages (Sahabian et al., 2021). Recently, a cascade
3D suspension system was developed that enables both the expansion and subsequent
hepatic differentiation of hPSC-DEs. This system facilitated the massive production of
hepatic organoids with high purity, over 85% and 93% for hepatocyte and cholangiocyte
specification, respectively, in a 300 mL spinner flask (Feng et al., 2020). Although not
specifically mentioned, this systemmay also permit the differentiation of other endodermal
lineages under proper downstream differentiation conditions. Additionally, scaling up of
cultures for various other lineages, includingmacrophages, pancreatic cells, and endothelial
cells, is rapidly developing (Dossena et al., 2020; Gutbier et al., 2020; Takebe et al., 2017).

Nevertheless, it is worth noting that agitating bioreactors, which allow precise control
of dissolved oxygen and nutrients, turbulence, and shear stress, have been rarely reported
except in the context of iPSC and iPSC-platelet production (Suzuki et al., 2020). One
possible reason is the limitations in refining the optimal bioreactor parameters for distinct
iPSC-derived lineage progenitors. Additionally, the high cost and complexity of stage-
specific medium supplements may further hinder scaling. A comprehensive understanding
of the dynamic culture conditions required for organoid expansion and differentiation,
along with integrated automated and programmed culture systems, is urgently needed
to scale up organoid production. Evaluating organoid quality—including size, cellular
components, and functionality—should be emphasized to ensure reproducibility between
different passages and batches.

Automated and controllable culture system
With the development of organoid generation strategies (Fig. 1), the corresponding culture
systems have seen significant improvements. However, the reproducibility and consistency
of organoid culture systems remain major bottlenecks. Conventional culture processes
involve a large number of human factors, low automation, poor organoid controllability,
and human error, which lead to significant differences between different cell lines and
organisms, resulting in numerous uncertainties and differences in organoid structure and
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function (Jiang et al., 2020). Automated culturemay offer a solution to avoid variable errors
caused by inconsistent manual handling during tedious experiments, allowing for precise
mechanical automation (Park, Georgescu & Huh, 2019). For example, using an automated
liquid-handling robot system, researchers established a fully automated and high-
throughput screening-compatible platform with integrated imaging and analysis processes,
which for the first time enabled the differentiation and formation of organoids (Czerniecki
et al., 2018). Importantly, the Swiss Federal Institute of Technology in Lausanne has
developed a high-throughput automated microcavity array technology. This technology is
used for the high-throughput derivation of epithelial organoids within a polymer-hydrogel
substrate. It clearly demonstrates that organoids generated by automated manipulation
display reduced variability and increased time efficiency. Therefore, extending the scope of
research relies on stable and reliable organoid culture and facilitates the scaling of culture
systems (Brandenberg et al., 2020). Recently, a high-content screening (HCS) platform that
allows researchers to screen drugs or other compounds against three-dimensional (3D)
cell culture systems in a 384-well multi-well format has been established. This platform
enabled automated, imaging-based HCS of 3D cellular models in a non-destructive
manner, opening the path to complementary analysis through integrated downstream
methods (Bozal et al., 2024).

To achieve precise and automatic control over organoid generation, culture, and
analysis conditions, an organoid-on-chip system has been developed, which is based on a
microfluidic cell culture device manufactured using a microchip fabrication method.
This system consists of multiple microchambers with fluid flow, a variety of living
cells, mechanical force stimulation, and other complex factors in vitro. It simulates
the main structural and functional characteristics of human organs] by implanting
human cells into microfluidic chips for 3D culture (Shirure, Hughes & George, 2021).
However, microenvironments such as blood vessels, stromal components, immune
cells, and neuroendocrine microenvironments are commonly lacking and need to be
further complemented to create more realistic conditions (Schuster et al., 2020). The
Tsinghua-Berkeley Shenzhen Institute (TBSI) has combined organoid generation with an
organ-on-a-chip system and 3D printing technologies to open up a new field for organoid
scaling. In this study, a microfluidic droplet system was used to shear cell-containing
Matrigel into homogeneous microspheres, which were then followed by 3D printing. This
enabled the rapid generation, culture, and automated manipulation of organoids, leading
to the development of homogeneous, controlled, high-throughput, and scalable tumor
organoid systems. Nevertheless, this high-throughput and automated organoid culture
system still has some limitations, such as a relatively low success rate of organoid printing,
incomplete automation, and the need for additional manual transfer (Jiang et al., 2020).
Recently, a systematic approach has been taken to investigate the initial seeding density
of endothelial cells and its effects on interconnected networks, which has been combined
with hepatic spheroids to develop a liver-on-a-chip model. This system provides insight
into potential hepatotoxicity caused by various drugs and allows for the assessment of
vascular dysfunction in a high-throughput manner (Wang, Andrade & Smith, 2023). In
addition, since the organoid microarray model is constructed in a predefined manner,
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Figure 1 Strategies to generate organoid systems.Under specific 3D microenvironment (suspension
culture, ECM, microparticles, etc.), tissue-derived stem/progenitor cells have been used for generating
organoids with the aid of supportive cells. However, the limited cell source, along with challenges in scal-
ability and reproducibility, presents significant hurdles. Pluripotent stem cells, including ESCs and iP-
SCs, offer a promising alternative due to their potential for efficient and scalable organoid production.
PSCs could be synchronously differentiated towards three dermal layers, which facilitates the genera-
tion of more complex organoid structure with multiple cellular components. Following embryonic body
formation, the organoid functionality and maturation could be significantly improved. With recent ad-
vancements in gene editing technologies, such as CRISPR/Cas9, increasing types of iPSCs-derived diseased
organoids have been established by means of gene mutation/ knock-in or out. This progress greatly ex-
tends the applications in personalized disease modeling and drug testing. In addition, for ESC or iPSC-
derived organoids, HLA knockout is expected to create universal organoids, which are expected to be use-
ful in organ transplantation. ECM, extracellular matrix; ESCs, embryonic stem cells; HLA, human leuko-
cyte antigen; iPSCs, induced pluripotent stem cells; KI, knock in; KO, knock out; PSCs, pluripotent stem
cells, included iPSCs and ESCs; TF, transcription factors.

Full-size DOI: 10.7717/peerj.18422/fig-1

its ability to capture the dynamics of organoid development in response to drugs or
environmental changes is very limited. Integrated engineering techniques are needed to
monitor and analyze the dynamic development in micro-engineered organoid cultures.
Furthermore, due to the complexity of multicellular nutrient and signal requirements in
organoids, future optimization of media composition and stepwise culture conditions are
necessary for the co-culture system. On this basis, the establishment of standardized good
manufacturing practice (GMP) guidelines is expected to further ensure the quality and
biosafety of organoids, eventually driving the shift from laboratory research to clinical or
industrial applications.
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Frontiers and perspectives
Organoid atlas
Organoids have tremendous potential for biomedical research due to their unique
advantage of organ-like three-dimensional structures tomimic the physiology and function
of native organs (Ashok et al., 2020; Lancaster & Knoblich, 2014). To fully realize their
potential and address practical application challenges, organoids should be characterized
and validated as reliable organ substitutes (Bock et al., 2021). However, current organoid
techniques still face many limitations, including inadequate multilineage development,
incomplete neuroendocrine and immune systems, undeveloped vascularization networks,
suboptimal physiological functions, and drug responses. A suite of recently developed
integration of single-cell and spatial profiling may offer new prospects for addressing these
existing problems. These methods allow for identifying the spatial distribution of multiple
cell populations within tissues or organoids, and capturing individual cell physiological
characteristics and intercellular communication networks by physically localizing cell
transcriptomic information within specific spatial locations (Longo et al., 2021). On this
basis, comprehensive spatial mapping of liver tissue has identified transcriptome-wide
zonation of parenchymal and non-parenchymal liver cells, including previously unknown
subpopulations (Aizarani et al., 2019). Moreover, in-depth bioinformatic analysis revealed
that the heterogeneous EPCAM+ liver population includes hepatocyte- and cholangiocyte-
biased cells, as well as a unique TROP2int population that exhibits bipotency and organoid
formation capability, potentially providing a novel liver progenitor source for generating
organoids. Notably, the atlas also revealed the differences in gene expression and function
between normal and hepatocellular carcinoma livers across multiple cell types, providing
new insights into inter-cellular communications during liver cancer development and
aiding in the design of in vitro modeling (Aizarani et al., 2019). Additionally, single-
cell sequencing and spatial transcriptomics are increasingly used to characterize tissue
architecture and biological mechanisms in various normal and cancerous tissue/organs
(Mutuku et al., 2022; Rao et al., 2021; Yamada & Nomura, 2020) and to deconvolute the
microenvironment for tissue homeostasis and cancer progression (Ayyaz et al., 2019;Baccin
et al., 2020;Wang et al., 2021a).

On this basis, comparative spatial molecular profiling of organoids with their
corresponding tissues or organsmay fundamentally provide references for the revolutionary
outbreak of current protocols and strategies for organoid generation, culture, and even
disease modeling. For example, this approach can identify the specific roles of individual
cell populations and reveal key regulatory mechanisms in organogenesis or carcinogenesis.
Indeed, many previously unobservable discrepancies in gene expression and organization
of particular cellular composition, have been confirmed between cultured organoids
and relevant organs by in-depth transcriptomic comparison at the single-cell level.
These findings offer significant clues for improving organoid models through advanced
engineering and culture systems (Kanton et al., 2019)Moreover, the organoid atlas provides
a scalable tool for evaluating organoids in terms of constructure, functionality, and
even unexpected mutations, which is crucial for quality control, particularly in terms
of regenerative therapy (Sridhar et al., 2020). To create comprehensive reference maps
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for all human cells as a basis for understanding human biology and treating diseases, an
Organoid Cell Atlas pilot project was recently launched in Europe. This project is expected
to complement the profiling of primary tissues with perdurable models for studies in
biomedical discovery and regenerative therapies (Bock et al., 2021). Although spatially
resolved transcriptomic technologies are now being widely adopted, their application is
still facing long-term challenges. Current approaches cannot provide deep transcriptomic
information on precisely localized single cells in tissues or organoids (Rao et al., 2021).

Moreover, there is an urgent need to develop novel computationalmethods for analyzing
spatially resolved transcriptomic data. Thesemethods should characterize the heterogeneity
of cells within their spatial contexts and to derive biological insights into organoids and
their derivation models, as well as the corresponding primary tissues (Longo et al., 2021).

Universally compatible iPSC-organoids and biobank
Organoids can be established from autologous iPSCs, which are immunologically identical
to the donor, offering significant immunological advantages in transplantation therapy.
However, creating autologous iPSC from each patient’s somatic cells is difficult for
standardized treatments due to low efficiency and high cost (Murata et al., 2020).
With the development of gene editing tools, the possibility of iPSCs transplantation
without allogeneic rejection has become a key focus in regenerative medicine (Ichise et al.,
2017; Koga, Wang & Kaneko, 2020; Morizane et al., 2017; Zhao et al., 2011). In particular,
CRISPR/Cas9 gene editing tool enables the creation of universally compatible iPSCs by
remodulating immune-related antigens via gRNA targeting and cas9 nuclease-mediated
shearing (Chen et al., 2019). Human leukocyte antigen (HLA), which plays an important
role in distinguishing self from non-self, is a major barrier in organ and cell-based
transplantation. It is commonly believed that HLA mismatch between the donor and
recipient is a major barrier to organ or cell-based transplantation, while matched HLA can
significantly reduce the risk of graft rejection and graft-versus-host disease (GVHD), and
improve allograft survival (Koga, Wang & Kaneko, 2020). HLA class I and II complexes
mediate antigen-specific adaptive immune responses and act as ligands for T and NK cells,
which differentiate between self and non-self components (Long et al., 2013). To overcome
immune rejection, β2-microglobulin (B2M), a common protein subunit, essential for HLA
class I expression, is commonly knocked out using traditional editing. However, knocking
out B2M silences of all HLA class I molecules, causing ‘‘miss self’’ and leading to NK cell
attack (Flahou et al., 2021). To address this, immune rejection was suppressed by disrupting
the HLA-A and -B alleles and HLA class II molecules, while retaining HLA-C, which helps
avoids NK cell-mediated self-attack. This approach enables iPSCs to evade T and NK cell
attacks in vitro and in vivo (Lee et al., 2020a). iPSCs produced by the iPS Cell Research and
Application Center of Kyoto University using a gene knockout strategy with CRISPR/Cas9
exhibited extremely low immunogenicity and could evade attack in vitro and in vivo after
T and NK cells differentiate into platelets (Xu et al., 2019). Similarly, another group used
CRISPR-Cas9 to knock out beta-2-microglobulin (B2M) in kidney organoids, successfully
protecting kidney organoids derived from these iPSCs against T-cell rejection (Gaykema
et al., 2024). These successes highlight the possibility of using universally compatible iPSC
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sources to generate highly biocompatible and available organoid derivatives to solve the
current extreme shortage of organs for transplantation, with dramatically reduced GVHD.

However, challenges remain in current HLA knockout strategies. Precise targeting of
HLA-A and HLA-B while retaining HLA-C is crucial to avoid off-target effects on HLA-C
homologous sequences. In addition, the potential reduction in cell viability, proliferation,
and pluripotency of PSCs should be monitored and controlled to maintain the full
differentiation potential of PSCs. Moreover, the general problems of low transfection
efficiency and off-target phenomena in gene editing must be optimized (Chen et al., 2019).
To enhance on-target specificity, scientists have attempted to modify the Cas9 protein
to alter PAM preferences or enhance target DNA recognition and developed systems
to regulate Cas9 expression during transcription and translation (Kleinstiver et al., 2016;
Kleinstiver et al., 2015; Shen et al., 2018). Research on trophoblast organoids has advanced
the understanding of placental development. Organoid models using CRISPR/Cas9
technology examined the role of HLA-G in trophoblast function and differentiation.
JEG-3 trophoblast organoids (JEG-3-ORGs) were established, expressing key trophoblast
representative markers and had the capacity to differentiate into EVT. HLA-G knockout
(KO) via CRISPR/Cas9 significantly altered the trophoblast immunomodulatory effect on
NK cell cytotoxicity, as well as the trophoblast regulatory effect on HUVEC angiogenesis
(Zhuang et al., 2023). However, the current technology is still immature, and future
improvements in specificity, targeting efficiency, and use of highly efficient, biocompatible,
and non-immunogenic delivery vehicles are needed. Considering the overall usefulness of
the CRISPR-Cas9 gene editing tool in terms of efficiency and biocompatibility, its use in
in vivo transplantation is believed to enhance safety and efficacy (Chen et al., 2019).

Given the rapid demand for organ/tissue models and transplantation grafts for diverse
research and clinical applications, the establishment of organoid biobanks offers extensive
opportunities for ready-to-use tools and sources (Perrone & Zilbauer, 2021). Large-scale
production of universally compatible iPSC-organoid is expected to expand transplantation
therapies tomany patients with differentHLA backgrounds (Fig. 2). However, due toHLA’s
high polymorphic and variation among different ethnic groups in different regions, creating
organoid banks with sufficient HLA haplotypes that match a wide range of populations
remains challenging (Flahou et al., 2021). Recruiting HLA-homozygous donors to cover
diverse populations is particularly difficult. Biobanks must consider rare frequency alleles
and include rare donors, with each cell source carefully characterized and evaluated for
regulatory safety (Flahou et al., 2021). Recently, a PLC biobank with 399 tumor organoids
derived from 144 patients was established, which recapitulates histopathology and genomic
landscape of parental tumors, and is reliable for drug sensitivity screening. This study
explored PLC heterogeneity, developed predictive biomarker panels, and identified a
lenvatinib-resistant mechanism for combination therapy (Yang et al., 2024). Beyond
identifying clinical biocompatibility and safety, considerable work remains to establish
standard, verified clinical-grade allogeneic organoid biobanks. Global collaborative efforts
from the scientific, clinical, and industrial communities are required to accelerate the
development of this encouraging field.
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Figure 2 Universally compatible iPSC-organoid biobanking and applications. iPSC could be repro-
grammed from a patient’s somatic cells and used as a starting source for producing patient-derived mul-
tiple desired organoids. Advanced 3D organoid culture system contains multiple supportive cell popula-
tions such as stromal cells, endothelial cells, as well as the neuroendocrine and immune system, allowing
for a closer approximation to in vivo organs. The inclusion of multiple supportive cell populations con-
tributes to the construction of disease models and the development of pharmaceutical products at this
stage. The automated culture system provides the possibility to overcome the variable errors caused by
manual inconsistency, and scale-up of support organoid production, and is expected to provide a solution
to the difficult breakthrough of large-scale expansion of standardized organoids at the GMP level. In ad-
dition, the use of gene-editing tools to knock out immune response antigens such as HLA is expected to
generate universally compatible iPSC-organoids ideal for allogeneic transplantation. Combining single-
cell and spatial profiling, organoid mapping can provide structural and molecular profiles of organoids
in comparison with corresponding tissues or organs. This approach enhances the high simulation of cur-
rent organoid construction and cultivation. Additionally, it contributes to further optimization of disease
modeling. The establishment of organoid libraries will greatly contribute to the provision of ready-to-use
disease models for drug screening. These libraries are also expected to provide immediate organoid substi-
tutes for the treatment of malignant or advanced diseases, such as cancer. The establishment of organoid
banks will greatly help to supply ready-to-use disease models for drugs screening, and is expected to pro-
vide immediate organ substitutes for treating malignant or late-stage diseases such as cancer.

Full-size DOI: 10.7717/peerj.18422/fig-2

Interdisciplinary collaboration
The future of organoid research is deeply intertwined with interdisciplinary collaboration,
which integrates expertise from diverse fields to overcome current limitations in scalability,
functionality, and clinical applications.While the biological sciences provide the foundation
for understanding the molecular and cellular mechanisms of organoid formation, other
disciplines, such as bioengineering, materials science, and computational biology, play
essential roles in advancing this technology.

Bioengineering and material science. One of the most promising areas of collaboration is
between bioengineers and materials scientists, particularly in the development of synthetic
scaffolds and extracellularmatrices. These artificialmatricesmimic the natural environment
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of human tissues, promoting the growth, differentiation, and organization of cells within
organoids. For example, bioengineers are utilizing 3D bioprinting technologies to construct
scaffolds that provide mechanical support and guide the spatial organization of organoid
structures (Deng et al., 2024). These innovations are critical for scaling up organoid cultures
for high-throughput drug screening and clinical-grade tissue production.

Material scientists contribute by designing tunable hydrogels with adjustable
stiffness, porosity, and biochemical signals to simulate the tissue-specific extracellular
matrix, improving organoid maturation and functionality (Nerger et al., 2024). These
advancements enable the generation of more complex organoid models that better mimic
the in vivo environment, an essential step for applications in regenerative medicine and
disease modeling.

Computational biology and systems medicine. The advent of big data and artificial
intelligence is revolutionizing organoid data analysis, making collaboration with
computational biologists increasingly vital. Organoids generate vast datasets from
high-throughput genomics, proteomics, and transcriptomics studies. Computational
biologists are developing advanced algorithms and machine learning models to analyze
these data, identifying key signaling pathways in organoid development and disease
progression (Santamaria et al., 2023; Wahle et al., 2023). This collaboration supports
precision modeling, allowing organoids to be tailored to reflect patient-specific genetics or
disease conditions, a powerful approach in personalized medicine.

In addition, systems biology approaches are integrating multi-omics data from organoid
studies to map cellular networks and predict drug responses. For instance, modeling the
interactions between different cell types within an organoid (e.g., immune cells in liver or
brain organoids) is crucial for understanding diseases like cancer and neurodegeneration.
These insights may reveal new therapeutic targets that traditional models cannot capture.

Ethical and regulatory concerns
Use of human stem cells. Organoids are often derived from induced pluripotent stem
cells (iPSCs) or embryonic stem cells (ESCs), raising ethical concerns about the use of
human embryos or reprogramming adult cells. Regulatory frameworks governing stem cell
research vary across countries, with some enforcing stricter guidelines on the sourcing and
manipulation of human cells (Park et al., 2024). For instance, research involving ESCs may
conflict with certain cultural or religious beliefs, necessitating transparent and culturally
sensitive regulations to address these concerns.

Clinical applications. While organoids hold significant potential for regenerative medicine,
concerns about safety, efficacy, and the long-term impacts of transplanting lab-grown
tissues into humans remain. Regulatory bodies like the FDA and EMA have yet to fully
establish guidelines specific to organoid-based therapies, complicating the path to clinical
application. Navigating these regulatory challenges requires strict quality control measures,
ethical sourcing of stem cells, and comprehensive preclinical testing.
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Consent and data privacy. The use of iPSCs involves obtaining consent from donors, as
their genetic information is encoded within the cells. Ensuring informed consent, especially
regarding the future uses of organoids derived from their cells, while also protecting donor
privacy in light of genomic data sharing is critical regulatory concern. This issue is
particularly significant in precision medicine, where organoids might be used to model
individual patients’ conditions.

To address these ethical and regulatory challenges, interdisciplinary collaboration
is essential not only within scientific fields but also with ethicists, legal experts, and
policymakers. Regulatory frameworks must be updated to keep pace with advancements
in organoid technology, ensuring that innovation remains both ethically and scientifically
sound. This might involve creating new standards for informed consent, safety regulations
for organoid-based therapies, and defining ethical boundaries for the extent of human
tissue mimicry.

CONCLUSIONS
As organoid research progresses, ensuring reliability, efficiency, and scalability has become
the focus of organoid research and applications. Although challenges remain, iPSC-derived
multicellular organoids hold promise for drug screening and transplantation therapy. The
integration of bioreactors with automated culture systems may greatly increase the scale
of organoid production. Additionally, it is expected that future advances in organoid atlas
and organoid biobanking may contribute to more reliable and practical applications in
drug development and regenerative medicine.
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