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Abstract

Automated assessment of noise level in clinical computed tomography (CT) images is a crucial 

technique for evaluating and ensuring the quality of these images. There are various factors 

that can impact CT image noise, such as statistical noise, electronic noise, structure noise, 

texture noise, artifact noise, etc. In this study, a method was developed to measure the global 

noise index (GNI) in clinical CT scans due to the fluctuation of x-ray quanta. Initially, a noise 

map is generated by sliding a 10 × 10 pixel for calculating Hounsfield unit (HU) standard 

deviation and the noise map is further combined with the gradient magnitude map. By employing 

Boolean operation, pixels with high gradients are excluded from the noise histogram generated 

with the noise map. By comparing the shape of the noise histogram from this method with 

Christianson’s tissue-type global noise measurement algorithm, it was observed that the noise 

histogram computed in anthropomorphic phantoms had a similar shape with a close GNI value. 

In patient CT images, excluding the HU deviation due the structure change demonstrated to 

have consistent GNI values across the entire CT scan range with high heterogeneous tissue 

compared to the GNI values using Christianson’s tissue-type method. The proposed GNI was 

evaluated in phantom scans and was found to be capable of comparing scan protocols between 

different scanners. The variation of GNI when using different reconstruction kernels in clinical CT 

images demonstrated a similar relationship between noise level and kernel sharpness as observed 

in uniform phantom: sharper kernel resulted in noisier images. This indicated that GNI was a 

suitable index for estimating the noise level in clinical CT images with either a smooth or grainy 

appearance. The study’s results suggested that the algorithm can be effectively utilized to screen 

the noise level for a better CT image quality control.
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1. Introduction

Computed tomography (CT) images are prone to noise, which can significantly impact 

image diagnosis, organ delineation, image registration, and various image analysis technique 

(Murphy et al 2008, Juluru et al 2013, Chen et al 2017). Therefore, it is crucial to have 

an automated method to measure and evaluate the noise level in clinical CT images to 

ensure their quality. Several techniques have been developed to estimate the noise in CT 

images, such as image subtraction (Tian and Samei 2016), global noise index (GNI) in tissue 

(Christianson et al 2015), organ-specific region of interest (ROI) (Abadiet al 2017), noise 

measure in the air outside body (Malkus and Szczkutowicz 2017), and the smallest SD noise 

algorithm (Anam et al 2021). Among these methods, GNI is widely used to assess noise 

in clinical CT images and has been employed to establish reference levels for image noise 

and radiation dose (Ahmad et al 2023). Furthermore, researchers have extended the GNI 

algorithm to optimize its parameters to improve the accuracy of noise level measurement 

(Ahmad et al 2021a, 2021b).

Several factors contribute to CT image noise, including statistical noise, electronic noise, 

structure noise, texture noise, artifact noise, and various scanned parameters such as mAs, 

slice thickness, reconstruction kernel, reconstruction algorithm, pitch, patient’s scanned 

position, and scanned immobilization device. Typically, the standard deviation (SD) of the 

Hounsfield unit (HU) is used to quantify image noise within a region of interest. While 

measuring SD in a uniform phantom is straightforward, it becomes more complex for 

clinical exam due to variable anatomy and differences in scanning techniques. In clinical 

image, the distribution of the noise SD map may be skewed due to the presence of other 

noise sources. For instance, CT scanner for Radiation Oncology Department often involve 

scanning patient on a flat tabletop, introducing molds that restrict patient movement and 

is embedded in a locked bar with high density such that streak artifacts are created. 

Arms are often placed by the patient’s side instead of above the head as is typical with 

diagnostic imaging, and contrast material may be present too. To compute a reliable GNI, 

the anatomical structures, artifacts, or other non-human variables need to be removed from 

the CT images. Traditionally, this was accomplished by computing only the noise SD across 

the entire scan and then masking out regions with skewed distributions.

Anatomical structure constitutes gradient in images which directly increases the SD of HU 

in the pixel located in a neighbor with large gradient. We hypothesized that a noise map 

combined with the image gradient to exclude pixels with a high gradient from the noise 

histogram generation will result a noise distribution more reproduce random noise due to 

photon fluctuation. We aimed to utilize the technique as an automated noise level assessment 

tool to compare and audit CT images generated by different scanners and different protocols.
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2. Method and material

2.1. Automatic noise measurement algorithm

a. Non-anatomical pixels were eliminated by applying an Otsu threshold filter to 

the original CT images, followed by a post morphology process to get rid of 

small objects, while preserving the anatomic objects.

b. A gradient magnitude map (grad. mag. Map) was generated by calculating the 

gradient of the CT image with only anatomic image pixels using a Sobel filter in 

both x and y directions for each pixel. The magnitude of the gradient at a pixel 

was determined as the square root of the x-gradient and y-gradient. To minimize 

the impact of grainy noise on gradient calculation, a median filter was used to 

smooth the CT image before computing the gradient.

c. To create a noise map, a suitable kernel size was sliding over the masked CT 

image obtained from step ‘1’ to compute the SD of HU within the pre-defined 

ROI size. A reference ROI size of 10 × 10 pixels was used throughout phantom 

study. The sensitivity of GNI compared to ROI size was evaluated in real CT 

scans.

d. A global noise histogram (GNH) associated with gradient was established for 

each CT images slice by performing a Boolean (conjunction) operation on the 

noise map and gradient magnitude map to exclude the noise values calculated 

from pixels with a gradient magnitude greater than 10 (an empirical threshold 

selection based on reviews of grad. mag. map over CT images from thorax to 

pelvis). The histogram was binned with a size of 0.1 HU, and the mode of the 

histogram was identified as the GNI of the CT image.

The GNI created using the aforementioned algorithm is referred as GNIgrad in this text 

to distinguish it from the GNI obtained using Christianson’s tissue-type-associated GNI 

(referred to as GNIdx). GNIgrad does not require the delineation of any specific organ or 

region of interest and can be applied to the entire CT images covering the entire scan length. 

Tests were conducted to explore the situations where GNIrad and GNIdx exhibit significant 

differences.

2.2. Validation of gradient associated global noise measurement

In phantom validation was carried out on two CT scanners: (a) Philips Big Bore CT 

scanner (CTp) utilizes dose right (DR) for automatic modulation of tube current (TCM) 

and iDose for iterative reconstruction (IR), (b) Siemens Biograph PETCT scanner (CTs) 

utilizes Care Dose for TCM by assigning quality reference mAs (QRM) and SAFIRE for the 

IR. CT images of a paraspinal case and a brain case were reconstructed using the smooth 

reconstruction kennel (Br32; B denotes for body, r denotes regular), regular reconstruction 

kernel (Br38), sharp reconstruction kernel (Br49), very sharp reconstruction kernel (Br58–

68) to create varying levels of noise for testing the GNI with both algorithms. GNI’s 

sensitivity to the ROI size (from 2 to 30 pixels) was studied, too.
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Table 1 outlines the clinical protocols for both scanners, including the scanned parameters 

and reconstruction kernels used for scanning the phantom. It further presents the ROI sizes 

compared on the clinical images from two anatomical sites.

2.2.1. In phantom comparison between scanners and phantom size versus 
GNH—An adult-sized anthropomorphic phantom (rando phantom) with anatomical range 

from neck to pelvis was used to compare the GNH using the gradient level associated 

algorithm proposed in this study and Christianson’s tissue type associated algorithm. The 

tissue type of HU between −100 and 100 HU in the anthropomorphic phantom study was 

used in Christianson’s algorithm. Additional 5 cm water equivalent bolus layers was placed 

on top of the phantom to denote a larger size phantom in contrast to the original phantom 

without bolus as the small size phantom. The phantom’s water equivalent diameter (wED) 

was calculated based on the method described in the AAPM Task group report TG220 

(McCollough et al 2014).

There were 12 scans (2 protocols, 3 QRMs, 2 phantom sizes) acquired with CTs and 20 

scans (2 protocols, 5 DR levels, 2 phantom sizes) with CTp. Each scan comprised of 220 

cross sectional axial slices. A total of 7040 GNHs were computed and compared using 

both GNI algorithms. With GN3p, GN50p, GN97p, GNmean, and GNI as the descriptors of 

GNH, a paired t-test was used to analyze the 7040 GNHs. P-value < 0.05 is considered 

statically different. To quantitatively compare the difference of the GNH generated by the 

two algorithms, the root means square error (RMSE) of the five GNH descriptors was 

calculated and compared.

2.2.2. Variation of GNIgrad between scanners and between protocols in 
phantom—A further validation of the GNIgrad in phantom was to evaluate the GNIgrad 

versus the CTDIvol. The latter was extracted from the DICOM header of each CT slice. The 

large and small phantoms were scanned at CTp scanner, which is not organ (e.g. thorax and 

abdomen) dependent, using five different strength level of AEC (DR)—17, 19, 21, 23, 25. 

Same phantoms were scanned at CTs scanner using both thorax and abdomen protocols of 

three different QRMs (170, 200, 250).

2.2.3. Comparison of GNIs between scanners and between protocols in 
clinical CT images—To evaluate the robustness of GNI at patient’s CT images, patients at 

scanned at CTp and CTs within one-month (Jan/2024) were evaluated for breast patients (to 

represent thorax site) and pelvis patients. The breast and pelvis protocols were close to the 

thorax and abdomen protocols of current study’s evaluation in phantoms (2.2.2).

2.2.4. Variation of GNIgrad among different ROI size and among 
reconstruction kernels in clinical CT images—The impact of GNI dependency on 

various reconstruction kernels ranging from smooth to sharp was examined in a lengthy 

paraspinal patient. Additionally, the influence of ROI size on GNI sensitivity was also 

evaluated. Comparative tests were conducted using both GNIgrad and GNIdx for comparison.
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3. Results

3.1. Algorithm demonstration

Figure 1 illustrates step 1 through 4 of the proposed algorithm for calculating the GNI. 

The characteristic (shape and magnitude) of the GNH was quantitatively defined by the 

noise histogram by various percentile such as 3% (GN3p), 50% (GN50p), 97% (GN97p), 

as well as the mean (GNmean), and mode (GNI) of the noise level. The histogram plots 

in figure 1 highlight the distinction between the gradient-associated GNIgrad (for gradient 

magnitude>10) noise histogram and tissue type-associated GNIdx (−100 < HU < 100) noise 

histogram.

In figure 2, the top image depicts a lung cancer patient who underwent a contrast enhanced 

scan. The introduction of contrast altered the Hounsfield Unit (HU) in the tissue from 

sternum to the heart, narrowing the range of available search to the soft tissue outside the 

rib cage within the [−100,100] HU range. The low image in figure 2 showed a groin cancer 

patient with CT scan from lower abdomen to the upper leg. The presence of a heterogeneous 

structure in the abdominal cavity introduced tissue structure noise which was excluded in 

GNIgrad’s calculation. In the inferior leg, soft tissue becomes a smaller portion of the CT 

image and there are a large portion of fat-muscle-bone interface increasing HU variation 

from pixel to pixel. The demonstrated scenarios were the example when the assigned 

[−100,100] HU became non-ideal and made the selected tissue HU being sub-optimal in 

these two scans. On the contrary, using GNIgrad demonstrated minimal sensibility to tissue 

inhomogeneities within CT images and yielded more consistent GNI values across the entire 

scanned region.

3.2. Validation of gradient associated global noise measurement

3.2.1. In phantom comparison between scanners and phantom size versus 
GNH—There were no significant differences (p < 0.001) observed in all the evaluated 

descriptors between the two algorithms. The mean ± SD of the RMSE per scanner and 

phantom size are summarized in table 2. The RMSE values obtained from both scanners 

were similar. However, the RMSEs calculated from the large phantom size were slightly 

larger than those calculated from the small phantom size, except for RMSE97p. When 

comparing the generated (GN3p and GNI) by the two algorithms, it was found that 95% of 

the values fell within the range of 1 to 2 HU. Similarly, for GN50p and GNmean, 95% of the 

values differed within 10 HU. The major difference in the generated GNH between the two 

algorithms was observed in GN97p, with a mean difference of approximately 20 HU.

Figure 3 illustrates the linear correlation between GNIgrad and GNIdx. For small phantom 

(with a mean wED 0f 23 cm), the difference in GNI ranged from 3 to 10 HU. On the other 

hand, For the large phantom (with a mean wED of 28 cm), the difference in GNI values 

range from 4 to 14 HU. It is worth noting That the GNIdx was slightly higher than the 

GNIgrad, as indicated by the RMSE values in table 2.

3.2.2. Variation of GNIgrad between scanners and between protocols in 
phantom—Figure 4 illustrates the relationship between GNIgrad versus the CTDIvol for 

Kuo et al. Page 5

Phys Med Biol. Author manuscript; available in PMC 2024 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



both the large and small phantoms. In the right panel of figure 4, the change in GNIgrad for 

scans obtained with CTp. As the level of DR increased, there was a corresponding decrease 

of GNIgrad of approximately 5.5%. This decrease closely aligns with the manufacture’s 

specification that each level of DR increase would result in a 6% reduction in noise1. On the 

left panel of figure 3, the scanned exams at CTs are displayed. A higher QRM, which leads 

to an increased TDIvol, resulted in a decrease in GNIgrad. The abdomen protocol exhibits 

stronger modulation of mAs stronger in the large size phantom compared to the thorax 

protocol, and there is a noticeable variation in CTDIvol along the scanned length from neck 

to pelvis. This variation is implemented to minimize lung dose.

3.2.3. Comparison of GNIs between scanners and between protocols in 
clinical CT images—In figure 5. A comparison is made between GNIgrad and GNIdx 

in terms of CT noise assessment s patients wED for breast patients and pelvis patients 

scanned at CTp and CTs scanners. An ideal TMC should effectively regulate tube current to 

ensure a consistent noise level. The results of the comparison indicate that, for both scanned 

protocols and scanners, the use of GNIgrad in CT assessment results in less variation among 

patients and within the CT images of the same patient.

3.2.4. Variation of GNI among reconstruction kernels and among different 
ROI size in clinical CT images—Figure 6 illustrates the GNI per slice superimposed 

on the topogram for two patients using regular reconstruction kernel (Br38 and Hr38) and 

sharp reconstruction kernel (Br58/Hr60). The scanned CTDIvol and the calculated wED of 

each CT slice were also displays on the topogram. The sharper kernel (Br58/Hr60) resulted 

in a 4-fold increase in global noise compared to the regular kernel (Br38/Hr38). The GNIs 

associated with tissue type did not show significant differences from those associated with 

gradient magnitudes (paired-t test p < 0.001 for all comparison). Analysis of the overlaid 

GNI plots, reveled major discrepancies in the lung, bowel, and tissue interface near the 

shoulder. GNIs were high in and around the frontal skull area (figure 5 right, first 0–20 

image slices with GNI > 40) due due to air interfaces or bone structures causing insufficient 

pixels for GNH evaluation. As a result, these initial 20 images were excluded from further 

analysis.

The boxplots of figure 7 illustrate that as the kernel sharpness increased relative to the 

regular kernel, the noise magnitude also increased. When comparing to the regular kernel 

(38), each 10-level shaper kernel resulted in images with approximately double the noise 

level. Siemens introduced a subtype fine kernel (f) with noise texture at the same resolution 

which is finer compared to the regular subtype. Brain CT images reconstructed using head 

fine kernel at level 38 (Hf38) exhibited the same noise level as CT images reconstructed 

using the head regular kernel (Hr38). Clinical benefits of utilizing a finer kernel justify 

further investigation.

The sensitivity of the mean GNI across different ROI sizes is depicted in the bar plots 

presented in figure 7. The range of the ROI size varies from 2 × 2 pixels to 30 × 30 pixels. 

In the paraspinal case, the pixel size was 1.3 mm, while in brain case, it was 0.7 mm. Both 

1Patient-centered CT image: New methods for patient specific optimization of image quality and patient dose: Philips document.
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plots demonstrated minimal changes in the mean GNI for ROI size smaller than 10 pixels. 

However, a significant increase in GNI increase was observed for pixel sizes close to 20 mm 

(20 pixels and 30 pixels at paraspinal and brain cases, respectively). Based on the findings, 

an ROI size of 10 pixels was deemed appropriate for both the paraspinal and brain cases, 

aligned with the suggested kernel size of 6–20 mm in Christianson’s paper.

4. Discussion

The statistical noise that occurs due to the fluctuation of x-ray quanta is known as random 

noise. The proposed algorithm hypothesizes that the random noise distribution of an image 

can be better approximated in the noise SD calculation by taking off the noise sources due to 

structure or texture change. To achieve this, the algorithm combines the computation of the 

noise map with the gradient map. Pixels located in areas with a gradient magnitude higher 

than a predetermined values are excluded from the noise SD calculation. After reviewing 

the gradient magnitude map of the typical head, thorax, abdomen, and pelvis CT images, 

a threshold value of 10 was chosen. When comparing the shape of the noise histogram 

(GNH) generated by this method with the one produced by Christianson’s tissue type global 

noise measurement algorithm, both GNH computed in anthropomorphic phantoms exhibited 

similar shape with identical GN3p and GNI. There was a slight discrepancy in GNmean and a 

significant discrepancy at GN97p.

The clinical image analysis revealed that GNIgrad values were slightly smaller than GNIdx 

in most of the CT image containing a significant amount of soft tissue. However, a more 

pronounced GNI difference was observed in CT image sections with higher lung or bowel 

content. This could be attributed to the suboptimal HU threshold utilized in this study for 

GNI’s calculation in CT image with increasing lung and bowel presence. When it comes to 

radiation planning CT images, which typically employed regular smooth/sharpness kernel 

with a viewing window setting at soft tissue (abdomen) or cerebrum (brain), utilizing 

gradient associated GNI offers the advantage of not needing to optimize the tissue type for 

noise level computation in CT scans involving various anatomical regions.

The proposed GNI is suitable for comparing scan protocols among different model of 

scanners and is useful in auditing CT image quality within the same scanner. Our phantom 

studies reveled that the TCM in Siemens scanner adjusted mAs modulation based on organ 

type, resulting a large mAs (CTDIvol) variation compared to the TCM in Philips scanner. 

Interestingly, with the same QRM, utilizing abdomen protocol modulated mAs differently 

from thorax protocol. When performing clinical CT scans, it is essential to select the 

appropriate scan protocol suitable for the task and anatomical site being scanned. The 

variation of GNI Versus different reconstruction kernels in clinical CT images displayed a 

similar relationship of noise level from smooth to sharp kernel as observed in a uniform 

phantom, meaning that shaper kernels produced noisier images. This illustrated that GNI 

serves as a reliable noise level index for estimating the noise level in clinical CT images with 

smooth or grainy appearance.

The study had a limitation in that it only used the [−100, 100] HU tissue type GNI 

measurement as reference, without comparing to another method that may be be closer to 
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the ground truth in clinical CT image. For example, it did not consider using GNI calculated 

with an optimal tissue/organ dependent threshold setting (Ahmad et al 2021a, 2021b) or 

noise level estimated with ROI locations selected by experts. Additionally, the choice of 

the gradient magnitude threshold was based on visual inspection and was not optimized. 

However, the study’s results demonstrated the feasibility of applying the algorithm to screen 

the noise level in CT images scanned from different scanners and different protocols.

5. Conclusions

A method was developed to enhance the accuracy of noise estimation in clinical CT images 

by removing pixels with higher gradient magnitude to stratify the random noise. This 

technique allows for the comparison of image quality across various scanning protocols and 

different scanners, as well as the evaluation of the effectiveness of reconstruction kernels. 

This approach offers an automatic and objective means of assessing noise level in CT 

images.

Funding related to this work

This work was partially supported by the MSK Cancer Center Support Grant/Core Grant (P30 CA008748).

Data availability statement

All data that support the findings of this study are included within the article (and any 

supplementary information files).

References

Abadi E, Sanders J and Samei E 2017 Patient-specific quantification of image quality: an automated 
technique for measuring the distribution of organ Hounsfield units in clinical chest CT images 44 
4736–46

Ahmad M et al. 2021a A benchmark for automatic noise measurement in clinical computed 
tomography Med. Phys 48 640–7 [PubMed: 33283284] 

Ahmad M et al. 2023 Oncology-specific radiation dose and image noise reference levels in abdominal-
pelvic CT Clin. Imaging 93 52–9 [PubMed: 36375364] 

Ahmad M, Tan D and Marisetty S 2021b Assessment of the global noise algorithm for automatic noise 
measurement in head CT examinations Med. Phys 48 5702–11 [PubMed: 34314528] 

Anam C et al. 2021 An improved method of automated noise measurement system in CT images J. 
Biomed. Phys. Eng 11 163–74 [PubMed: 33937124] 

Chen G-P et al. 2017 Improving CT quality with optimized image parameters for radiation planning 
and delivery guidance Phys. Imaging Radiat. Oncol 46–11 [PubMed: 28253929] 

Christianson O, Winslow J, Frush DP and Samei E 2015 Automated technique to measure noise in 
clinical CT examinations Am. J. Roentgenol 205 W93–9 [PubMed: 26102424] 

Juluru K et al. 2013 Effects of increased image noise on image quality and quantitative interpretation 
in brain CT perfusion Am. J. Neuroradiol 34 1506–21 [PubMed: 23557960] 

Malkus A and Szczkutowicz TP 2017 A method to extract image noise level from patient image in CT 
Med. Phys 44 2173–84 [PubMed: 28380245] 

McCollough C et al. 2014 Use of Water Equivalent Diameter for Calculating Patient Size and Size-
specific Dose Estimation (SSDE) in CT 220 The Report of AAPM Task Group (10.37206/146)

Murphy MJ et al. 2008 How dose CT image noise affect 3D deformable image registration for 
image-guided radiotherapy planning? Med. Phys 35 1145–53 [PubMed: 18404949] 

Kuo et al. Page 8

Phys Med Biol. Author manuscript; available in PMC 2024 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Tian X and Samei E 2016 Accurate assement and prediction of noise in clinical CT images Med. Phys 
43 475–82 [PubMed: 26745940] 

Kuo et al. Page 9

Phys Med Biol. Author manuscript; available in PMC 2024 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Global noise histogram (GNH) generation process: removal of non-anatomical pixels from 

the original CT image to masked CT image using Otsu thresholding; compute the gradient 

magnitude map; compute the noise map; generate GNI from noise map boolean operation 

with grad. mag.> 10 or boolean operation with HU between (−100,100) such that noise 

values at pixel with high gradient is excluded.
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Figure 2. 
The CTDIvol, wED, GNIgrad, and GNIdx distribution along the scanned length of lung (up 

left) and groin patient (low left). Right site shows the CT image window at [−100, 100] to 

demonstrate the scenarios of the images with large GNIdx values.
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Figure 3. 
Scatter plots with line fit of GNI Versus GNIgrad for two phantom sizes at two scanners.
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Figure 4. 
GNIgrad Versus CTDIvol of the phantom scans using different scanned protocols with 

different tube current modulation settings (Fig. left, QRM: 160, 200, 250 from left to right; 

Fig. right, DR: 17, 19, 21, 23, 25, from left to right) for each scanner.

Kuo et al. Page 13

Phys Med Biol. Author manuscript; available in PMC 2024 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Scatter plot comparison of GNIgrad versus GNIdx for series of breast and pelvis patient’s CT 

images scanned at two different scanners. Error bar shows one standard deviation (SD) of 

wED over each scanned patient and one SD of GNI at each study.
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Figure 6. 
GNIs computed at each CT slice reconstructed with regular (Br38 or Hr38) or sharper (Br58 

or Hr60) kernels. CTDIvol and wED was the scanned CTDIvol extracted from dicom of 

the image slice and the calculated wED. The wED at the shoulder of the brain scan was 

underestimated due to the CT cut off of the shoulders due to the small FOV.
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Figure 7. 
Boxplots (left; up-paraspinal case, bottom-brain case) showed the variation of the global 

noise index Versus the reconstruction kernel from smooth kernel to sharp kernel. Bar charts 

(right; up-paraspinal case, bottom-brain case) showed the sensitivity of the mean global 

noise index on the choice of ROI size. Subscript ‘g’ denotes the parameter calculated for 

GNIgrad; subscript ‘d’ denotes the parameter calculated for GNIdx.
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Table 1.

Scanned protocol and image acquisition parameters in phantom and in clinical scanned images of this study.

In phantom In clinical scan

kV 120 120

Scan protocols Thorax; abdomen Paraspinal; brain+

Slice thickness (3 mm) 3 2; 1

Tube current modulation Yes Yes; no

Quality reference mAs* 160, 200, 250 270; -+

Dose right** 17,19,21,23,25

Iterative reconstruction SAFIRE-3*; iDose-3** SAFIRE-3

Reconstruction kernel Br38*/regular** Br32, Br38, Br49, Br58, Br62; Hr32. Hr38, Hr49, Hr60, Hr68, Hf38

ROI size (pixel) 10 2, 4, 6, 10, 20, 30

*:
at CTs;

**:
at CTp;

+:
no ATC using CTDIvol of 70.3 mGy.
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Table 2.

Summary of the root mean square error between two global noise algorithms in the noise frequency at 3%, 

50%, 97% percentile, mean, and mode.

RMSE3p RMSE50p RMSE97p RMSEmean RMSEmode

Siemens-L 0.4 ± 0.1 2.8 ± 2.8 16.1 ± 1.4 6.1 ± 1.4 0.3 ± 0.4

Siemens-S 0.2 ± 0.1 1.3 ± 1.4 23.3 ± 7.7 4.7 ± 2.5 0.3 ± 0.4

Philips-L 0.5 ± 0.1 2.8 ± 2.7 13.1 ± 6.1 6.3 ± 1.4 0.7 ± 0.8

Philips-S 0.3 ± 0.1 1.6 ± 1.6 28.0 ± 8.0 5.3 ± 2.7 0.4 ± 0.4

Phys Med Biol. Author manuscript; available in PMC 2024 November 30.


	Abstract
	Introduction
	Method and material
	Automatic noise measurement algorithm
	Validation of gradient associated global noise measurement
	In phantom comparison between scanners and phantom size versus GNH
	Variation of GNIgrad between scanners and between protocols in phantom
	Comparison of GNIs between scanners and between protocols in clinical CT images
	Variation of GNIgrad among different ROI size and among reconstruction kernels in clinical CT images


	Results
	Algorithm demonstration
	Validation of gradient associated global noise measurement
	In phantom comparison between scanners and phantom size versus GNH
	Variation of GNIgrad between scanners and between protocols in phantom
	Comparison of GNIs between scanners and between protocols in clinical CT images
	Variation of GNI among reconstruction kernels and among different ROI size in clinical CT images


	Discussion
	Conclusions
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Table 1.
	Table 2.

