Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1996 Sep 1;495(Pt 2):535–543. doi: 10.1113/jphysiol.1996.sp021613

The dipeptide carnosine constricts rabbit saphenous vein as a zinc complex apparently via a serotonergic receptor.

A O'Dowd 1, J J O'Dowd 1, D J Miller 1
PMCID: PMC1160811  PMID: 8887763

Abstract

1. The endogenous dipeptide carnosine (beta-alanyl-L-histidine), at 0.1-10 mM, provokes sustained contractures in rabbit saphenous vein rings with greater efficacy than noradrenaline (NA). 2. The effects of carnosine are specific; anserine and homocarnosine are ineffective, as are carnosine's constituent amino acids histidine and beta-alanine. 3. Maximum carnosine-induced tension is enhanced by Zn ions (e.g. to 127.5 +/- 13.1% of control at 10 microM total Zn concentration, Zntot) and the sensitivity to carnosine potentiated (mean [carnosine] required for half-maximal tension, K1/2, reduced from 1.23 mM to 17.0 microM carnosine with 15 microM Zntot). 4. The dipeptide apparently acts as a zinc-carnosine complex. The effects of carnosine at concentrations of 1 microM to 10 mM in the presence of 1-100 microM Zntot, can be described as a unique function of the concentration of Zn-carnosine, with an apparent K1/2 for the complex of 7.4 x 10(-8) M. 5. Contractures are reduced at low [Ca2+], unaffected by adrenoceptor antagonists, but can be blocked by serotonergic receptor antagonists including ketanserin and methiothepin. 6. Competition between albumin and carnosine for Zn ions, as might occur in plasma, can be demonstrated experimentally. 7. The mode of action of carnosine is virtually unique: a vascular muscle receptor apparently transduces the action of a dipeptide in the form of a metal chelate.

Full text

PDF
535

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Assaf S. Y., Chung S. H. Release of endogenous Zn2+ from brain tissue during activity. Nature. 1984 Apr 19;308(5961):734–736. doi: 10.1038/308734a0. [DOI] [PubMed] [Google Scholar]
  2. Boldyrev A. A., Severin S. E. The histidine-containing dipeptides, carnosine and anserine: distribution, properties and biological significance. Adv Enzyme Regul. 1990;30:175–194. doi: 10.1016/0065-2571(90)90017-v. [DOI] [PubMed] [Google Scholar]
  3. Crush K. G. Carnosine and related substances in animal tissues. Comp Biochem Physiol. 1970 May 1;34(1):3–30. doi: 10.1016/0010-406x(70)90049-6. [DOI] [PubMed] [Google Scholar]
  4. Daly C. J., McGrath J. C., Wilson V. G. An examination of the postjunctional alpha-adrenoceptor subtypes for (-)-noradrenaline in several isolated blood vessels from the rabbit. Br J Pharmacol. 1988 Oct;95(2):473–484. doi: 10.1111/j.1476-5381.1988.tb11668.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dunnett M., Harris R. C. Determination of carnosine and other biogenic imidazoles in equine plasma by isocratic reversed-phase ion-pair high-performance liquid chromatography. J Chromatogr. 1992 Aug 7;579(1):45–53. doi: 10.1016/0378-4347(92)80361-s. [DOI] [PubMed] [Google Scholar]
  6. Gardner M. L., Illingworth K. M., Kelleher J., Wood D. Intestinal absorption of the intact peptide carnosine in man, and comparison with intestinal permeability to lactulose. J Physiol. 1991 Aug;439:411–422. doi: 10.1113/jphysiol.1991.sp018673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Howell G. A., Welch M. G., Frederickson C. J. Stimulation-induced uptake and release of zinc in hippocampal slices. Nature. 1984 Apr 19;308(5961):736–738. doi: 10.1038/308736a0. [DOI] [PubMed] [Google Scholar]
  8. Hoyer D., Clarke D. E., Fozard J. R., Hartig P. R., Martin G. R., Mylecharane E. J., Saxena P. R., Humphrey P. P. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev. 1994 Jun;46(2):157–203. [PubMed] [Google Scholar]
  9. MacFarlane N., McMurray J., O'Dowd J. J., Dargie H. J., Miller D. J. Synergism of histidyl dipeptides as antioxidants. J Mol Cell Cardiol. 1991 Nov;23(11):1205–1207. doi: 10.1016/0022-2828(91)90077-y. [DOI] [PubMed] [Google Scholar]
  10. Martin G. R., MacLennan S. J. Analysis of the 5-HT receptor in rabbit saphenous vein exemplifies the problems of using exclusion criteria for receptor classification. Naunyn Schmiedebergs Arch Pharmacol. 1990 Aug;342(2):111–119. doi: 10.1007/BF00166952. [DOI] [PubMed] [Google Scholar]
  11. Pognetto M. S., Cantino D., Fasolo A. Carnosine-like immunoreactivity is associated with synaptic vesicles in photoreceptors of the frog retina. Brain Res. 1992 Apr 24;578(1-2):261–268. doi: 10.1016/0006-8993(92)90256-9. [DOI] [PubMed] [Google Scholar]
  12. Smart T. G., Xie X., Krishek B. J. Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc. Prog Neurobiol. 1994 Feb;42(3):393–441. doi: 10.1016/0301-0082(94)90082-5. [DOI] [PubMed] [Google Scholar]
  13. Smith G. L., Miller D. J. Potentiometric measurements of stoichiometric and apparent affinity constants of EGTA for protons and divalent ions including calcium. Biochim Biophys Acta. 1985 May 8;839(3):287–299. doi: 10.1016/0304-4165(85)90011-x. [DOI] [PubMed] [Google Scholar]
  14. Valivullah H. M., Lancaster J., Sweetnam P. M., Neale J. H. Interactions between N-acetylaspartylglutamate and AMPA, kainate, and NMDA binding sites. J Neurochem. 1994 Nov;63(5):1714–1719. doi: 10.1046/j.1471-4159.1994.63051714.x. [DOI] [PubMed] [Google Scholar]
  15. Zanchi A., Nussberger J., Criscuoli M., Capone P., Brunner H. R. Angiotensin-converting enzyme inhibition by hydroxamic zinc-binding idrapril in humans. J Cardiovasc Pharmacol. 1994 Aug;24(2):317–322. [PubMed] [Google Scholar]
  16. van Heuven-Nolsen D., Tysse Klasen T. H., Luo Q. F., Saxena P. R. 5-HT1-like receptors mediate contractions of the rabbit saphenous vein. Eur J Pharmacol. 1990 Dec 4;191(3):375–382. doi: 10.1016/0014-2999(90)94171-s. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES