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TRIM7 ubiquitinates SARS-CoV-2 membrane
protein to limit apoptosis and viral
replication
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SARS-CoV-2 is a highly transmissible virus that causes COVID-19 disease.
Mechanisms of viral pathogenesis include excessive inflammation and viral-
induced cell death, resulting in tissue damage. Here we show that the host E3-
ubiquitin ligase TRIM7 acts as an inhibitor of apoptosis and SARS-CoV-2
replication via ubiquitination of the viral membrane (M) protein. Trim7-/- mice
exhibit increased pathology and virus titers associated with epithelial apop-
tosis and dysregulated immune responses. Mechanistically, TRIM7 ubiquiti-
natesM on K14, which protects cells from cell death. Longitudinal SARS-CoV-2
sequence analysis from infected patients reveal that mutations on M-K14
appeared in circulating variants during the pandemic. The relevance of these
mutations was tested in a mouse model. A recombinant M-K14/K15R virus
shows reduced viral replication, consistent with the role of K15 in virus
assembly, and increased levels of apoptosis associated with the loss of ubi-
quitination on K14. TRIM7 antiviral activity requires caspase-6 inhibition,
linking apoptosis with viral replication and pathology.

The severeacute respiratory syndromecoronavirus 2 (SARS-CoV-2) is a
highly transmissible positive single-stranded RNA virus of the Cor-
onaviridae family1,2. Its RNA genome encodes four structural proteins,
which include Spike (S), Nucleocapsid (N), Envelope (E), and Mem-
brane (M)proteins3. Of the structural proteins, M is themost abundant
in the virion and is essential for the sorting of structural proteins to
promote the assembly and release of viral particles4.

The pathogenesis of SARS-CoV-2 in humans includes a combina-
tion of excessive inflammatory responses and viral-induced tissue
damage that causes lung injury, called acute respiratory distress

syndrome2,5–7. The severity of disease and respiratory failure in human-
infected patients correlates with the increased presence of cytokines,
including IL-1β, IL-6, and TNF-α in serum and BAL8,9. SARS-CoV-2
infects multiciliated cells of the respiratory tract and alveolar type 2
(AT2) cells expressing the ACE2 receptor and the TMPRSS2
protease5,10–12. Viral infection can increase levels of apoptosis and other
forms of cell death leading to tissue damage. Together, increased cell
death and enhanced inflammation can correlate with disease12–14.
Multiple mechanisms have been proposed to promote cell death
during infection, including cytokine-induced or intrinsic apoptosis
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directly triggered by viral proteins, including M15,16. The M protein can
also promote apoptosis by inhibiting the activation of the PDK1-AKT
pathway17, or by inducing mitochondrial intrinsic apoptosis18.

The innate immune response elicited by SARS-CoV-2 infection
includes innate lymphoid cells, monocytes, macrophages, and
neutrophils19,20. In COVID-19 patients, low levels of circulating lym-
phocytes and increased levels of neutrophils correlate with the
severity of the infection21,22. However, neutrophils are not themain cell
type found in the lungs of human patients with prolonged severe
disease, and there is evidence suggesting that neutrophils may be
protective early during infection19. It is still unclear which specific
factors during SARS-CoV-2 infection contribute to this shift from
protective to detrimental responses by neutrophils and monocytes.
Similarly, type-I interferons (IFN-I), which are well-known antiviral
cytokines, can play protective or detrimental roles during infection
depending on timing23,24, however, it is also unclear what factors
determine protective IFN-I induction.

The innate antiviral response against SARS-CoV-2 is mediated
primarily by the cytosolic nucleic acid sensor melanoma
differentiation-associated protein 5 (MDA5) that recognizes the viral
RNA to activate the mitochondrial antiviral signaling protein (MAVS)
leading to the production of IFNs and proinflammatory cytokines25,26.
Multiple viral proteins, including M, can inhibit the IFN-I pathway by
targeting cytosolic receptors or by promoting the degradation of the
TANK-binding kinase (TBK-1), reducing IRF3 phosphorylation and IFN-I
induction27–33.

TRIM7belongs to a large family of E3-ubiquitin (Ub) ligases,which
transfer Ub to target proteins34 and can play protective or detrimental
roles during infection. TRIM7 has been reported to play antiviral roles
against Enteroviruses35,36, and proviral roles during Zika virus infection
(ZIKV)37. TRIM7 can also regulate immune responses by promoting the
production of IFN-β, TNF-α, and IL-6 in macrophages after TLR4
stimulation38. Although there is previous evidence that TRIM7 may
interact with M39 and previous reports identified another E3-ligase,
RNF5, as a proviral factor by ubiquitinating M on K1540, the patho-
physiological roles of TRIM7 and ubiquitination of M in vivo during
SARS-CoV-2 infection remains unknown. In this work we characterize
in detail themultiple roles of TRIM7 during infection in vivo.We found
that TRIM7 regulates the expression of inflammatory cytokines,
including the chemokine CXCL1, which promotes the recruitment of
immune cells to the infection site. TRIM7 also acts as an antiviral factor
during SARS-CoV-2 infection, by ubiquitinating the M protein and
inhibiting caspase-6-dependent apoptosis, in an IFN-I independent
manner. We also identified the presence of natural K14 mutations in
circulating SARS-CoV-2 during the pandemic, supporting a physiolo-
gical role for ubiquitination of M.

Results
TRIM7 ubiquitinates SARS-CoV-2 M protein on the K14 residue
Previous mass spectrometry studies identified TRIM7 as a
potential binding partner of SARS-CoV-2 M protein39, although
this interaction and its functional relevance were not further
investigated. We first confirmed that TRIM7 and M interact using
co-immunoprecipitation assays (coIP), when ectopically expres-
sed (Fig. 1a, b). Endogenous TRIM7 also interacted with M during
SARS-CoV-2 infection in human cells and mouse lung tissue
(Fig. 1c and S1a, b). This interaction does not require the RING
domain of TRIM7 (TRIM7-ΔRING) (Fig. S1c), and is mediated by
the C-terminal PRY-SPRY domain of TRIM7 (Fig. S1d). As pre-
viously proposed39,40, ubiquitinated M can be detected when
ectopically expressed (Fig. S1e). In addition, overexpression of
TRIM7 further enhanced the ubiquitination of M (Fig. 1b, d),
whereas the catalytically inactive mutant TRIM7-ΔRING did not
(Fig. 1d). Ectopic expression of the ovarian tumor deubiquitinase
(OTU), which cleaves endogenous polyubiquitin chains (polyUb)

from modified proteins37, removed all polyUb that coimmuno-
precipitated with M, while a catalytically inactive mutant of OTU
(OTU-2A) was used as a negative control (Fig. 1d). These results
suggest that TRIM7 promotes ubiquitination of SARS-CoV-2 M
protein.

We next asked whether TRIM7 promotes ubiquitination on a
specific lysine residue on M. A denaturing pulldown of ectopically
expressed His-tagged Ub and M encoding K-to-R mutations, showed
reduced TRIM7-mediated ubiquitination on an M-K14R mutant as
compared to WT M (Fig. 1e). The K15 residue on M, which is ubiquiti-
nated by the E3-ligase RNF540, did not appear to be an acceptor for
ubiquitination by TRIM7. In further support of this, a K14-only mutant
of M, in which all its K residues were mutated to R except for K14
(K14O), showed similar ubiquitination levels as compared to WT M, in
the presence of overexpressed TRIM7 (Fig.1e). Together, these data
suggest that TRIM7 specifically ubiquitinates the M protein on the K14
residue.

Ubiquitination of M on K15 by RNF5 is necessary to promote the
efficient formation of virus-like-particles (VLPs) and virus release40. To
rule out a functional role for TRIM7 in virus release, we evaluated the
efficiency of VLP formation upon transfection of all viral structural
proteins in A549 WT or TRIM7 knockout cells (KO), previously gen-
erated in our lab37. No apparent differences were observed in the
amount of VLPs released fromWT and TRIM7 KO (Fig. S1f), suggesting
that TRIM7 does not affect virus release, which is consistent with
previous observations that the M-K14R mutant is still able to form
VLPs40.

Finally, upon ectopic expression, TRIM7 re-localized from dis-
crete punctate cytoplasmic bodies to larger vesicle-like compartments
where it colocalizedwithM (Fig. 1f). These vesicles couldbe associated
with Golgi or ER-Golgi intermediate compartment (ERGIC), as M
localized with the Golgi marker GM130 (Fig. S1g), as previously
reported41. The M-K14R mutant still colocalized and coimmunopreci-
pitated with TRIM7 (Fig. 1f and S1h), indicating that the interaction did
not depend on M-K14 ubiquitination.

Since TRIM7 has been proposed to bind some target pro-
teins, including M, via a terminal-glutamine (Q) residue, termed
c-degron signal42, we tested whether TRIM7 binding with M
requires this degron signal. In contrast to the previously observed
interactions of NSP5 and NSP842 with TRIM7, a mutant of M
lacking the degron signal (M-Q222A) interacted efficiently with
TRIM7 (Fig. S1i), suggesting that this Q residue is not a determi-
nant for M-TRIM7 interaction. This is in line with the observation
that TRIM7 does not appear to degrade M.

Overall, these data provide evidence that TRIM7 ubiquitinates M
on its K14 residue, and this ubiquitination does not significantly
degrade M or affect M’s function in the assembly and release of viral
particles.

TRIM7 has antiviral activity during SARS-CoV-2 infection
Since TRIM7 has been reported to have both proviral and antiviral
roles, we next evaluated the role of TRIM7 during SARS-CoV-2 infec-
tion. Overexpression of TRIM7 in HEK293T cells stably expressing
human ACE2 (293T-hACE2) significantly reduced SARS-CoV-2 titers
(plaque assay) and viral RNA (qPCR) as compared to the inactive
TRIM7-ΔRING, or a vector control (Fig. 2a, b).

We then tested whether TRIM7 also has antiviral function in vivo.
WT and Trim7−/− mice37 were infected with a mouse-adapted strain of
SARS-CoV-2 (CMA3p20)43. Trim7−/− mice lost significantly more weight
at the acute phase of infection and showed slower recovery than WT
controls (mixed males and females, Fig. 2c). Trim7−/− male mice
exhibited significantly higher lung viral titers (Fig. 2d) and viral RNA at
day 2 and 3 p.i., while we observed smaller differences between
females (Fig. S2a–c). The increase in weight loss and viral titers in
Trim7−/− mice correlated with clinical scores (e.g., ruffled fur and/or
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hunched posture, Fig. S2d), as well as consolidation of the airway at
later time points (Fig. S2e, f). TRIM7 antiviral effects were most likely
independent of the IFN-I response because the levels of IFN-β mRNA
were trending higher in Trim7−/− and correlated with significantly
increased levels of ISG54 and CXCL10, which are well-known ISGs
(Fig. 2e–g). In further support of this, IFN-I receptor (IFNAR1) blockade
resulted in lessweight losswithout significantly affecting virus titers as
compared to isotype control-treated mice (Fig. 2h, i). As expected,
anti-IFNAR1 treated mice showed reduced levels of ISGs (Fig. 2j, k).
These results are in line with previous reports showing that IFN-I has a
pathogenic effect during SARS-CoV-2 infection, by regulating the
infiltration of inflammatory cells but not affecting virus levels23,24.

Together, our data indicates that TRIM7 plays an antiviral role in
cell culture and in vivo. These effects require TRIM7 E3-ubiquitin ligase
activity and do not appear to be IFN mediated.

TRIM7 is a negative regulator of IFN-I induction during SARS-
CoV-2 infection
Although our data suggest that IFN-I is not involved in the TRIM7-
mediated antiviral response, elevated IFN induction could still affect
inflammatory responses leading to disease. Therefore, we determined
whether the increased levels of ISGs observed in Trim7−/− infectedmice
are due to a direct effect of TRIM7 in the IFNpathway. TRIM7 represses
expression of IFN-I because bone marrow-derived dendritic cells

Fig. 1 | TRIM7 ubiquitinates SARS-CoV-2 Membrane protein. a, b HEK293T cells
were transfected with vector, M-HA, ±TRIM7 WT-FLAG, and immunoprecipitated
using anti-FLAGbeads (a) or anti-HAbeads (b). c Immunoprecipitation ofMprotein
of SARS-CoV-2 (SCoV-2) from Calu-3 cells infected with SARS-CoV-2 MOI 1 for 24h
using anti-M SCoV-2 or IgG control. d HEK293T cells transfected with M-HA, of
TRIM7 WT-FLAG or TRIM7-ΔRING-FLAG (TRIM7 lacking the RING domain) ±OTU-
WT-FLAG or OTU-2A-FLAG followed by immunoprecipitation with anti-HA beads,
e denaturing pulldown using NiNTA beads. HEK293T cells transfected with 100ng

of His-Ub, M-WT-HA, M-K14R, M-K15R, M-K14O (all Ks mutated to Rs except for
K14), +/- TRIM7 WT-FLAG. f Confocal microscopy of Hela cells transfected with
TRIM7-FLAG (488), M-WT-HA or M K14R-HA (555), for 24h. Colocalization profile
graphs are shown. Data are representative of 2 independent experiments with at
least 4 micrographs per condition. All western blot panels are representative of at
least two independent experiments. Ub Ubiquitin, OTU ovarian tumor deubiqiti-
nase. Source data are provided in the Source data file.
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(BMDCs) from Trim7−/− mice infected with SARS-CoV-2 showed
increased levels of IFN-βmRNA as compared to WT BMDCs (Fig. S2g).
In contrast, Trim7−/− cells expressed lower levels of IL-1β mRNA when
compared with WT BMDCs (Fig. S2h). Although SARS-CoV-2 does not
productively replicate in DCs44, the presence of similar levels of viral
RNA inWTandKO cells indicated that the effects observed are not due
to differences in virus infection (Fig. S2i).

To further examine how TRIM7 inhibits IFN-I induction, we
tested interactions with the pattern recognition receptors (PRRs)
RIG-I and MDA5. Results from coIP assays revealed that TRIM7
interacts with both PRRs (Fig. S2j). Since there is evidence that
MDA5 is the major cytosolic receptor for SARS-CoV-225,26, we also
evaluated if TRIM7 can affect MDA5’s induction of IFN-β. IFN luci-
ferase reporter assays showed that increased concentrations of
TRIM7 reduced the IFN-β promoter activity (Fig. S2k), suggesting

that TRIM7 can negatively regulate IFN-β by inhibiting MDA5-
mediated signaling.

Ubiquitination on M-K14 does not affect IFN-I antagonist
function
M has also been shown to inhibit both the IFN-I production as well as
the IFN-I signaling pathways27–30,45. Therefore, we examined if M ubi-
quitination can affect IFN antagonism. Ectopic expression ofWTMor a
mutant lacking all ubiquitination sites (M-KallR) inhibited IRF3 phos-
phorylation at comparable levels upon stimulation with the dsRNA
mimic poly (I:C) (Fig. S2l), suggesting that ubiquitination on M does
not play a role in inhibition of IFN-I production. M has also been
reported to inhibit the induction of ISGs downstream of the IFN-I
receptor30. M-WT, as well as themutants M-K14R,M-K15R, andM-KallR
reduced the IFN-induced ISRE luciferase reporter activity (Fig. S2m),
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suggesting that ubiquitination of the lysine residues is not necessary
for antagonism of IFN-I signaling.

Taken together, the increased IFN response observed in Trim7−/−

mice is unlikely to be mediated by M ubiquitination and does not
explain the increased virus replication observed in the knockout mice.

TRIM7 promotes innate immune inflammation while protecting
from cell death during SARS-CoV-2 infection
TRIM7 has been associated with the induction of genes involved in cell
growth, proliferation, and survival46. Conversely, SARS-CoV-2 has been
shown to induce cell death in lung cells47, and its M protein has been
associated with apoptotic effects17. At day 3 post infection, we
observed a significantly higher proportion of cells positive for Apo-
tracker staining (cells undergoing apoptosis) in the lungs of Trim7−/−

mice as compared toWT controls (Fig. 3a). These effects were evident
in CD45- cells (Fig. 3b, c and S3a). In contrast, no differences were
observed in apoptosis between WT and KO mice within the hemato-
poietic CD45+ compartment (Fig. S3b).

We evaluated whether TRIM7 antiviral effects were associated
with changes in the innate immune cell composition in the lungs.
Trim7-/- mice showed reduced neutrophil and monocyte infiltration as
compared to WT mice at day 3 p.i. (Fig. 3d, e and S3c), whereas no
differences in infiltration of plasmacytoid DCs (pDCs) were observed
(Fig. 3f). Multiplex analysis of lung and serum cytokines showed
reduced proinflammatory cytokines IL-6, IL-1β, and IL-1α in Trim7−/−

mice (Fig. 3g and S4a, b). In line with the reduced cellular infiltration to
the lung, the neutrophil chemoattractant CXCL1 in serumwas lower in
Trim7−/− mice as compared to controls (Fig. 3h). In further support of
the role of TRIM7 in promoting immune inflammation, RNAseq and
Gene Ontology analysis (GO) of infected lungs showed that down-
regulated genes were enriched in pathways related to the inflamma-
tory response (neutrophil degranulation, innate immune signaling,
and cytokine signaling) as well as cell division/survival (mitotic genes)
(Fig. 3i). Specifically, induction of Il6, Il1b, Cxcl1, Tnfaip6, and Mmp8
was reduced in Trim7−/− mice (Fig. 3j). These results correlate at the
protein level in the lung (Fig. S4a) and in the serum (Fig. S4c).

Since we found a lower number of neutrophils in the lungs of
Trim7−/− mice, we asked whether neutrophil recruitment to the lung
could be associated with protection from disease. To test this, C57BL/
6 J WTmice were depleted of neutrophils (Fig. S4d). Anti-Ly6G-treated
mice lost weight at a similar rate as isotype-treatedmice until the peak
of viral titers (day3p.i.).However, neutrophil-depletedmice recovered
from infection significantly slower than control mice (Fig. 3k). These
effects did not appear to be due to differences in virus replication
because control and neutrophil-depleted mice showed similar virus
titers (Fig. 3l). These data suggest that neutrophils are not responsible
for the antiviral role mediated by TRIM7 but may be involved in tissue
repair/healing during the recovery phase. In support of this,
neutrophil-depleted mice had a significantly higher frequency of
apoptotic cells, specifically in the CD45- compartment (Fig. 3m, n),
suggesting that neutrophils are important for the removal of apoptotic
cells either directly or indirectly, promoting tissue repair during the
recovery phase.

Overall, our data indicate that TRIM7 is antiviral during SARS-CoV-2
infection and suggest that TRIM7 regulates inflammatory immune
responses.

TRIM7 protects from SARS-CoV-2-induced apoptosis and
requires an intact K14 residue on M
Apoptosis during viral infection is a process that can either limit virus
replication or promote virus dissemination48. To evaluate the rela-
tionship between M, TRIM7, and apoptosis, WT and TRIM7 KO A549
cells were transfectedwith vectors expressingWTorMmutants. Upon
transfection of WT M, a significantly higher frequency of apoptotic
cells was observed in TRIM7 KO cells as compared to WT cells. These

effects required the presence of an intact K14 residue on M because
expression of an M-K14R mutant that cannot be ubiquitinated by
TRIM7 induced higher frequency of cells in apoptosis in WT cells, and
no further difference was observed in TRIM7 KO cells (Fig. 4a, b,
controls for expression shown in Fig. S5a). TRIM7 KO cells also display
reduced AKT phosphorylation upon stimulation with TNF, while no
differences were observed in IKKα/β phosphorylation (Fig. S5b), pro-
viding further evidence that TRIM7 is involved in signaling pathways
associated with apoptosis and cytokine signaling. Overall, these data
suggest that TRIM7 protects from cell apoptosis via ubiquitination on
the K14 residue and this potentially reduces virus replication.

SARS-CoV-2 membrane protein mutations on K14 appeared
during the pandemic in COVID-19 patients
We next asked whether mutations that lead to loss of ubiquitination
and cause more apoptosis can appear in circulating strains of SARS-
CoV-2. Data analysis from all ~8.5million SARS-CoV-2 genomes present
in GenBank from the beginning of the pandemic to March 2024, was
performed with CoV-Spectrum49. From the samples analyzed, we
observed that 985 showed mutations on K14 residue representing
0.01% of the total samples. Mutations on this site were relatively more
frequent early in the pandemic, with a higher occurrence (~0.95%) in
samples from clade 19A (Fig. 4c). The most common mutation was a
deletion of K14, followed by the K14R mutation (Fig. 4d and Table S1).
The mutations on the K15 residue were more frequent, present in
0.02% of associated samples in GenBank (2433), (Fig. 4e and Table S2).
Samples with K14 and K15 mutations were more infrequent, being
observed 51 times in total, with all except one of these double muta-
tions being a double deletion (Table S3). This analysis shows that these
mutations can occur in nature and were overrepresented in early
clades during the pandemic.

A recombinant virus with M K14/K15 mutations causes more
apoptosis in mice
Since we are unable to correlate these mutations with clinical data
from patients, we tested the relevance of these mutations in viral
pathogenesis in a mouse model. To this end, we generated a recom-
binantmouse-adapteddoublemutant virusM-K14/K15R (CMA5M-K14/
15R), which cannot beubiquitinated on either K14 or K15 sites.We used
this double mutant to avoid generating a virus with increased repli-
cation ability due to the loss of the target site for TRIM7ubiquitination.
Since previous studies have shown that ubiquitination on M-K15 by
another E3-Ub ligase, RNF5, is required for efficient virus release40,
introducing the K15Rmutation on the K14Rmutant virus should result
in an attenuated virus. This would still allow us to dissect the roles of
ubiquitination on virus replication and apoptosis by both the K14 and
K15 residues of M.

As predicted, this M-K14/K15 mutant virus showed reduced
replication kinetics in the IFN-incompetent Vero E6 as well as in IFN-
competent Calu-3 cell lines, as compared to the parental WT virus
(Fig. 5a, c and S6a, c). Consistent with the role of K15 in virus particle
formation and budding40, the viral RNA accumulated in the cells at
similar rates between the K14/15R and the parental virus strain
(Fig. 5b, d and S6b, d). Since Vero cells do not produce active IFN-I, the
differences observed are likely not IFN-I dependent. Consistent with
this, no difference in ISG54 mRNA levels was observed between the
parental and the mutant virus in Calu-3 cells (Fig. S6e). These data
contrast with the phenotype we observed of enhanced virus replica-
tion in Trim7−/− mice but can be explained by the loss of ubiquitination
on M-K15 that is required for virus release. Importantly, even though
the M-K14/15R mutant virus is highly attenuated, it showed a higher
ratio of cells in apoptosis when normalized by PFU (Fig. 5e). Similarly,
the M-K14/15R virus replicated to lower levels in the lungs of WT mice
(Fig. 5f) but caused increased weight loss (Fig. 5g), and increased
apoptosis as compared to theWTparental virus (Fig. 5h and S6f, g). No
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differences in the production of IFN-β or ISG54 were observed in the
lung at day 3 p.i. (Fig. S6h, i). Together, these data and the data
described above suggest that the K15 site promotes virus replication
while the K14 site protects cells from apoptosis during SARS-CoV-2
infection.

Next, we examined whether TRIM7 can still inhibit virus
replication in the absence of the K14/K15 ubiquitination sites. As
expected, overexpression of TRIM7 in 293T-hACE2 cells reduced
replication of the parental WT virus (Fig. 5i). In contrast, over-
expression of TRIM7 did not significantly reduce replication of the
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K14/15 R virus as compared to the empty vector control (Fig. 5i).
The mutant virus showed reduced replication as compared to the
parental virus, confirming that this mutant virus is attenuated.
Overexpression of the inactive TRIM7-ΔRING did not affect the

replication of either virus and served as an additional control
(Fig. 5i). In line with these results, while the parental WT virus
replicated to higher levels in Trim7−/− compared to WT mice, no
significant difference was observed when comparing M-K14/15R

Fig. 4 |MutationsonM lysine 14 induce apoptosis andarepresent in circulating
stainsof SARS-CoV-2. a,bA549WTorTRIM7KOtransfectedwith 500ngofM-WT,
M-K14R, or M-KallR mutants for 24h and then stained with Apotracker Green,
a representative dot blot. b Frequency of Apotracker+ cells, representative data of
two independent experiments and eachwith two biological replicates. c–eM lysine

mutations in SARS-CoV-2 sequences of circulating variants. Percentage of occur-
rence ofM-K14mutation across the clades (c) andmembrane protein K14mutation
occurrence (d), ormembrane proteinK15mutationoccurrence (e). Red highlighted
nodes indicate at least one mutation occurrence in the specific clade. Data were
depicted as Mean ± SEM. Source data are provided in the Source data file.
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titers between WT and Trim7−/− mice (Fig. 5j). The loss of the K14
ubiquitination site, which is mediated by TRIM7, would explain the
lost difference between WT and KO mice. The K14/15R virus still
replicated to a lower titer than the WT virus in Trim7−/− mice, and
this can likely be explained by the loss of the K15 ubiquitination
site, which is dependent on RNF5 and not TRIM7. The loss of ubi-
quitination on K14/15 resulted in a slightly increased number of
cells in the lung undergoing apoptosis as compared to the parental
virus inWTmice. As expected, the parental virus promoted greater
levels of apoptosis in Trim7−/− mice, however, the M-K14/15R
mutant virus did not (Fig. 5k). These data suggest that TRIM7
restricts apoptosis in the lung during SARS-CoV-2 infection and
this requires intact K14/15 residues on the M protein.

TRIM7 mediates its antiviral effects by inhibiting caspase-6
activation
Apoptosis during viral infection is known to play an important role in
limiting virus replication50,51. Intriguingly, coronaviruses can take
advantage of the apoptosismachinery to promote their replication52,53.
Therefore, we evaluated if TRIM7’s antiviralmechanismdepends on its
ability to inhibit apoptosis. To test this, we used inhibitors of apop-
tosis, Z-VAD-FMK (a pan caspase inhibitor), and Z-VEID-FMK, (which
targets caspase-6 and has been shown to inhibit SARS-CoV-2
replication52). Consistent with this previous study, treatment with
caspase-6 inhibitor (Z-VEID-FMK) strongly reduced replication of both
the parental and the M-K14/15R viruses in 293T-hACE2 cells (Fig. 6a)
and completely inhibited apoptosis (Fig. S6j). However, while
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overexpression of TRIM7 reduced viral titers in DMSO-treated cells,
TRIM7 lost its ability to further reduce SARS-CoV-2 replication as
compared to vector control in cells treatedwith Z-VEID-FMK or Z-VAD-
FMK (Fig. 6a and expression controls in Fig. S6k). This suggests that
TRIM7 requires, at least in part, an active caspase-6 pathway to exert its
antiviral activity. Since it has been shown that caspase-6 can cleave the
N protein of coronaviruses53–55 and cleaved N inhibits the IFN-I
response leading to increased virus replication, we evaluated if
TRIM7 is involved in the cleavage of N. Treatment with staurosporine
(STS), which activates apoptotic pathways, enhanced cleavage of N as
compared to vehicle control in WT A549 cells. These effects were

further increased in TRIM7 KO cells, in which additional products of N
cleavage were evident (Fig. 6b). These effects correlated with slightly
enhanced cleavage of caspase-6 in TRIM7 KO cells (Fig. 6b and S6l). In
support of these results, WT mice treated with Z-VEID-FMK show less
weight loss (Fig. 6c) and significantly reduced viral titers in the lungs as
compared to DMSO-treated mice (Fig. 6e). In contrast, Z-VEID-FMK
treatment of Trim7−/− mice did not prevent weight loss (Fig. 6d), indi-
cating that TRIM7 deficient mice are more resistant than WT mice to
the protective effects of the inhibitor. Importantly, treatment with Z-
VEID-FMK reduced virus titers in the Trim7−/− mice to the levels
observed in the DMSO-treated WT animals (Fig. 6e), suggesting that
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a Viral titers of HEK293T-hACE-2 cells overexpressing TRIM7WT and infected with
SARS-CoV-2WTorM-K14/15R atMOI 0.1 and treated with vehicle (DMSO) or 50μM
of Z-VEID-FMK 24h post infection. Two-way ANOVA Tukey’s multiple comparisons
(****p <0.0001).bWesternblot analysis of A549WTandTRIM7KOcells transfected
with SARS-CoV-2 N protein or empty vector and treated with Staurosporine (STS)
*indicates a cleaved form of N (blot is representative of two independent experi-
ments). cWeight loss ofWT femalemice infected intranasallywith SARS-CoV-2WT,
treated intraperitoneally with caspase-6 inhibitor or vehicle. Mock (n = 6 each)
vehicle (n = 5) or Z-VEID-FMK (n = 6). Two-way ANOVA Tukey’s multiple

comparisons (*p =0.03) (d) weight loss Trim7−/− female mice infected as in (c),
vehicle mocks (n = 5 each) infected vehicle (n = 4) or Z-VEID-FMK (n = 6). e Viral
titers in lung (WT n = 5 and 6, Trim7−/− n = 5 and 4, respectively). One-way ANOVA
Tukey’s multiple comparisons (**p =0.002, p =0.003, *p =0.02). f IFN-β mRNA
multiple T-test comparison (***p =0.0003, **p =0.001). g ISG54 mRNA expression
levels in the lung. One-way ANOVA Tukey’s multiple comparisons (*p =0.03,
p =0.01, ***p =0.0002, ****p <0.0001). h Scheme of the multiple functions of
TRIM7 during SARS-CoV-2 infection. Data were depicted as mean± SEM. DPI days
post infection, CoV-2 SARS-CoV-2. Source data are provided in the Source data file.
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the antiviral activity of TRIM7 is, in part, mediated by inhibition of
caspase-6 activity. Notably, TRIM7 also shows antiviral activity in vivo
that is independent of caspase-6, because Trim7−/− mice treated with
the inhibitor have significantly higher viral titers compared to WT-
treated mice (Fig. 6e).

In line with the proposed role of N cleavage in IFN antagonism,
WT mice treated with Z-VEID-FMK showed higher levels of IFN-β
and ISG54 mRNA in infected lungs, suggesting that the caspase-6
inhibition indeed results in increased IFN responses that could
potentially inhibit virus replication, in WT mice. Surprisingly,
these effects did not recapitulate in Trim7−/− mice. Consistent with
our data described above, vehicle control-treated Trim7−/− mice
showed higher IFN responses than WT mice, however caspase
inhibition in Trim7-/- did not increase but rather reduced IFN/ISGs
(Fig. 6f, g). These data suggest that TRIM7 limits virus replication
via a mechanism that partially requires inhibiting caspase-6
activity, but it is mostly independent of IFN-I.

Discussion
In this study, we show that TRIM7 has antiviral activity against SARS-
CoV-2 by ubiquitinating the K14 residue on M, and these effects are
associated with reduced apoptosis during infection. Our experiments
using caspase inhibitors suggest that the antiviral effects of TRIM7
require an active caspase-6 pathway, linking apoptosis to virus repli-
cation and pathology. While our study is in line with a previous report
that coronaviruses use apoptosis to replicate52, in our study the effects
do not seem tobe dependent on IFN-I. AlthoughTRIM7depletion does
result in increased cleavage of the viral protein N as well as increased
IFN-I induction, these effects do not lead to reduced virus replication.
Furthermore, blocking IFN-I signaling did not change virus titers, fur-
ther suggesting that in thismodel, IFN-I does not play an antiviral role.
In previous studies inmice, IFN-I has been associatedwith pathology24.
Our data agreewith these studies, inwhich IFN-I seemspathogenic and
not a major antiviral mechanism. Higher levels of IFN produced by the
Trim7-/- mice do not reduce virus titers to the levels observed in WT
mice. Intriguingly, blocking IFN-I signaling in the Trim7−/− mice, which
induces higher IFN responses, does not affect weight loss (Fig. S6m),
although it does result in increased virus titer as compared to isotype-
treated Trim7−/− mice (Fig. S6n). This suggests that there is a threshold
for IFN-I to have antiviral effects, but without affecting pathology.
Therefore, together these results suggest that the increased disease
phenotype observed in Trim7-/- mice is IFN-I independent.

At themoment, the connection between the cleavage of N and the
increased virus replication observed in Trim7−/− mice remains unclear.
However, it is clear that TRIM7 and M-K14 are associated with inhi-
biting the caspase-6 pathway, which also correlates with a reduction in
virus replication.

Our data also indicate that ubiquitination on M-K14 leads to
opposite effects from thoseof the ubiquitinationmediatedbyRNF5on
M-K15, which has a proviral activity40. We further confirmed the pre-
viously proposed proviral role of K15, using a recombinant
mutant virus.

Although we cannot completely rule out that ubiquitination
on K15 can also contribute to effects on apoptosis, our data sug-
gest that ubiquitination on both residues is not mutually exclusive.
Using structures of the M protein in its long and short form, we
modeled ubiquitinated forms of M with ubiquitin covalently
attached to either K14 and/or K15. Our structural modeling analysis
suggests that ubiquitination of both lysine residues is energeti-
cally possible, either with covalent ubiquitination to one lysine in
each M protein monomer, or even with ubiquitination happening
in neighboring residues of the same chain (Fig. S7a–d). Our cal-
culations indicate that there is a small energetic advantage for the
long form of M, suggesting that ubiquitination may drive the
population ensemble of M towards the long form.

According to our data (Fig. S1g) and previous reports41, M can
localize in the Golgi membrane or ERGIC vesicles during infection. An
important unresolvedquestion is howTRIM7ubiquitinates theK14 site
on M, which is predicted to face the lumen of the Golgi. Since TRIM7
localizes in cytoplasmic structures, how does TRIM7 reach the lumen
of the Golgi? Although our technical approaches do not have the
resolution to demonstrate where and how TRIM7 ubiquitinatesM-K14,
it is still possible that TRIM7 may translocate to the lumen. A previous
study proposed that TRIM7,may localize in the Golgi56. In addition, we
observed that ectopically expressed TRIM7 can colocalize with a
truncated N-terminal form of M containing only the transmembrane
domains and the ectodomain, which faces the lumen (Fig. S7e). Fur-
thermore, our data suggest that TRIM7 does not act via the degron
sequence, which is predicted to face the cytoplasmic side. Although it
is still unclear when ubiquitination of M occurs during the viral repli-
cation cycle, other examples of viral proteins ubiquitinated on regions
predicted to face the luminal side of the Golgi have been reported37,40.
Our experiments and previous reports are not yet sufficient to con-
clude whether TRIM7 can re-localize to the lumen or ubiquitinate viral
ectodomains, and future experiments (e.g., cryo-electron tomo-
graphy) are needed to resolve these questions.

The advantage of using this double mutant virus is that we can
avoid any compensatory ubiquitination on one residue if the neigh-
boring one ismissing.We also show that thesemutations do not affect
the IFN-I response, and it is unlikely that the effects on virus replication
are IFN-I mediated.

We observed a dysregulation in the inflammatory response in the
Trim7−/− mice with a reduced number of infiltrating neutrophils and
monocytes in the lung. Inflammatory monocytes responsible for pro-
ducing inflammatory cytokines such as IL-6, TNF-α, and IL-1β are
recruited to the lung in patients with COVID-19. These cytokines have
been associated with detrimental inflammation but can also have
protective roles57–59. In this mouse model, the decreased levels of
proinflammatory cytokines in Trim7−/− mice may correlate with dys-
functional activation of the inflammatory responses associated with
severe COVID-19 patients58,60–62. Furthermore, a decrease inmonocytes
in Trim7−/− correlated with an increase in viral load, consistent with the
finding that reduction of monocyte recruitment in ccr2−/− mice
increases virus in the lungs and also increases IFN-I RNA during
infection63.

In addition, neutrophils have been associated with pathology
through the inductionof neutrophil extracellular traps (NETs)64–66. Our
data suggest that the reduction of neutrophils in Trim7−/− mice is not
the reason for the increased virus titers but could contribute to the
increased apoptosis. Neutrophils appear to play an important pro-
tective role in the recovery phase and could be associatedwith healing
and protecting fromapoptosis. This is in linewith studies showing that
neutrophils can be involved in tissue repair by MMP-9, which can
regulate activation of PRRs and promote angiogenesis67–71, and is
relevant given the degree of damage to blood vessels/endothelialitis in
COVID-1972. These effects could be mediated by a specific sub-
population of neutrophils that needs further characterization, which
could also potentially be important for the removal of apoptotic
bodies or possibly indirectly by recruiting other cells responsible for
this clearance.

Our study suggests that TRIM7 protects the host against SARS-
CoV-2 via three independent mechanisms; (1) TRIM7-mediated ubi-
quitination of M limits a cell autonomous/intrinsic caspase-6-
dependent pathway resulting in less tissue damage and less virus
replication, (2) by promoting recruitment of innate immune cells that
protects against SARS-CoV-2 and may promote tissue repair, and (3)
TRIM7 negatively regulates MDA5 signaling, which may help control
the detrimental inflammatory effects of IFN-I73 (Fig. S8). The intrinsic
apoptotic pathway is unlikely to be dependent on the previously
proposed stabilization of B-cell lymphoma 2 (BCL-2) ovarian killer
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(BOK)18, because the effects on BOK required the endodomain of M18,
while the K14 residue required for the effects observed in our study are
in the ectodomain of M.

Finally, we identified that mutations on residues K14 and K15 can
occur in the circulating strains of SARS-CoV-2. Although the presence
of these mutations is relatively low and does not correlate with a
specific variant of concern (VOC), the presence of these mutations
could indicate that these strains are potentially more pathogenic.
Therefore, we propose that monitoring mutations on M in infected
individuals might predict disease severity if the effects can be corre-
lated with clinical profiles in infected patients.

Methods
Cell culture
HEK293T (cat. CRL-11268) and A549 (cat. CCL-185) cell lines were
purchased fromATCC. Calu-3 2B4 cells were kindly provided by Vineet
D. Menachery (The University of Texas Medical Branch at Galveston)74

Vero E6 cells were kindly provided by Pei-Yong Shi (The University of
Texas Medical Branch at Galveston). HEK293T-hACE2 cells were kindly
provided by Benhur Lee (Mount Sinai)75. A549 TRIM7 KO cells were
generated as described by ref. 37. All cells were maintained in Dul-
becco’sModifiedEagle’sMedium (DMEM) (GIBCO) supplementedwith
10% v/v fetal bovine serum (FBS) (HyClone) and 1% v/v penicillin-
streptomycin (Corning) in a humidified 5% CO2 incubator at 37 ˚C.

Viruses
Viruses used in this study were handled under biosafety level 3 (BSL-3)
conditions at UTMB facilities in accordancewith institutional biosafety
approvals. SARS-CoV-2 (USA-WA1/2020) was kindly provided by The
World Reference Center of Emerging Viruses and Arboviruses
(WRCEVA) (The University of Texas Medical Branch at Galveston),
SARS-CoV-2 (CMA3p20) was kindly provided by Vineet D. Menachery
(The University of Texas Medical Branch at Galveston) and grown in
Vero E6 cells as described by ref. 43. SARS-CoV-2 USA-WA1/
2020 +D614G was provided by Dr. Pei-Yong Shi (The University of
Texas Medical Branch at Galveston).

The infectious cDNA clone icSARS-CoV-2 M-K14/15R was con-
structed through mutagenesis of a mouse-adapted USA-WA1/2020
SARS-CoV-2 (CMA5 strain) used for in vivo studies76,77. To generate the
CMA5 strain, an adaptive mutation (Spike_Q493H) was identified and
engineered into the backbone of the CMA3p20 strain43. The full-length
cDNAwas assembled via in vitro ligation and used as a template for T7
in vitro transcription. The full-length viral RNAwas electroporated into
Vero E6 cells. Forty-eight hours post electroporation, the original P0
virus was harvested and used to infect another flask of Vero E6 cells to
produce the P1 virus. The titer of the P1 viruswasdeterminedbyplaque
assay on Vero E6 cells. The viral RNA of P1 virus was extracted
and sequenced to confirm the designed mutations using the primers:
M-K14R/K15R-F-ACCGTTGAAGAGCTTCGCCGCCTCCTTGAACAATGG
and M-K14R/K15R-R CCATTGTTCAAGGAGGCGGCGAAGCTCTTCAAC
GGT. The P1 virus was used for all the experiments performed in this
study. All work following electroporation was performed in a BSL3
laboratory.

Plasmids
The M-WT, M-K14R, M-K15R, M-KallR, and M-K14O, M-Q22A, and
M-NTD were cloned into pXJ-HA plasmid, Flag-TRIM7 constructs Var-
iant 1 and 2were purchased fromOrigene (Rockville,MD), TRIM7-PRY-
SPRY domain was PCR amplified from the full-length TRIM7 plasmid
cloned in pCMV6-Entry Vector (Origin Cat. No. RC224754) using the
primer F: CGCGATCGCCATGCTGAAGAAGTTCAAAGAG and R:
GCGTACGCGTAGGCCAGATTCGCAAGTAGG and cloned into pCMV6-
FLAG plasmid. the Flag-OTU and -OTU-2A were kindly provided by
Adolfo Garcia-Sastre (Mount Sinai), the Ub plasmids have been
described before78.

Transfections
Transient transfections of DNA were performed with TransIT-LT1
(Mirus Bio) for HEK293T cells, and Lipofectamine 3000 (Invitrogen)
for A549 cells according to the manufacturer’s guidelines. For lipo-
fectamine transfection media was exchanged 6–8 h. All transfections
were performed inDMEM10%v/v FBSwithout penicillin-streptomycin.

Cell lysis and co-immunoprecipitation
Cells were harvested in RIPA lysis buffer (50mM Tris-HCl, pH 8.0,
150mM NaCl, 1% (v/v) IGEPAL CA-630, 0.5% (w/v) sodium deox-
ycholate, 0.1% (v/v) SDS, protease inhibitor cocktail79, 5mM N-ethyl-
maleimide (Sigma), and 5mM iodoacetamide (Sigma) as
deubiquitinase inhibitors. Cell lysates were clarified by centrifugation
at 21,000×g for 20min at 4 ˚C. About 10% of the clarified lysate was
added to 2X SDS-PAGE loading buffer containing 2-mercaptoethanol,
heated for 30min at 37 ˚C, and stored at −20 ˚C as a whole-cell lysate
(WCL). The remaining lysate was subjected to immunoprecipitation
with anti-FLAG M2 or anti-HA, EZview Red agarose beads (Sigma)
overnight at 4 ˚C on a rotating platform. Beads were washed seven
times in RIPA buffer (150 or 550mM NaCl) and the bound proteins
were eluted using FLAG or HA peptide respectively, elution was
reduced in 2X SDS-PAGE loading buffer containing 2-Mercaptoethanol
and incubated for 30min at 37 ˚C.

Denaturing pull-down
Cell lysis and WCL collection were performed as above. Lysates were
subjected topull downusing nickel-nitrilotriacetic acid (Ni-NTA) beads
(Qiagen) overnight at 4 ˚C on a rotation platform. Beads were washed
seven times using denaturing buffer containing 50mMTris-HCl pH8.0
(Sigma), 6M urea, 350mM NaCl, 0.5%(v/v) IGEPAL CA-630 (Sigma),
and 40mM imidazole (Sigma). The proteins were eluted at 4 ˚C for
30min, using elution buffer containing 50mM Tris-HCl pH 8.0 and
300mM imidazole. Eluted proteins were treated with 2X SDS-PAGE
loading buffer containing 2-mercaptoethanol and incubated for
30min at 37 ˚C.

Confocal immunofluorescence
HeLa cells were seeded into six-well plates. After 16 h, the cells were
transfected with 1 µg of M-WT or M-K14R-HA tagged with the co-
expression of TRIM7-FLAG tagged for 24 h. The cells were washed
with DPBS 1X, fixed with 4% paraformaldehyde 20’, permeabilized
with 0.1% Triton X100 (v/v) in DPBS 1X for 5min, and blocked with
0.5% pork skin gelatin (w/v) in DPBS for 1 h. The staining was per-
formed with rabbit anti-HA (Milipore Sigma H6908, 1:100 dilution),
anti-FLAG (Sigma-Aldrich F1804, 1:100 dilution in P) overnight at
4 °C. The next day, cells were washed with DPBS 1X and incubated
with the secondary antibodies anti-mouse Ig Alexa Fluor 488 (Invi-
trogen A21202) and anti-rabbit Ig Alexa Fluor 555 (Invitrogen
A31572) at 1:200 dilution each in DPBS 1X) and washed with DPBS 1X
after 2 h incubation at RT. DAPI staining (BioLegend) working
solution (1 µg/mL in PBS) was added for 5min at RT and washed with
PBS before mounting with Merck FluorSaveTM reagent. Micrographs
were taken with the Leica Stellaris 8 tau-STED Microscope (Leica
Microsystems). Microscope parameters and LAS-X software post-
processing were set constant for each experiment. Fluorescence
intensity values were obtained with ImageJ software (National
Institute of Health), and curves were graphed with Graphpad Prism
10 (Graphpad Software, Inc.).

Virus-like particles (VLPs) generation
VLPs were generated by transfection of the plasmids for expression of
S-HA, M-HA, N-FLAG, and E-FLAG, into A549WT and TRIM7 knockout,
briefly; 2 × 105 cells were seeded into a six-well plate and transfected
using a total of 2 µg of plasmid using Lipofectamine 3000 (Invitrogen,
USA) as per themanufacturer’s instruction. Themolar ratio for the S, E,
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M, and N plasmid was 8:8:6:3, as described by ref. 80. Seventy hours
after transfection, the supernatant was collected, and the cells were
harvested in RIPA buffer for immunoblotting. The supernatant was
clarified by centrifugation at 4000 rpm for 10min, then the super-
natant was filtered through a 0.45μM mesh to remove the debris,
subsequently, the supernatant was layered over in a 20% sucrose
gradient and ultra-centrifugated at 74,000×g for 3 h at 4 ˚C to pellet
down the VLPs and subsequently loaded on to discontinuous, 20–60%
sucrose solution and centrifuged at 74,000×g for 3 h at 4 ˚C. The
opaque band containing the VLPs were collected and analyzed by
western blot.

Western blot
Cell lysateswere resolved on 7.5 or 4–15%Mini-PROTEAN andCriterion
TGX SDS-PAGE gels and transferred to polyvinylidene difluoride
(PVDF) membranes using a Trans-Blot Turbo transfer system (Bio-
Rad). Membranes were blocked with 5% (w/v) non-fat dry milk in TBST
(TBS with 0.1% (v/v) Tween-20) for 1 h and then probed with the indi-
cated primary antibody in 3% (w/v) BSA in TBST at 4 ˚C overnight.
Following overnight incubation, membranes were probed with sec-
ondary antibodies in 5% (w/v) non-fat dry milk in TBST for 1 h at room
temperature in a rocking platform: anti-rabbit or anti-mouse IgG-HRP
conjugated antibody from sheep (both 1:10,000 NA934 and NA931 GE
Healthcare). Proteins were visualized using ECL or SuperSignal West
Femto chemiluminescence reagents (Pierce) and detected by auto-
radiography. Protein band intensity was quantified using ImageJ soft-
ware (version 1.53m NIH).

M Polyclonal antibody generation
M SARS-CoV-2 antibody was generated by ProSci using the antigen
sequence of the N-terminal end of SARS-CoV-2 Membrane protein
MADSNGTITVEELKKLLEQ to immunize rabbits, then the serum was
purified by affinity purification to obtain the polyclonal antibody.

Mice
All animal experiments were carried out following Institutional Animal
Care and Use Committee (IACUC) guidelines and have been approved
by the IACUC of the University of Texas Medical Branch at Galveston
protocol numbers: 2103023 and 1904044, and Rutgers University
protocol number PROTO202200007. Our studies utilized males and
females of 20- to 25-week-old C57BL/6NJ WT mice (The Jackson
Laboratory) that match the Trim7−/− mice generated as described by
ref. 37 and male 25-week-old C57BL/6J WT mice (The Jackson Labora-
tory). Mice were maintained under specific pathogen-free conditions
in the Animal Resource Center (ARC) facility at UTMB or Rutgers
University in a climate control room with access to food and water at
libitum and 12 h light/dark cycles, at a temperature of 18–23 °C and
humidity of 40–60%. Animal experiments involving infectious viruses
were performed under animal biosafety level 3 (ABSL-3) conditions at
UTMB and Rutgers University in accordance with institutional biosaf-
ety approvals.

In vitro virus infection
HEK293t-ACE-2 overexpressing TRIM7 or TRIM7ΔRING domain were
seeded onto 24-well plates at a confluency of 100,000 cells/well and
infected with SARS-CoV-2 USA/WA1 D614G strain MOI 0.1 for 1 h, cells
were washed once with DPBS 1X and incubated with 6, 24, and 48 h
after infection. supernatant, RNA, and protein were collected to mea-
sure virus titers, gene, and protein expression respectively.

In vivo virus infection
Male and female WT and Trim7−/− mice were anesthetized with 5% iso-
flurane and infected intranasal with SARS-CoV-2 1 × 106 PFU of
CMA3p20 strain, mice were weighed every day for 7 days. Euthanasia
was performed at days 2, 3, or 7 post infection using isoflurane

overdose, lungs and serumwere collected for downstream analysis. For
neutrophil depletion experiments, male WT C57BL/6J mice were injec-
ted intraperitoneally81 with 100μg/mouse of anti-Ly6G (BioXCell, cat.
BP0075-1, lot 695418J) or isotype (BioXCell cat. BP0089, lot 71671801)
1 day before and one after the infection, mice were infected with SARS-
CoV-2 1 × 106 PFU of CMA3p20 and weighed every day for 10 days. On
Day 3 post infection, a group of mice was euthanized to perform flow
cytometry of lung or peripheral blood to confirm neutrophil depletion.
For caspase-6 inhibition experiments, male and female C57BL/6NJ WT
and Trim7−/− mice were treated with Z-VEID-FMK (APExBIO), dose:
12.5mg/kg diluted in PBS or DMSO in PBS as the vehicle through IP
injection at day 0, 1, and 2 post infection. For IFN-I blocking experi-
ments, mice were IP injected with IFNAR1(Leinco Technologies cat. I-
401, lot 1123L460) or Isotype IgG control (Leinco Technologies cat. I-
536, lot 0923L495) antibody 2mg/per mice at day 0.

Lung single-cell suspension and flow cytometry
Lungs isolated from infected mice were collected in RPMI 10% v/v
FBS 1% v/v penicillin-streptomycin, lungs were rinsed with DPBS, cut
into small pieces, and digested in digestion media containing
0.7 mg/ml of collagenase D and 30 µg/ml of DNase I in serum-free
RPMI for 30min in a humidified 5% CO2 incubator at 37 ˚C. FBS was
added to the digestion media to inactivate the enzymes. Lungs were
then passed through A 70-μm cell strainer to obtain single-cell
suspension. Red blood cells were lysed using RBC lysing buffer
Hybri-Max (Sigma), cells were counted, and 1 × 106 cells were
stained using the following antibodies. Anti-CD45-PE (Biolegend,
cat. 103105, lot B299555), anti-podoplanin PE-DAZZLE594 (Biole-
gend, cat.127419, lotB298016), anti-CD24-BUV395 (BD Biosciences,
cat. 744471, lot 2091087) anti-CD31-BV510 (BD Biosciences cat.
740114, lot 2091082), anti- CD326-BV711 (Biolegend, Biolegend, cat.
118233), anti- MHC-II-BV605 (Biolegend, cat. 107639, lot B321059),
or anti- PDCA-1-APC (Biologend, cat. 127016, lot B337341), anti-
CD11b-AF700 (Biolegend, cat. 101222, lot B336447), anti- Ly6G-
BV780 (Biolegend, cat. 127645, lot B313888), anti-CD11c Percp-Cy5.5
(Biolegend, cat.117328, lot B332774), anti- Ly6C-FITC (Biolegend,
cat. 128005, lot B368467). To measure cell death and apoptosis,
cells were stained with Ghost dye-Red780 (Tonbo Biosciences, cat.
13-0865-T100) or Fixable viability dye-eFluor506 (eBiosciences, cat.
64-0866-14, lot 2290921) and Apotracker Green (Biolegend, cat.
427402, lot B34791). After staining, samples were fixed using 4%
ultrapure formaldehyde diluted in DPBS from 16% methanol-free
ultrapure formaldehyde (Thermo Scientific) for 48 h. Samples were
acquired using LSR II Fortessa and analyzed using FlowJo.

Plaque assay
The supernatant of infected cells or lung homogenate was used to
measure viral titers. Briefly, confluent monolayers of Vero E6 cells
plated in a 12-well plate were infected with virus diluted using DMEM
2% v/v FBS without penicillin-streptomycin, incubated at 37 ˚C for 1 h
rocking theplate every 15min. Infectiouswere removed andmediawas
replacedwithMEMcontaining 0.6% v/v tragacanth (Sigma), 5% v/v FBS
and 1% v/v penicillin-streptomycin, plates were incubated at 37 ˚C for
2 days in humidified 5% CO2 incubator. Plates were fixed and stained
using 10% buffered formalin containing 0.5% (w/v) crystal violet
for 30min.

Histology
The right inferior lobe of the lung was fixed in 10% neutral buffered
formalin (HT501128, Sigma, MI) for 7 days. Tissues were cut, paraffi-
nized and H&E stained by the Anatomic Pathology Laboratory of the
Pathology Department of the University of Texas Medical Branch. The
inflammatory score was calculated by analyzing the presence of peri-
bronchiolar infiltrates (Yes = 1, No =0) plus 1–2 Foci of inflammation
(1), 2–3 foci of inflammation (2), and 3+ foci of inflammation82.
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IFN-β or ISRE luciferase reporter assay
HEK293T cells were seeded into 24-well plates (50,000 cells/well) and
were transfectedwith 30 ngof IFN-βor 180 ngof ISRE reporter plasmid
together with 10 ng of Renilla luciferase plasmid. For IFN-β reporter
assay, cells were co-transfected with 5 ng of MDA5 and increasing
concentrations of TRIM720, 40, or80ng for24h. For ISRE assays, cells
were co-transfected with 100ng of M-WT or K-R mutants plasmids for
24 h and stimulated with 1000IU/ml of IFN-β for 16 h. Cells were lysed
and luciferase activity wasmeasured using the dual-luciferase reporter
assay system (Promega) on a Cytation 5 Multi-Mode Reader (BioTek)
according to the manufacturer’s instructions. Values were normalized
to Renilla.

Quantitative reverse-transcription-PCR (qRT-PCR)
Total RNA was isolated using the Direct-zol RNA Miniprep Kit (Zymo
Research) following the manufacturer’s instructions. Reverse tran-
scription was performed using the High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems). Real-time qPCR was per-
formed in 384-well plates using iTaq Universal SYBR Green Supermix
and a CFX384 TouchReal-Time PCRDetection System (Bio-Rad). Gene
expression was normalized to either human 18S or murine β-actin by
the comparative CT method (DDCT). Primers: h18S rRNA: F-
GTAACCCGTTGAACCCCATT, R-CCATCCAATCGGTAGTAGCG, hIFN-β:
F-TCTGGCACAACAGGTAGTAGGC, R-GAGAAGCACAACAGGAGAGC
AA, hISG54: F-ATGTGCAACCTACTGGCCTAT, R-TGAGAGTCGGCCCA
TGTGATA, mβ-Actin: F-CGGTTCCGATGCCCTGAGGCTCTT, R-CGTCA
CACTTCATGATGGAATTGA,mIFN-β F-CAGCTCCAAGAAAGGACGAAC,
R-GGCAGTGTAACTCTTCTGCAT, mCXCL10: F-ATCATCCCTGCGAG
CCTATCCT, R-GACCTTTTTTGGCTAAACGCTTTC, mISG54: F-CTGA-
GAGGGGAGTGGACTCTG, R-GCACCTGCTTCATCCAAAGAT, mIL-1β: F-
TGGACCTTCCAGGATGAGGACA, R-GTTCATCTCGGAGCCTGTAGTG,
SCoV-2 ORF1a/ab: F-AGTTACGGCGCCGATCTAAAGTCAT, R-TAGCCAT
CAGGGC CACAGAAGTT, SCoV-2 N: F-GCAATCCTGCTAACAATGCT
GCA, R-ACGAGAAGAGGCTTGACTGC.

Cytokine quantification
Cytokines from serum and lung homogenate were quantified using
BioPlex mouse cytokine 23-plex assay (Bio-Rad) following the manu-
facturer’s instructions. Serum was diluted 1:3. Samples were analyzed
in a Bio-Plex200 Multiplex system (Bio-Rad).

RNAseq data processing
RNA isolated from lung homogenates of C57BL/6NJ infected as
described above as isolated at day 3 post infection, was quality was
assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies).
The poly(A) + RNA was enriched from total RNA (1 mg) using oli-
go(dT)-attached magnetic beads. First- and second-strand synth-
esis, adapter ligation, and amplification were performed following
the SMART-3Seq protocol83. The quality of the library was evaluated
using an Agilent DNA-1000 chip on an Agilent 2100 Bioanalyzer. The
library DNA templates were quantified using qRT-PCR and a known-
size reference standard. The libraries were multiplexed and
sequenced on Illumina NextSeq 550 using the SE75 High Output kit.
NGS sequence reads were aligned using the Spliced Transcript
Alignment (STAR v2.5.1b) to mouse reference genome mm10, using
default parameters84.

Global analysis
Global membrane protein K14/K15 mutation occurrence was analyzed
using the CoV-Spectrum49 (https://open.cov-spectrum.org) dash-
board. The analysis covered all samples in the “Open Data” version of
CoV-Spectrum (GenBank deposited samples) and the period 2020-01-
06 to 2024-01-31. The following queries were used to determine the
occurrence of mutations to K14/K15 and K14 +K15 (using Nextstrain
Clade 21A as an example):

21 A (Nextstrain clade) & M:K14
21 A (Nextstrain clade) & M:K15
21 A (Nextstrain clade) & M:K14 & M:K15
For each query, the total number of samples belonging to the

underlying clade was obtained, and the percentage of samples
with the particular mutation was determined using the “Substitu-
tions and deletions” section of the resulting CoV-Spectrum
reports. Data were visualized using an adaption of the
nCoV Clades Schema (https://github.com/nextstrain/ncov-clades-
schema)85 using Miro.

Methods for M protein+ubiquitin modeling
Weutilized structures of theMprotein in its long form (PDB7VGR) and
short form (PDB 7VGS). To model the membrane, we used a lipid
composition reminiscent of the biological ER-Golgi intermediate
compartment (ERGIC)86 and employed the CHARMM-GUI membrane
builder87–89. Subsequently, we generated four models of covalent
interactions with a ubiquitin structure (PDB 2JF5), each representing
interactions with K14 and K15 from either the same M protein mono-
mer or different monomers, for both conformational states of M.
These models were then subjected to minimization using the Yasara
web server90, followed by the calculation of the total energy of the
systems utilizing adapted Surfaces functions91.

Statistical analysis
All data were presented as means ± SEM as indicated and analyzed
using GraphPad PRISM software (version 9 GraphPad Software). Data
were representative of 2–3 independent experiments, for in vivo
experiments mice number is indicated in the figure legends, in vitro
experiments include three biological replicates, unless otherwise
specified in the figure legends.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Transcriptomic data generated in this study has been deposited with
the NCBI Gene Expression Omnibus (GEO) database under the acces-
sion number GSE268640 https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE268640. Plasmids generated in this study are avail-
able upon request to the corresponding author, appropriate MTA will
be required. The remaining data in this study are available within the
supplementary data in the source data file provided in this manu-
script. Source data are provided with this paper.
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