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In recent years, the research on abnormal events detection is a significant work in surveillance video. 
Many researchers have been attracted by this work for the past two decades. As a result, several 
abnormal event detection approaches have been developed. Though several approaches have been 
used in the field still many problems remain to get the abnormal events detection accuracy. Moreover, 
many feature representations have limited capability to describe the content since several research 
works applied hand craft features, this type of feature can work in limited problems. To overcome 
this problem, this paper introduced the novel feature descriptor namely STS-D (Spatial and Temporal 
Saliency - Descriptor), which includes spatial and temporal information of the objects. This feature 
descriptor efficiently describes the shape and speed of the object. To find the anomaly score, fuzzy 
representation is modeled to efficiently differentiate the normal and abnormal events using fuzzy 
membership degree. The benchmark datasets UMN, UCSD Ped1 and Ped2 and real time roadway 
surveillance dataset are used to evaluate the performance of the proposed approach. Also, several 
existing abnormal events detection approaches are used to compare with the proposed method to 
evaluate the effectiveness of the proposed work.
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Surveillance cameras have become essential in public spaces for safety and security, capturing human behavior1, 
group activities2, and specific targets3–5, including humans, animals, and vehicles. These systems play a critical 
role in areas such as traffic monitoring7, crime prevention8, and crowd management9, but identifying abnormal 
events within large volumes of video data is time-consuming and challenging due to the rarity and variability of 
such events. Abnormal events often lack a standard definition, with anomalies differing significantly from typical 
behaviors and requiring specific interpretations depending on the application.

Abnormal event detection is a very challenging problem in the video surveillance system, because of the 
fact that there is no common rule for the concept of detecting abnormal events3,10. An anomalous event might 
just be different from a normal event but not a suspicious event from the surveillance point of view6. Abnormal 
definition can be built based on three common assumptions for applying in research. They are: anomalous events 
infrequently occur in comparison to normal events, abnormal events have significantly different characteristics 
from normal events, and abnormal events are events which have a specific meaning3. The assumption or 
definition made varies with the target of the application.

In general, the surveillance camera naturally gives a large amount of video data, which is time-consuming11 
to analyze the abnormal events. Besides, most video contents are almost normal events, if one has to find any 
abnormal event from the surveillance video data, people who should watch almost all contents in the video. 
Therefore, there is a need to develop a system to find abnormal events quickly. Several researchers have focused 
on abnormal event detection for the past two decades. This research has been done in various ways viz. trajectory-
based12–14, pattern matching based15–21, simulation-based7,8 texture-based4,5, etc. Though the research works 
have been applied in several directions, still some challenges needed attention by the researchers in the field of 
abnormal events detection. The examples of normal and abnormal events are shown in Fig. 1.
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This paper considers abnormal events such as human running, vehicles appearing in pedestrian paths, people 
walking in the wrong direction, and heavy objects appearing in the scene. The abnormalities are analysed by 
introducing novel feature extraction approaches namely STS-D (Spatial and Temporal Saliency – Descriptor) 
and STS-C (Spatial and Temporal Saliency-Coordinates). To increase the accuracy of the abnormal events 
detection, STS-D is applied on the frame sequence to analyze appearance and speed of the objects. The STS-C 
is introduced to efficiently identify the moving objects’ structures by analyzing global features on the frame 
sequence.

The proposed approach is divided into two phases: novel descriptors for video representation and build a 
degree of membership between normal and abnormal events using fuzzy representation. Our contributions of 
this paper are listed as follows:

•	 STS-D (Spatial and Temporal Saliency - Descriptor): This novel feature descriptor incorporates spatial and 
temporal information to analyze the appearance and speed of objects, facilitating precise abnormal event 
detection.

•	 STS-C (Spatial and Temporal Saliency - Coordinates): This descriptor identifies object structure by analyz-
ing global features of moving and non-moving objects, enhancing recognition accuracy.

•	 Fuzzy Representation: We employ a fuzzy membership model to differentiate normal and abnormal events 
using the STS-D descriptor and membership degrees.

The rest of this paper is structured as follows: Sect. 2 deals with the relevant research works that have been 
carried out in the past on the detection of the abnormal event. The proposed video representation STS-D is 
explained in Sect. 3, fuzzy representation based abnormal events detection is explained in Sect. 4. Finally, the 
conclusion and future work are provided in Sect. 5.

Related works
Abnormal event detection in video surveillance relies heavily on pattern recognition to distinguish between 
normal and abnormal behavior. Pattern matching plays a key role in this area, identifying data attributes through 
machine learning algorithms based on key features. The patterns are often derived through techniques like blob 
detection, feature extraction, batch learning, and clustering. To find unusual events using pattern recognition 
clustering approaches, Duan-Yu and Po-Chung introduced the force field model15. Firstly, the pairs of pixels 
were clustered into groups based on orientations such as 45°, 90°, 135°, 180°, 225°, 270°, 315°, and 360°. Then, 
the corresponding pairs of clusters were compared in the consecutive frames. If the cluster size, orientation, and 
distance change suddenly, it is considered as an unusual event present in the scene. Yannick et al.16 developed 
the pattern recognition technique using motion information. Initially, motion information was obtained from 
the objects and the label was assigned as ‘1’ based on the motion information, which is denoting moving objects 
and ‘0’ denoting static background. The corresponding motion label was matched with the motion label in the 
consecutive frame. By this action, the algorithm estimated how much mutual label transport from one frame to 
another frame. Based on the number of labels, the algorithm decides the selected frame whether normal event or 
abnormal event. Kimand Grauman17 developed an unusual events pattern using principal component analysis 
by dividing the frame into spatio-temporal volumes. It is used to characterize the spatio-temporal information 
of spatio-temporal volumes.

To detect unusual events locally and globally, statistical information is derived on the spatio-temporal 
volume. Based on the information, unusual events patterns can be found. Mahadevan et al.18 developed a normal 
events pattern using a mixture of dynamic texture. It is used to describe normal motion patterns. It is combined 
with a saliency detection method to detect unusual events. Guogang et al.1 developed an energy model to find 
people running. Motion vectors are obtained by Lucas–Kanade optical flow approach for a series of images. 
Then, a mask is generated from the foreground objects in normal scenes. In the case of people running, the mask 
is not matching the objects; there may be suppressed objects entirely due to the object’s force. In some occasions, 
this model is not apt due to intensity variation. Weiyao Lin et al.19 created a normal activities pattern that uses 
the patch-based method. The input video sequence is divided into patches and blobs are extracted from each 

Fig. 1.  Examples of normal and abnormal events.
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batch. Blob is a representation of grouping similar intensity values. In the testing stage, the normal pattern blob is 
extracted from the images. If the overall normality likelihood value is different from the trained normal pattern, 
it is termed as abnormality. However, blob extraction is difficult to extract reliable blob sequence due to object 
occlusion in the videos. Though the pattern matching process correctly detected the abnormal events in many 
cases, this process cannot correctly identify the object or human moving in the wrong direction as an unusual 
moving object. Because the pattern does not fit if an object size highly varies.

Other approaches such as deep learning and fuzzed logic based methods are involved in object’s detection 
and action recognition task. Davar Giveki20 developed the human action recognition method using atanassov’s 
intuitionistic adaptive 3D fuzzy histon roughness index texture features to describe slow and fast moving object’s 
in the scene. To classify the actions, a fuzzy c-means clustering algorithm is applied to cluster the texture features. 
Then, the clustered features are classified using a fuzzy membership function. Fard et al.21 developed based 
modeling for identifying human objects. Then, the fuzzy membership function is applied on the texture to 
connect each action of objects. Davar Giveki22 developed a gated recurrent unit network for extracting action 
features. Also, optical flow gated recurrent unit network is introduced to compute the motion features and their 
relationship on the objects.

From the literature review, the following observations are made: (1) object recognition is essential for 
effective abnormal event detection; and (2) a reliable system must capture both the appearance and speed of 
an object’s structure to detect unusual events accurately. To address these needs, this paper introduces a novel 
feature descriptor, STS-D, which describes object structure in terms of shape and speed, enabling efficient and 
accurate detection of abnormal events.

The STS-D video description methodology
This section describes how video content is represented in the frame sequence by using STS-D global descriptor. 
In traditional feature descriptors namely HOF23, HOG24, and MBH17, the features such as gradient, direction, 
optical flow, and magnitude are derived using statistical measures. As a result, spatial information of each 
pixel is erased by aggregating features. In a real-world scenario, spatial information is important to represent 
the local and global activity pattern efficiently. In order to overcome the above challenge, the STS-D global 
descriptor is developed. To develop the STS-D descriptor, a semantic video analysis is carried out for extracting 
the object’s shape and motion by deriving the spatial and temporal content on the moving objects. Also, STS-D 
can efficiently detect the foreground object from the background image. The STS-D has multiple steps such as 
feature extraction, STS-C formation, and foreground detection that are also discussed in the section. Finally, in 
order to detect the abnormal events on the frame sequence, fuzzy membership is defined based on the STS-D 
descriptors using object’s edges and motion values. The Proposed work flow diagram is explained in the Fig. 2.

Preliminary work of STS-D
The surveillance video is taken as the input for the proposed methodology. The frame consists of foreground and 
background objects. To analyze the abnormal events, foreground objects only needed since foreground objects 
give more contribution in abnormal events. Therefore, to obtain the object appearance, edge information is 
extracted using gradient computation. The edge information can control the non-essential information of each 

Fig. 2.  The proposed work flow diagram.
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object. The gradient of the frame is calculated by using the sobel filter23,24. This filter is applied on the frame 
to compute the local gradient values where the local gradient points are denoted by gi, i = 1, 2, 3, 4, 5, 6, 7, 8, 9. 
Then, this process is repeated as a 3 × 3 window that is moved until it reaches the whole frame over the video. It 
is explained using the Eq. (1).

	 Gj = g1, g2, g3, ......, gn� (1)

where Gj is the collection of gradient values of jth frame.
In order to achieve the motion features on the image, optical flow magnitude is extracted on the image to 

efficiently characterize the video content. In general, the image intensities have spatial and temporal variations 
at all pixels. The optical flow is estimated using gradients with x and y direction by tracking densely sampled 
points20. The pixels on the image can be assumed to have some moving objects. The object pixels are taken 
from each frame and then the object pixels are tracked based on displacement of objects by using optical flow 
technique22–24. In this process, consider a pixel I(x, y, t) in the first frame, and it moves in dx and dy directions 
in the next frame after t time. If the pixels are the same intensity in the frames, the pixel intensity does not 
change where I(x, y, t) = I(x + dx, y + dy, t + dt). The corresponding t value applies at every gradient x and 
y direction for obtaining velocity in x and y direction. Let vx and vy are the velocities in x and y direction. In order 
to reduce the constraint, two degrees vx and vy are estimated by measuring the magnitude of the optical flow 
f﻿ield. The total magnitude at ith position in the pixel is explained in the Eqs. (2) and (3).

	 m =
√

vx
2 + vy

2� (2)

	 Mj = m1, m2, m3, .....mn� (3)

where j is the collection of optical flow magnitude values in jth frame.

Spatial and temporal saliency-coordinates (STS-C)
According to the object movement, the optical flow magnitude Mj can be correlated with the appearance of the 
object using gradient Gj. In case of people running or heavy objects appearing in the frames, the appearance of 
the objects and magnitude of the object changed simultaneously where the object may be suppressed entirely 
by appearance and motion due to the object’s force. In this situation, the efficient features information cannot 
be extracted on the moving objects with its structure using the traditional feature descriptors17,25–28. In order to 
achieve the feature information with its structure, the STS-C is developed. The aim of the STS-C is to identify 
the appearance and motion of objects by maintaining the actual coordinates. Therefore, the multi dimensional 
feature sets are built using Gj and Mj with respective coordinates using ordered pairs of Cartesian products. A 
cartesian product of two features Gj and Mj will repeatedly be mapped for each element from two features in 
order to achieve the object’s structure. To obtain the object structure, requires the function, it relates an input 
feature Gj and Mj to a multidimensional feature set. A function is an ordered triple ⟨p, Rn, Gj⟩such that p is the 
function, R is the real number and Gj is the two dimensional input feature vector. Then, a function relates each 
element of a real number with exactly one element of the input feature. It denoted as p: Rn→ Gj such that it can 
be written the following Eq. 4.

	

p(G) =




g11 g12 ...... g1n

g21 g22 ....... g2n

....... ....... ....... ......
gm1 gn2 ....... gmn


 ,� (4)

Similarly, the function is an ordered triple⟨q, Rn, Mj⟩ such that q is the function and Mj is the two dimensional 
input feature vector. It is denoted as q: Rn→ Mj and it is explained by using the Eq. 5.

	

q(M) =




m11 m12 ...... m1n

m21 m22 ....... m2n

....... ....... ....... ......
mm1 mn2 ....... mmn


 ,� (5)

The Rn is called the domain of p and q and Gj and Mj its co-domain of the respective functions. The STS-C is 
formed by computing p × q: Rn× Rn→ Gj× Mj such that p × q (Gj× Mj), it is explained using in Eq. 6. The structure 
of STS-C is shown in Fig. 3.

	

ST S − C = p × q







(g11, m11) (g12, m12) ...... (g1n, m1n)
(g21, m21) (g22, m22) ....... (g2n, m2n)

....... ....... ....... ......
(gn1, mn1) (gn2, mn2) ....... (gnn, mnn)





� (6)

Foreground detection using STS-C
In case, describing the features of video frames directly as29–36, the problem is that spatial and temporal 
information is unable to locate foreground objects accurately. Also, the foreground objects are completely 
destroyed by taking into account some unwanted information from the background image due to influence 
of background clutter, whether condition, illumination changes or occlusion. In this situation, false detection 
may occur. To detect the abnormality in an efficient manner, it is necessary to detect the foreground object. In 
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general, the feature of the foreground contributes well to detect anomalies20. To identify the foreground objects, 
the STS-C is used.

The STS-C can efficiently capture the local motion and spatial distribution on the frame. To identify the 
foreground object, the STS-C is analyzed between consecutive frames (fk+1) and (fk) where k is the frame number 
as k = 1 to n. By this process, the static object is obtained by connecting the set of corresponding pairs of pixels 
where located in the same spatial location that is indicated Mj is ‘0’. Then, Mj and Gj values are simultaneously 
removed from the respective coordinates. The remaining pair of pixels is represented as foreground objects. The 
resultant structure of the information is termed as STS-D global descriptor. This process is also used to reduce 
the memory storage.

Abnormal events detection
The proposed abnormal events detection system has two stages: (1) Influence Score Estimation, (2) Fuzzy 
Membership Computation.

Influence score estimation
To describe the abnormal events, the features on the objects are computed using influence score using the STS-D. 
There are three possible ways to determine the abnormal events: (1) the Gj and Mj of the foreground object are 
simultaneously influenced by external force, (2) the Mj feature is usually higher than the appearance feature due 
to object force, and (3) the Gj feature is higher than Mj values due to object appearance changes. On the other 
hand, the Gj and Mj values of the foreground object balanced to each other during normal events. In order to 
find the influence score, the spatio-temporal description is derived from the STS-D using the threshold values α 
and β. The α is applied on the Gj and the β is applied on the Mj and the influence score is found using the Eq. 7.

	

Influence Score =





1, if Gj > α and Mj > β
2, if Gj < α and Mj > β

3, if Gj > α and Mj < β
0, otherwise

� (7)

Fuzzy membership computation
In order to find the abnormal events on the frame, the influence score degree is computed using fuzzy membership 
function. Fuzzy sets are sets whose elements contain degree of membership37, it is explained in the Eq. (8). Let 
every single frame fk be the universal set U where k = 1 to n and then U is split into four categories ur where r = 1 
to 4. The categories are defined such as u1, u2, u3, and u4 where u1 = Influence score as 1, u2 = Influence score as 2, 
u3 = Influence score as 3, and u4 = Influence score as 0.

The influence scores are defined using the threshold value of the spatio-temporal features of STS-D. The range 
of threshold value determines the intensity of the abnormality. The optimal threshold value can be assigned by 
experimenting data. The threshold values are changed according to the nature of the video.

	 µST S−D
ur → < 0, 1 >� (8)

To detect the abnormal events using fuzzy membership, firstly, the degree of influence score of u1, u2, u3, and u4 
is computed and then fuzzy membership values are estimated in a frame fk. The degree of membership value is 
calculated in the frame by using Eq. (9).

Fig. 3.  An illustration of the STS-C via ordered pair of Cartesian product. (Δ denotes gradient values and ↔ 
denotes optical flow magnitude values where each coordinate gradient and magnitude are differentiated by 
different colours).
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µST S−D
uk (fk) =

∣∣uk ∩ ST S − Ddeg (fk)
∣∣∣∣∣ST S−Ddeg

(fk)
∣∣∣ � (9)

where ST S − Ddeg (fk) is the total feature values included u1,u2,u3, and u4. All influence scores u1,u2,u3, and u4 
are computed individually for each frame using the Eq. (10).

	

µST S−D

U (fk) =
∣∣u1 ∩ST S−Ddeg (fk)

∣∣∣∣∣ST S−Ddeg
(fk)

∣∣∣
,

∣∣u2 ∩ST S−Ddeg (fk)
∣∣∣∣∣ST S−Ddeg

(fk)

∣∣∣
,

∣∣u3 ∩ST S−Ddeg (fk)
∣∣∣∣∣ST S−Ddeg

(fk)

∣∣∣
, and

∣∣u4∩ST S−Ddeg (fk)
∣∣∣∣∣ST S−Ddeg

(fk)

∣∣∣

� (10)

where u1 and u4 membership values are taken in a frame as abnormal and normal events respectively where u1 
exhibits high motion and appearance of the objects and u4 exhibits less motion objects in a frame. However, u2 
and u3 will decide whether the elements possibly belong to the u1 or u4 by considering the u2 and u3 membership 
values. It is explained using the Eq. 11.

	

fuzzy membership =




u1, if u2 or u3 > 0.5

u4, if u2 or u3 < 0.5
� (11)

The u1 and u4 membership values decide the content of the frame fk whether the normal or abnormal events.

Experiments
Experimental setup and evaluation
The proposed work was carried out using MATLAB 2013a software by comparing several existing anomaly 
detection approaches to insight the performance. The experiments are carried out on two benchmark datasets 
such as UMN38, UCSD ped1 and ped239 and, real time dataset.

Dataset description
UMN dataset  The UMN dataset is widely applied dataset in anomaly detection that contains normal human 
activities such as persons with normal walking and abnormal crowd activities such as people escaping, peo-
ple gathering, and people running from the crowd in different directions. This dataset has 7740 frames with 
240 × 320 resolution in which 1450, 4415, and 2145 frames for scene 1, 2, and 3 respectively. In each scene, the 
first 400 frames were used for training and the remaining frames.

UCSD dataset  UCSD ped1 and ped2 pedestrian datasets are the most frequently-used datasets in video anom-
aly detection. UCSD ped1 and ped2 datasets contain both crowded and uncrowded scenes and the scenes were 
captured by different environments. Also, the scene includes the following actions such as human walking, skat-
ers, bikers and vehicles. UCSD ped1 dataset contains 34 and 36 training and testing videos respectively where 
each contains 200 frames with a resolution of 158 × 238. UCSD ped2 dataset contains 16 and 12 testing videos 
respectively where each video contains 120 to 180 with a resolution 240 × 360.

Real-time dataset  The dataset consists of five scenes that contain normal human activities such as persons with 
normal walking and abnormal running such as people escaping and people running on the roadway. This dataset 
has 1000 frames where each scene has 200 frames.

Performance evaluation
To evaluate the performance of the proposed method, this paper used True Positive (TP), False Positive (FP), 
False Negative (FN), True Positive Rate (TPS) and False Positive Rate (FPR) metrics. The experimental results 
are evaluated with the frame level ground truth annotation of each frame. The following measures are used such 
as Precision, Recall, F1-score, Receiver Operating Characteristic (ROC) curve of TPR versus FPR to estimate the 
performance. They are explained in the Eqs. 12, 13, 14, 15 and 16.

	
P recision = T P

T P + F P
,� (12)

	
Recall = TP

TP + FN ,� (13)

	
F 1 − score = 2 × P recision × Recall

P recesion + Recall
,� (14)

	
T P R = Number of True Possitve Frames

Number of Possitive Frames
� (15)
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F P R = Number of False Possitve Frames

Number of Negative Frames � (16)

where TP indicates correctly detected anomaly frames where two frames matched between ground truth and 
the detected frame, FP indicates incorrectly detects the frame where two frames not matched between ground 
truth and the detected frame, and FN indicates the incorrectly detected normal event frame where the abnormal 
events detected frame not matched with ground truth frame. The results are explained by Tables 1, 2, 3 and 4; 
Fig. 4 and 5.

The threshold values are needed to efficiently differentiate normal and unusual events for both UCSD Ped1 
and Ped2 and UMN while evaluating all measures. The proposed method when identifying an abnormal events 
frame if it is in the annotated range, the detected frame is counted as a correctly identified frame for TPR. On 
the other hand, the detected abnormal events frame if it is in the outside annotated range, the detected frame is 
counted as a wrongly detected abnormal event frame for FPR.

Table 1 shows the performance of proposed work on UMN using F1-Score where scene 3 obtains a lower 
F1-score compare than other scenes. Though the scene 3 consists of abnormal running of persons the abnormal 
speed of the persons is low. Therefore, the proposed method considers the abnormal events as normal events 
since the fuzzy membership degree belongs to normal events. On the other hand, sequence 1 and 2 achieved a 

Scene No. Precision (%) Recall (%) F1-score (%)

Scene 1 70.00 79.00 74.00

Scene 2 83.00 81.00 81.00

Scene 3 84.00 80.00 81.00

Scene 4 80.00 82.00 80.00

Scene 5 86.00 87.00 86.00

Table 4.  Experimental results on real-time dataset.

 

Methods AUC

Optical Flow computation 84.00%

SF 94.00%

MDT 93.00%

Chaotic invariants 95.04%

Biswas 94.00%

GLCM 95.09%

OPLKT-EMEHO 96.00%

RpNet 95.00%

Proposed Method 97.00%

Table 3.  Comparative analysis on UMN dataset.

 

Sequence No. Frames

UCSD Ped1 UCSD Ped2

Precision Recall F1-score Precision Recall F1-score

1 200 93.00 52.00 66.70 91.00 59.00 67.53

2 200 87.00 61.00 72.00 90.00 54.00 67.50

3 200 93.00 70.00 80.00 91.00 71.00 80.00

4 200 90.00 79.00 84.14 92.00 75.00 82.63

5 200 87.00 80.00 83.35 90.00 83.00 86.35

Table 2.  Experimental results on UCSD Ped1 and Ped2 dataset

 

Scene No. Precision (%) Recall (%) F1-score (%)

Scene 1 95.00 80.00 86.85

Scene 2 93.00 79.00 85.43

Scene 3 89.00 70.00 78.36

Table 1.  Experimental results on UMN dataset.
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low F1-score than other sequence in UCSD Ped1 and Ped2. The UCSD Ped1 and Ped2 start with a normal person 
walking on the pedestrian path and it is followed by an irregular cyclist moving. Though irregular cyclists in the 
pedestrian path are abnormal events, the proposed work is considered as the normal events since the cyclist is 
too small in size as the person. Therefore, the influence score was achieved as ‘0’ by the gradient and magnitude 
of the cyclist and thus fuzzy membership degree obtained as ‘0’. Therefore, the algorithm mistakenly decided 
irregular cyclist abnormal frames as the normal events frame. The results are shown in Table 2.

Comparative analysis
The UMN and UCSD Ped1 and Ped2 are used to compare with proposed work to evaluate the effectiveness 
of the proposed work since normal and abnormal frequently occur in all the sequences for both datasets. The 

Fig. 5.  The resultant real-time abnormal events frames.

 

Fig. 4.  The visual results of proposed method.
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following existing abnormal events detection algorithms such as optical flow computation40, SF41, MDT18, 
Chaotic invariants42 Biswas43, GLCM44, OPLKT-EMEHO45, and rpNet46 are used to compare with the proposed 
work using UMN dataset.

Table 4 summarizes the experimental results on a real-time dataset. Scene 1 achieves a Precision of 70%, 
Recall of 79%, and an F1-score of 74%, indicating a moderate balance between detecting relevant instances and 
minimizing false positives. Scene 2 shows improved performance with 83% Precision, 81% Recall, and an F1-
score of 81%, while Scene 3 maintains similar effectiveness with 84% Precision, 80% Recall, and an F1-score of 
81%. These results collectively indicate consistent, high performance across scenes, with Scene 5 demonstrating 
the model’s optimal effectiveness. Table 5 provides a quantitative analysis of abnormal event detection on a real-
time dataset across five scenes. For each scene, the table displays the total number of abnormal events, alongside 
the number of events that were correctly and incorrectly detected by the model.

Figure 4 illustrates the performance of the proposed method on the UMN and UCSD Ped1 and Ped2 datasets 
through a comparative visual representation. The figure is organized into three main sections for each dataset: 
Normal Frames, Abnormal Frames, and Incorrectly Detected Normal Frames as Abnormal Frames. The Normal 
Frames column displays frames where typical activities occur, which the model correctly identifies as normal. 
The Abnormal Frames column includes scenes with unusual events that the model successfully detects as 
abnormal, such as people running in the UMN dataset and vehicles moving along pedestrian paths in the UCSD 
dataset. Lastly, the Incorrectly Detected Normal Frames as Abnormal Frames column illustrates instances where 
the proposed method misclassifies typical activities as anomalies. For the UMN dataset, this includes scenarios 
such as normal walking activities that were flagged as abnormal due to subtle variations in crowd density or 
motion. In the UCSD Ped1 and Ped2 datasets, misclassifications often occur in scenes where small movements 
or minor irregularities—such as slight deviations in pedestrian flow—are mistaken for abnormal events. 
These false positives highlight the model’s sensitivity to minor deviations, reflecting its challenge in accurately 
distinguishing low-level variations in typical behavior from genuinely unusual events. Figure 5 illustrates the 
proposed method’s performance on a real-time dataset by showcasing both correctly and incorrectly detected 
events. In the Correctly Detected Abnormal Events column, the frames highlight instances where the model 
successfully identifies genuine anomalies, such as unusual object appearances. Conversely, the Incorrectly 
Detected Normal Events as Abnormal Events column presents frames depicting normal activities, like standard 
pedestrian flow, that are mistakenly classified as abnormal. These false positives indicate the model’s tendency to 
misinterpret certain normal activities under specific conditions, possibly due to variations in lighting.

Tables 3 and 6 show the performance on the UMN and UCSD dataset which consists of comparison results 
between proposed methods and existing abnormal events detection methods using AUC and EER. From these 
analyses, the results revealed that the proposed method obtained better results for both UMN and UCSD 
Ped1 and Ped2 since the video frames are applied to capture the gradient and magnitude of the foreground 
objects with the help of STS-D global descriptors as well as compute fuzzy membership degree. Therefore, the 
proposed method correctly detected the abnormal events in many frames where people were running, vehicles 
in pedestrian paths, carts, and cars. In the case of people running with low speed, the descriptor is not working 
well since the influence score will be less to classify the abnormal event. In some occasions, this descriptor is not 
clearly described the nature of the content due to intensity variation. In real-time dataset, the lighting variation is 
highly varies between frames. Therefore, the performance degrades due to insufficient details of objects. Because, 
the objects edges are highly needed to describe the objects appearance and motion. Therefore, the comparative 
results are high for benchmark dataset when compared real-time dataset.

The performance is also affected by lighting variations and intensity changes within the frames of the real-
time dataset. The descriptor occasionally fails to accurately capture the nature of the content when lighting 
conditions fluctuate significantly between frames, leading to insufficient detail in object edges, which are 
essential for identifying movement and appearance. This issue is particularly evident in scenes with rapidly 
changing lighting conditions.

Conclusions
This paper introduced the novel STS-D global feature descriptor to describe the spatial and temporal information 
which can efficiently describe the shape and speed of the foreground objects. To identify the moving object’s 
structure by STS-D, the STS-C was derived on the foreground objects to differentiate moving and non-moving 
foreground objects in the frame sequence. Also, fuzzy representation was modelled to efficiently differentiate 
the normal and abnormal events using fuzzy membership degree. The experimental results on two benchmark 
datasets revealed the effectiveness of the proposed work. Although the proposed method gives better performance 
in all abnormal events cases the descriptor does not give proper information for the small abnormal objects. 
Therefore, the proposed method could not identify the abnormal events if any small size abnormal objects were 

Scene No. No of Abnormal Events Correctly Detected Incorrectly Detected

Scene 1 5 3 2

Scene 2 7 6 1

Scene 3 6 6 -

Scene 4 3 2 1

Scene 5 5 4 1

Table 5.  Quantitative analysis on real-time dataset.
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involved in the frame. Therefore, the efficient feature is still needed to describe the shape and speed of the small 
size objects. The proposed method can be extended in various video analyses in the future.

Data availability
The datasets used in this research is publically available.
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