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A B S T R A C T

Many important information in medical research and clinical diagnosis are obtained from medical 
images. Among them, digital pathology images can provide detailed tissue structure and cellular 
information, which has become the gold standard for clinical tumor diagnosis. With the devel-
opment of neural networks, computer-aided diagnosis presents the identification results of 
various cell nuclei to doctors, which facilitates the identification of cancerous regions. However, 
deep learning models require a large amount of annotated data. Pathology images are expensive 
and difficult to obtain, and insufficient annotation data can easily lead to biased results. In 
addition, when current models are evaluated on an unknown target domain, there are errors in 
the predicted boundaries. Based on this, this study proposes a feature alignment-based detail 
recognition strategy for pathology image segmentation (FASNet). It consists of a preprocessing 
model and a segmentation network (UNW). The UNW network performs instance normalization 
and categorical whitening of feature images by inserting semantics-aware normalization and 
semantics-aware whitening modules into the encoder and decoder, which achieves the 
compactness of features of the same class and the separation of features of different classes. The 
FASNet method can identify the feature detail information more efficiently, and thus differentiate 
between different classes of tissues effectively. The experimental results show that the FASNet 
method has a Dice Similarity Coefficient (DSC) value of 0.844. It achieves good performance even 
when faced with test data that does not match the distribution of the training data. Code: https:// 
github.com/zlf010928/FASNet.git.
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1. Introduction

Semantic segmentation techniques have been widely used in medical image analysis in the field of medical-assisted diagnosis to 
assist doctors in early diagnosis and therapeutic intervention [1–3]. For example, tumor identification in orthopedics [4], tissue 
analysis in gynecological oncology [5], polyp segmentation in gastroenterology [6], and segmentation and analysis of skin lesions or 
tumors in dermatology [7–9]. Pathology images have been continuously researched in the field of image segmentation due to their 
ability to provide detailed tissue structure and cellular information, thus providing a more accurate basis for disease diagnosis.

However, the segmentation of digital pathology images is a challenging task [10]. This is mainly due to the complexity and 
variability of human tissue structure, which makes it difficult to accurately and finely segment cells, tissues, and structures in pa-
thology images [11,12]. In addition, pathology slides may produce noise and artifacts during the production process, which can 
interfere with the physician’s judgment [13]. The drawbacks of traditional recognition methods are particularly evident in regions and 
countries with scarce medical resources, mainly due to the following reasons. 

1) Relying on pathology images for tumor diagnosis usually requires an experienced radiologist [14,15]. While many developing 
countries lack the human resources related to the diagnosis and treatment of osteosarcoma, it is difficult to spend significant 
manpower and time-consuming expenses in identifying and labeling osteosarcoma pathology images [16].

2) Due to the low-value density of pathology image data, the large number of redundant pathology images makes the physician’s 
workload extremely heavy, with typically less than 20 images out of over 600 being able to provide diagnostic data for the con-
dition [17], thus causing physicians to spend much time on images with deficient data information, and the cost of manually 
processing these pathology images is too high. The low-value density of pathology image data results in many redundant images, 
imposing a significant burden on physicians. Typically, fewer than 20 images out of over 600 can provide diagnostic data for the 
condition [18]. Consequently, physicians spend considerable time analyzing images with minimal information content, leading to 
high manual processing costs for pathology images.

3) Osteosarcomas come in a variety of locations, sizes, and shapes, with structures varying from patient to patient, and because os-
teosarcoma cells are occasionally indistinguishable from other normal human tissue cells [19]. Consequently, for precise tagging of 
osteosarcoma cell nuclei considerable time and effort are required by experienced physicians. Currently, hospitals lack the tech-
nology to efficiently divide the nuclei, and for inexperienced young doctors, misdiagnosis and misdiagnosis are inevitable, leading 
to delays in patient treatment.

To relieve physicians’ work pressure, improve diagnostic efficiency compensate for the imbalance of medical resources, and to be 
able to reduce the possibility of wrong decisions made by less experienced physicians [20]. Efficient and accurate machine learning 
algorithms are urgently needed to enable the automatic segmentation of pathology images in artificial intelligence-assisted medical 
research. This will help reduce physician workload and shorten the time from patient visits to treatment completion [21–23]. Advances 
have been made in AI medical information assistance research with various deep neural networks, such as multiscale residual fusion 
networks to fuse feature maps of different resolutions [24], boundary-aware grid context-aware networks for enhanced texture feature 
extraction and tumor region localization [25], all of which have achieved great success in image segmentation of osteosarcoma.

Existing models suffer from overfitting on the dataset and poor generalization in the target domain dataset where the distribution is 
not visible, and the boundaries between classes are not obvious [26,27]. The accuracy of cell nucleus segmentation is insufficient. 
Increasing the dataset can improve the status quo. However, in practical medical diagnosis, it is often challenging to obtain adequate 
pathological images due to the expensive nature of pathological images and the difficulty in obtaining various styles of osteosarcoma 
cell shapes. This therefore leads to a lack of robustness and usefulness of the model. To address these issues, we used a domain 
generalization-based model aiming to obtain good generalization results using limited training samples [28].

Therefore, we propose a feature alignment-based detail recognition strategy (FASNet) for pathology image segmentation. It consists 
of a preprocessing model and a segmentation network (UNW). The preprocessing model enhances the image quality and reduces the 
degree of contamination of the picture through the noise estimation sub-module and the non-blind denoising sub-module. The UNW 
network inserts the feature center alignment and feature distribution alignment modules into the original encoder and decoder 
structure, which helps in the center-level and distribution-level alignment of the category features. This alignment is achieved through 
instance normalization and grouped categorization whitening of the feature map. Consequently, it promotes compactness among 
similar features and enhances separation between different classes of features. This, in turn, results in clearer boundaries between 
classes, improved recognition of feature detail information, and enhanced accuracy in cell nucleus segmentation—the capability of the 
program to produce excellent predictions with new data drawn from the true probability distribution.

The main contributions made in this essay are the following points. 

1) The recognition model designed in this study is based on improved Feature Center Alignment (FCA) and Feature Distribution 
Alignment (FDA), which provide information about the target category, thus optimizing the accuracy of the model segmentation 
and its adaptability to new samples.

2) Through instance normalization and instance whitening, the module encourages compactness of features of the same class and 
separation between different classes of features, thus effectively achieving the elimination of different classes of styles, and the 
enhancement of feature recognition capabilities.
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3) This study enhances finite feature recognition by eliminating global distribution differences and focusing on class-level semantic 
consistency, which results in clearer class boundaries and strong generalization ability in image segmentation tasks with different 
features.

4) Experiments using more than 4000 osteosarcoma pathology images showed that the method in this study has better performance. 
The predictive results of the model can provide informative support for the diagnosis of osteosarcoma in areas that lack medical 
resources.

2. Related work

Image segmentation has an extremely important role in medical assistive systems [29]. To enhance information transfer between 
layers, integrate feature maps, and combine multi-scale features for extracting complete feature information from images, Zhou et al. 
[30] introduced the U-Net++ network structure. This architecture improves feature map connectivity through the introduction of 
nested and dense jump connections. The UATransNet model [31] employs a multi-level guided self-aware attention module to 
eliminate irrelevant background information from images. Additionally, it enhances feature extraction by integrating a multi-scale 
jump connection into the model, alongside a convolution module that utilizes dense residual learning. BA-GCA [32] optimizes the 
segmentation capability of the model and localization of small areas of osteosarcoma in medical images by fusing multi-level features 
and focusing more on local details in the image. Recently, a vision transformer-based model has been developed for nuclei classifi-
cation from histopathology images [33], and a different method using attention-aware adversarial networks [34] has been developed 
for nuclei segmentation.

Because the data annotation process is so costly, accurate and effective segmentation often relies on large amounts of finely an-
notated data, but some clinical diseases are rare in nature, so most of the current pathology image segmentation models are unsu-
pervised learning, semi-supervised learning, and few-sample learning [35,36].

Kuang et al. [37] proposed a weakly supervised feature decomposition module based on semantic affinity to address the label 
symbiosis and positional adjacency problem in multi-class medical image segmentation. This approach enhances the performance of 
weakly supervised multi-class medical image segmentation using image-level labels. Chen et al. [38] introduced FDFUNet, a medical 
image segmentation network based on multiscale frequency domain filters. FDFUNet improves the perceptual field and depth of the 
network with a double residual depth separable convolution module (DRDAC), utilizes a multiscale frequency domain filter (MFDF) to 
extract multiscale information, and employs axial channel attention (ASCA) for channel weight computation. Wang et al. [35] pro-
posed CRMEFNet, a novel network for medical image segmentation. CRMEFNet achieves high-precision segmentation of medical 
images through a coupled refinement module, multiscale exploration and fusion module, and cascaded progressive decoder.

Large digital pathology images typically suffer from poor domain adaptation and interpretability. Ming Y. Lu et al. [39] proposed a 
clustering-constrained attention multi-instance learning (CLAM) for learning from attention to accurately classify whole slides. The 
method can be used to localize well-known morphological features on WSI without the need for spatial labeling. Tingting Zheng et al. 
[40] proposed a weakly supervised Fast Medical Decision Making in Melanoma Histopathology Images (FastMDP-RL). The framework 
accelerates model inference by reducing the number of irrelevant patches identified in WSI. The results show that FastMDP-RL speeds 
up inference and accurately predicts WSI even in the absence of pixel-level annotations. Gabriele Campanelladengr et al. [41] on the 
other hand trained the system using reported diagnoses as labels, thus avoiding expensive and time-consuming pixel-by-pixel manual 
annotation. The test results show that the area under the curve is above 0.98 for a wide range of cancer types.

To alleviate the pressure of model generalization problems caused by data annotation uneven cell staining and the tightly packed 
and clumped morphological characteristics of cell nuclei, obtaining models with good generalization ability by the small amount of 
data is a difficult problem to solve for cell nuclei segmentation. Wu et al. proposed a double contrast learning network for few-sample 
learning [42], and constructed prototype-based and context-based dual contrast learning using auxiliary information from untargeted 
classes of medical images, enhancing the ability to learn image features and improving the utilization of few-sample data. Lou et al. 
[43] used a new consistency-based patch selection method to determine which pathology images are most beneficial for training. Using 
more training samples synthesized using GAN and a small number of pathology images requiring annotation, the existing nucleus 
segmentation model was trained using the enhanced samples described above, possessing the same performance as fully supervised. 
Chen et al. [44] introduced a novel framework named SIFA for unsupervised domain adaptation in medical image segmentation. This 
framework integrates image alignment and feature alignment for end-to-end training by sharing feature encoders through adversarial 
learning. By doing so, it effectively mitigates inter-domain variance and enhances segmentation performance in the target domain.

Few-shot learning shows unique advantages in data-limited modeling tasks. Hao Quan et al. [45] proposed a dual-channel pro-
totype network (DCPN) for the effective classification of pathology images with limited data. DCPN combines a pyramidal vision 
transformer and convolutional neural network for extracting multi-scale pathology features, which improves the generalizability of 
prototype representations. With the significant advancements in neural networks, pathological image segmentation has found 
increased clinical utility in the precise diagnosis and prediction of osteosarcoma. This capability serves as a crucial aid in formulating 
subsequent treatment strategies for patients, thereby enhancing their survival rates. However, in medical image processing, gathering 
large annotated datasets of cases is frequently a daunting challenge. Additionally, staining and annotating pathological images is 
laborious and costly. Therefore, most models do not work well when faced with a variety of test data that are not consistent with the 
distribution of the training data.

To cope with the lack of datasets, inconsistency in the distribution of training data and test data faced in osteosarcoma pathology 
images in semantic segmentation, and to address the wide variety of data distributions that the model may face at the time of testing, 
we employ two class information modules for normalization and whitening. The model achieves central-level, distribution-level, and 
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semantic-level feature alignment by augmenting and varying the data, which alleviates the semantic conflict problem caused by class 
feature mismatch and still helps the model maintain the evaluation indicators of the model in the training data as much as possible 
when facing various test data with inconsistent distribution with the training data.

3. System model design

In realistic medical pathology image recognition, it is impossible to know the data distribution status of the segmented pathology 
images, which means that model predictions are faced with multiple distribution types in the test data [46]. Osteosarcoma cells usually 
have distinct differences compared to normal cell nuclei. First, the nucleus of an osteosarcoma cell is usually larger than the nucleus of 
a normal cell and is irregularly shaped with non-smooth edges. Second, the chromatin in the nuclei of osteosarcoma cells is unevenly 
distributed, resulting in some areas showing dark staining and others showing light staining [47,48]. In addition, there may be dif-
ferences in the number and size of nucleoli in the nuclei of osteosarcoma cells compared to normal cells. As a result, osteosarcoma 
pathology images have significant diversity, uneven staining, and complex background structure, and pathology images often have 
high cell density, cell overlap, and cell clumping, which exacerbate the difficulty of segmenting individual cell nuclei. The segmen-
tation capability of the model varies significantly across different images. Existing methods fail to achieve clear class boundaries in cell 
nucleus segmentation, resulting in unclear decision boundaries and producing blurred or incorrect segmentation results. Therefore, we 
adopt the technique of feature alignment. As shown in Fig. 1, we initially perform data enhancement on the limited data by rotating 
and flipping the data. Additionally, we integrate FCA and FDA modules into the original image preprocessing, encoder, and decoder 
model architecture. We introduce undistorted image appearance by emphasizing the class information of feature images, conducting 
inter-class region normalization and group whitening guided by class information, performing feature center alignment, distribution 

Fig. 1. Pathology image segmentation framework.
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alignment, and eliminating feature correlations. The model feature recognition capability and generalization capability are enhanced.

3.1. Data pre-processing

Noise inevitably occurs during image generation, transmission, and storage, affecting the image and leading to image degradation 
[49,50]. The presence of noise increases the difficulty of digital pathological image recognition and analysis. Therefore, we need to 
perform data pre-processing using an effective denoising technique, which should be appropriate for the images and employed with 
appropriate parameters [51], to reduce the adverse effects on the subsequent processing of medical images. Many DNN networks have 
been experimentally proven to have good results for image noise reduction, to decrease noise and enhance the robustness of the UNW, 
we used the CBDNet model for pathology image denoising [52].

The model is composed of two parts, the first part for noise estimation and the second part for non-blind denoising. As shown in 
Fig. 2, the network architecture consists of a fully convolutional network (FCN), i.e., a noise estimation subnetwork, and a U-Net, i.e., a 
non-blind denoising subnetwork. First, FCN converts the input image y into an estimated noise image y. Then, the y and y are combined 
as the input of the non-blind denoising sub-network, and the denoised high-quality image is obtained by the convolutional network 
afterward.

Enhance the model by incorporating both real noise images and synthetic noise images as input data during training. The CBDNet 
model integrates real-world noise distribution learning with synthetic noise image utilization to mitigate the scarcity of noisy image 
data. Through the CBDNet model training, effective denoising procedures can be applied to osteosarcoma pathology images, 
enhancing damaged image quality and preventing noise-induced distortion in the image segmentation structure, thereby minimizing 
segmentation boundary errors that may impact patient diagnosis and treatment outcomes adversely. Extending the CBDNet model 
training process involves alternating the use of two types of noisy images as input data, thereby expanding the training dataset. This 
enables the model to learn features from both real and simulated noise, thus improving its feature extraction capability and gener-
alization to various noisy images encountered in real-world scenarios. Preprocessing osteosarcoma pathology images can enhance 
image quality, diminish image contamination, and furnish the image segmentation model with realistic features and details.

3.2. Data augmentation

It is a common technique to expand data through data augmentation to enhance the model generalization capability [53–55]. Data 
augmentation is generally done by having two common techniques [53]. The first one expands the data set by transforming the 
training data in various forms to achieve a diverse data distribution, such as panning, rotating, mirror flipping, adding noise, etc. to the 
sample images. Expanding the data by geometrically changing the data can provide a certain degree of generalization of the model to 
test sets with unknown data distribution. However, improving the adaptability of the algorithm to fresh samples by enhancing the 
training data with this method is inherently flawed. The technique is not able to cover all the different scenarios that may be present in 
the target domain and cannot obtain samples of osteosarcoma pathology images for all distributions of data, thus leading to de-
ficiencies in the generalization performance of the model in unknown data. Another current approach is to utilize a combination of 
normalization and whitening of images to enhance model generalization by normalizing the feature distribution of the feature map to 
achieve data augmentation [28]. Instance Normalization (IN) and Instance Whitening (IW) are common approaches to adjusting the 
feature distribution. The correlation between features can be eliminated by IN and IW so that the model can generalize well even when 
the texture and color of the image change. In this paper, we enhance the model generalization by improving the IN and IW methods for 
data augmentation and centralizing and distributing the feature distribution.

Instance Normalization (IN) is a simple algorithm for adjusting feature distribution, acting on a single image by computing the 
mean and standard deviation of all pixels of a single image. There are various IN methods applied to different medical images [56–58]. 

Fig. 2. Image pre-processing model.
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Since IN does not mix batch and inter-channel features, it is particularly well-suited for adjusting the feature distribution of individual 
pathology images. This ensures that each sample image possesses its unique feature distribution, thereby enhancing feature infor-
mation. IN normalizes the features of each channel of a single image to mitigate feature mismatches due to style changes, and IN can 
filter complex appearance patterns, introducing appearance invariance [59]. Equation (1) can represent the specific process of IN: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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Xtijk represents the feature map on the i-th channel feature values of the t-th sample at the spatial location (j, k). Using IN only 
achieves the central alignment of the feature distribution, but not the joint distribution of the features. IN only obtains the alignment at 
the central level ignoring the joint distribution between different channels. Instance normalization only normalizes the features and 
does not take into account the correlation between channels. This means that applying instance normalization to the network may be 
insufficient for domain generalization, as no feature covariance is given consideration [60].

Instance Whitening (IW) can eliminate the linear correlation between the features of each channel so that well-clustered features 
with uniform distribution can be formed after using IW. The specific process of IW can be expressed by the following equation (2). 
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Where Σ represents the covariance between the individual channels of the n-th sample in a batch, is essentially a representation of 
the correlation between the individual channels on the feature map. IW eliminates the correlation between channels by equation (2). 
The effect of IW is shown in Fig. 3.

Since adjacent pixels in an image are strongly correlated with each other, the whitening transform removes the correlation between 
features and makes each feature have unit variance. Feature whitening effectively eliminates the change of style information in images 
due to panning, style-shifting, etc., which can boost the model’s performance in extracting feature details. Nevertheless, it is not simple 
to adopt the whitening transform directly to enhance the robustness of the network, since the whitening operation on the feature 
images does not differentiate the feature information, which may consequently result in the elimination of all feature information [32].

However, after combining IN and IW, the joint feature edge distributions from different domains can be aligned. Although the 
feature edge distributions are aligned, the conditional distributions remain unaligned, and the distributions of each category are still 
mixed to the extent that they are difficult to distinguish.

The global alignment strategy that combines IN and IW lacks consideration for the consistency of local feature distributions. 
Features belonging to different categories, which were initially well separated in the original model architecture, may become mapped 
together after IN and IW processing. This could result in category confusion, impacting the model’s feature recognition ability, 
especially when applied to a specific target image. This semantic inconsistency inevitably leads to performance degradation on the 
invisible target domain, and the performance is not satisfactory in the segmentation of osteosarcoma pathology images.

Fig. 3. The effect of IW.
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Therefore, the model used in this paper is both center-aligned and distribution-aligned, and the category information is introduced 
based on IN and IW so that the distribution of each category can be well distinguished in the feature space and the graph is not 
distorted.

3.3. Cell nucleus segmentation network

3.3.1. FCA
FCA converts the feature map into a category-level center-aligned feature map, as shown in Fig. 4. It is done by normalizing each 

category for each channel of the feature map for each sample.
As shown in Fig. 4, FC is obtained by normalizing the encoder-extracted feature map F at the category level by instances, as shown in 

Eq (3). 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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∑
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∑
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(
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Where Fc
n,m denotes the set of feature values of the spatial location to which the c-th class on the feature map Fc

n,m belongs. α and ε 
denote the instance normalized scaling and translation weights, respectively. μc

n,m and Σc
n,m represent the mean and standard deviation 

obtained from the calculation of the m-th channel in the n-th sample, and the c-th class of label. The feature map F and MC do 
Hadamard Product to highlight the category region to get C different feature maps FC.

The Feature Refinement (FR) module is introduced to make category-level feature refinement. Fig. 4 illustrates the specific 
operation of FR, which takes the feature map Fc of the c-th category, and pools it by maximum pooling and average pooling, 
respectively. The pooled result and its corresponding MC are concatenated along the channel axis. Subsequently, a 3*3 convolution is 
applied, followed by activation through the sigmoid function. The resulting convolution is then summed with the original FC to obtain 
the refined feature map.

To further refine the category-level center alignment, a Learnable Region Normalization (LRN) module is added to normalize the 
category feature regions. LRN splices the FC after maximum pooling and average pooling, and then obtains the Region Mask after 

Fig. 4. The FCA module structure, FR, and LRN module structure.
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sigmoid activation and thresholding, and later region normalization is performed. The operation is repeated for each class of branches 
and finally the results of each branch are summed up.

FC can obtain category-level normalization because of the availability of truth-valued labels Y. Since labels are difficult to obtain in 
the testing phase, the FCA model adds a pre-segmented branch to introduce the correct semantic category information. The feature 
map F extracted by the encoder will be multiplied with the channels corresponding to the categories of the pre-segmented branches 
respectively to emphasize the features in the regions of the feature map corresponding to the semantic categories. However, the feature 
maps after direct multiplication may incorrectly emphasize some features that do not belong to the current category, therefore, this 
paper proposes a category-level feature optimization module (FR) to improve the feature maps of pathology images. Maxpool and 
Avgpool in FR are extended in the channel dimension to smooth the error information introduced by pre-segmentation to some extent. 
The FR-optimized features are sent to the region normalization (LRN) for the final normalization operation [61]. And, the feature map 
is subjected to two pooling operations to extract valid feature descriptions. Subsequently, thresholding is performed using a threshold 
with parameter t = 0.8. The resulting selected region is called the region mask, which is essentially predicted by the module Y(c) and 
represents the nuclei and background regions in the pathology image. The normalization result is shown in equation (4): 

F=
∑C

c=1
LRN

(
Fʹ́

c ,Φmask
)

(4) 

Among them, LRN corresponds to the features in the mask area of branch c, such as normalization, while the remaining spatial 
features remain unchanged. The overall objective function of FCA is equation (5). 

LFCA = CE(M, L)+ ‖F − FC
⃒
⃒|1 (5) 

where CE is cross-entropy in Fig. 5, and the second term serves to make the normalization result of FCA approximate FC. without the 
truth labels, so that the pathology images in the test set are normalized as close as possible to the labeled data when the category-level 
instances are normalized.

3.3.2. FDA
To further enhance the de-correlation between channels, features that are already semantically centered are further aligned 

distributively. The FDA module is added to perform the re-alignment of channels, ensuring distributed alignment with subtle changes 
in semantic content for each group containing channels associated with different categories [28].

FDA is improved based on IW, which is mainly grouped by the information of semantic categories, as shown in Fig. 5. The semantic 
information comes from the weight of the categories in the FC, which represents the significance of each channel in different categories 
of feature maps, that is, it indicates the type of information of the channel. The grouped features can be obtained by sorting this, and 
then taking out the corresponding feature maps in turn. Channels from different categories are grouped together, and the correlation 
between these channels is removed to enhance the representational capacity of each individual channel. Categories are aligned in a 
distributed manner. A total of K/2 groups, each containing 2 channels, were selected. After grouping, it is sufficient to calculate the loss 
function LFDA that is consistent with the form of LIW in Fig. 3.

Fig. 5. FDA module structure.
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FDA aims to achieve further semantic distribution-level alignment for class-centered aligned features, which will process the 
normalized features in the FCA module to align the full local marginal distribution with the conditional distribution. FDA delves into 
the correlation between channels and classes to differentiate between class attributes to reduce the correlation that exists between the 
nucleus and the background and to enhance the segmentation ability of the model in the unknown target domain.

Specifically, the FDA finds channels with high relevance to each category according to the weights of the model classifier. These 
highly correlated category channels are assembled into a grouping, denoted by ρ. ρ(c, i) represents the i-th highly correlated channel 
index associated with the c-th category. As shown in formula (6): 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Pm
n =

[
Fn,ρ(1,m)*wρ(1,m)

1 ; Fn,ρ(2,m)*wρ(2,m)

2 ;⋯; Fn,ρ(C,m)*wρ(C,m)

C
]

LFDA =
1
N

∑N

n=1

∑
K
C

m=1

⃦
⃦Σ

(
Pm

n
)
− I

⃦
⃦

1

(6) 

Where Pm
n is the m-th feature grouping of the nth sample in the FDA module and w is the corresponding classifier weight. The 

distribution-level alignment of semantic features is achieved by erasing the correlation of different class channels within the group, 
while protecting the feature structure information.

3.3.3. UNW model architecture
Fig. 6 illustrates the insertion of two plug-and-play modules, FCA and FDA, into the original model’s encoder and decoder structural 

framework. This modification addresses the model’s poor generalization ability caused by distribution differences between the 
training set and the unknown target segmentation dataset. This approach can enhance the feature extraction capability of the original 
model, improve the algorithm’s adaptability to new samples, improve inaccuracies in cell nucleus segmentation in pathological images 
with unknown osteosarcoma distributions, and ultimately enhance the accuracy of cell nucleus segmentation.

The UNW network has a strong practicality with the realistic premise that we cannot know any information about the target domain 
including the data of osteosarcoma pathology images, and collecting data covering all possible scenes in the target domain is both 
expensive and difficult, and even impossible to accomplish in medical images [62,63]. Therefore, the model is more likely to be 
overfitted in fewer training sets, and the model probably faces a variety of data distribution images when actually segmenting 
pathological images. If the model is not capable of extracting enough information about category features, its accuracy of obtaining 
target images after segmenting cell nuclei will be drastically reduced, and it will not be able to accomplish the task of assisting doctors 
in diagnosis. Existing approaches extensively eliminate global distribution differences, but do not take into account semantic con-
sistency at the category level, resulting in limited feature recognition capability of the model. The encoder-decoder structure is adopted 
to embed the FCA and FDA modules. FCA promotes compactness within categories through feature center alignment, while FDA 
achieves separation between different categories through distributed alignment of features, resulting in effective style elimination and 
robust feature recognition. This enhancement greatly facilitates the task of cell nucleus segmentation in osteosarcoma pathology 
images.

UNW reduces the disparity in probability distribution between the training data and the pathological images of real osteosarcoma 
patients through feature alignment. This process aims to simulate the real-world data distribution as much as possible with the limited 
training data.

Fig. 6. Image segmentation system framework (UNW).
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4. Experimental results

4.1. Experiment description

In our experiments, we utilized over 4000 histopathology images of osteosarcoma from the Research Center for Artificial Intelli-
gence, Monash University. Initially, there were a total of 1006 digital pathology images, originating from 23 patients, with 19 
diagnosed with osteosarcoma and the remaining 4 with other conditions. Among the osteosarcoma cases, there were four stages: 1 case 
in stage I, 4 cases in stage II, 6 cases in stage III, and 8 cases in stage IV. We localized the regions of interest in the digital case images 
and performed random cropping. Subsequently, the cropped images were enlarged to obtain standard format images of size 512*512. 
Initially, we obtained 3527 images, out of which 2877 were deemed valid after manual screening, and were annotated by 7 pathology 
experts to create the dataset labels. Due to the risk of overfitting in deep learning models caused by insufficient datasets, we augmented 
the dataset by randomly flipping images horizontally and vertically, and rotating them by 90, 180, and 270◦. The augmented dataset 
comprised a total of 4328 images, which were divided into training and testing sets in a 7:3 ratio.

To validate the model’s generalization capability, we also conducted experiments on the TNBC dataset [64]. The TNBC dataset is an 
open dataset containing annotations of various cell types, including normal epithelial and myoepithelial breast cells, infiltrating cancer 
cells, fibroblasts, endothelial cells, adipocytes, macrophages, and inflammatory cells. The dataset consists of 50 histopathology images, 
with a total of 4022 annotated cells. The maximum number of cells in a single sample is 293, while the minimum is 5, with an average 
of 80 cells per sample and a relatively high standard deviation of 58. The dataset was also divided into training and testing sets in a 7:3 
ratio. Our network performs a total of 200 iterations with 512*512 input images and a batch size of 6.

Table 1 displays the specific operating environment and parameters of the experiment.

4.2. Evaluation metrics

In model training and testing, we quantified the results of model segmentation of cell nuclei. As shown in Table 2, we utilize the 
confusion matrix to accurately evaluate the results of cell nuclei segmentation of pathological images. Utilizing the four datasets 
provided by the confusion matrix, we compute the accuracy, precision, Recall, IOU, and DSC metrics of the model. Furthermore, we 
analyze the ratio of segmented nuclei and background pixels to all pixels in the image, as well as the similarity between predicted and 
actual labels. This analysis allows us to further investigate the model’s effectiveness and improvement effects discussed in the paper 
[65,66]. The number of parameters and floating-point operations (FLOPs) of the model were also calculated to understand the 
environment required for the model operation and to analyze the practical application of the model [67].

Acc is the proportion of all samples that are correctly categorized. It is defined as equation (7): 

Acc=
TP + TN

TP + TN + FP + FN
(7) 

Pre denotes the ratio of accurately segmented nuclei and background pixels to all pixels in the image, defined as, defined as equation 
(8): 

Pre=
TP

TP + FP
(8) 

Recall as represents the percentage of the total number of kernel pixels in the labeled images that are correctly segmented by the 
proposed method, also known as sensitivity, is defined as equation (9): 

Recall=
TP

TP + FN
(9) 

IOU is the similarity between the predicted nucleus region and the real nucleus region. We introduce I1 as the real region and I2 as the 
predicted region, defined as equation (10): 

Table 1 
Implementation details.

Aspect Statistic

Model Parameter optimizer SGD
learning rate 5e-4
momentum 0.9
weight decay 5e-4
class 2

Operating Environment Operating System Ubuntu20.04 LTS
GPU NVIDIA RTX 3090
Memory 50G
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IOU=
I1 ∩ I2

I1 ∪ I2
(10) 

DSC is an ensemble similarity measure, which is usually used to calculate the similarity of two samples, and the calculation method is 
defined as equation (11): 

DSC= 2*
|I1 ∩ I2|

|I1| + |I2|
(11) 

4.3. Image pre-processing

As shown in Fig. 7, the original pathology image contains noise, which interferes with detail extraction during feature extraction by 
the model. This interference leads to segmentation errors at cell nucleus boundaries, thereby impacting segmentation accuracy. After 
denoising by the preprocessing model, we observe that the pathology images are segmented, resulting in target images that closely 
resemble the images manually labeled by experts. Furthermore, the edge processing and shape of the cell nuclei in the osteosarcoma 
pathology images are more accurate. After image pre-processing, denoising the pathology images can enhance the image quality, 
provide more accurate feature information for the segmentation model, and improve the accuracy of the model in segmenting cell 
nuclei. The evaluation index of whether the images were preprocessed or not from Table 3 can better quantitatively evaluate the effect 
of preprocessing. By comparison, it was found that the model can improve the accuracy rate of 0.6 % and the precision rate of 4 %, 
indicating that the CBDNet model preprocessing of pathological images can optimize the segmentation capability of the model and 
enhance the accuracy of cell nuclei segmentation, which can provide more effective assistance for patients in treating osteosarcoma.

4.4. Splitting effect

The models were trained on the same training set and then applied to the test set images to segment the cell nuclei and assess the 
model’s performance. The first column in Fig. 8 shows the denoised original image, the second column shows the true labels and the 
third to seventh columns show the predicted masks. As shown in Fig. 8, the true labels were annotated by experienced doctors. The 
segmentation results suggest that images segmented by the FASNet model exhibit maximum similarity to the true labels, and the model 
accurately segments nuclei regardless of their position or shape in the image. Even when the shape of the cells is complex. The model 
also performed accurate segmentation, and the segmented images are almost indistinguishable from the real labels, and the results 
show that FASNet can be helpful for medical diagnosis. A comparison of the IOU parameters at the bottom of the image reveals that 
FASNet has an obvious advantage in pathological image segmentation, indicating that the segmented image obtained by the model is 
most similar to the true label.

As shown in Table 4, we have utilized some general evaluation criteria to analyze and evaluate the performance of the algorithm for 

Table 2 
Confusion matrix.

Actual: YES Actual: NO

Predicted: YES TP FP
Predicted: NO FN TN

Fig. 7. Comparison of segmentation effect with and without pre-processing.
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the purpose of accurately measuring the effectiveness of the model. To reduce randomness and bias and enhance the stability and 
reliability of model performance evaluation, we employed five-fold cross-validation to assess the models. We adopt accuracy, preci-
sion, recall, F1 score, IOU and DSC as evaluation metrics to assess the segmentation capability of the model and used Params and FLOPs 

Table 3 
Evaluation indicators.

Methods Acc Pre DSC Recall IOU

UNW 0.966 0.816 0.776 0.772 0.638
CBDNet [52] +UNW 0.972 0.856 0.844 0.880 0.704

Fig. 8. Different models for segmenting cell nuclei images.

Table 4 
Comparison of different algorithms.

Method Accuracy Precision DSC Recall IOU

Our TNBC Our TNBC Our TNBC Our TNBC Our TNBC

Attention-Unet [68] 0.963± 0.951± 0.708± 0.687± 0.84± 0.728± 0.732± 0.767± 0.588± 0.578±
0.09 0.08 0.06 0.06 0.06 0.08 0.06 0.08 0.08 0.09

CE-Net [69] 0.945± 0.921± 0.641± 0.536± 0.889± 0.732± 0.747± 0.776± 0.562± 0.585±
0.04 0.06 0.05 0.08 0.05 0.06 0.04 0.07 0.04 0.06

DeepLabv3þ [70] 0.969± 0.948± 0.73± 0.69± 0.777± 0.765± 0.872± 0.876± 0.642± 0.614±
0.05 0.04 0.05 0.05 0.06 0.04 0.08 0.07 0.05 0.06

RefineNet [71] 0.971± 0.964± 0.724± 0.689± 0.784± 0.786± 0.887± 0.879± 0.655± 0.64±
0.05 0.06 0.06 0.06 0.05 0.07 0.07 0.09 0.06 0.04

SegNet [72] 0.965± 0.957± 0.768± 0.721± 0.773± 0.761± 0.821± 0.801± 0.638± 0.626±
0.04 0.08 0.06 0.06 0.09 0.08 0.07 0.05 0.07 0.09

Unetþþ [20] 0.961± 0.954± 0.681± 0.643± 0.735± 0.723± 0.87± 0.843± 0.596± 0.604±
0.04 0.07 0.04 0.06 0.08 0.04 0.04 0.09 0.06 0.08

TSCA-ViT [73] 0.957± 0.953± 0.768± 0.74± 0.843± 0.852± 0.879± 0.864± 0.569± 0.593±
0.08 0.09 0.06 0.06 0.08 0.07 0.06 0,08 0.09 0.07

Our 0.972± 0.971± 0.856± 0.791± 0.844± 0.876± 0.88± 0.873± 0.704± 0.745±
0.03 0.04 0.03 0.04 0.05 0.07 0.04 0.05 0.07 0.06
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to measure the parameters of the network. To quantitatively compare the performance of the models, Table 4 shows the computational 
results of each algorithm in different datasets. The "±" data are the standard deviation of the metric. FASNet performs well on each 
evaluation metric. From the table, it is evident that our FASNet outperforms other models in terms of Acc, precision, and IOU metrics. 
On our dataset, FASNet achieves an IOU of 0.704 and an Acc of 0.972. Additionally, FASNet exhibits lower standard deviation 
compared to other models, indicating greater stability in segmentation. Although CE-Net achieves a DSC of 0.889, its IOU is notably 
low at only 0.562. The RefineNet network achieves the highest recall value of 0.887, yet its relatively large standard deviation suggests 
insufficient confidence in its predictions. The evaluation data show that FASNet has good application in segmenting the nucleus region 
can provide guidance to physicians.

To more accurately analyze the segmentation performance of each model, we obtained line charts of IOU, DSC, and Params for each 
segmentation model through experiments, as well as comparison charts of Recall and FLOPs. From Fig. 9, it can be observed that our 
FASNet performs the best in terms of the IOU metric, indicating high segmentation accuracy of our model. Additionally, CE-Net ex-
hibits better DSC than our model, but significantly lower IOU. We hypothesize that CE-Net may excel at predicting internal seg-
mentation areas but lacks accuracy in segmenting boundaries, leading to a higher DSC but lower IOU. Furthermore, due to the 
imbalance in pathological data, with the background area being larger than the cell nucleus area, CE-Net may tend to predict larger 
segmentation areas, contributing to this phenomenon.

In Fig. 10, the recall rate of FASNet performs well compared to other models, being only 0.007 lower than RefineNet, reflecting the 
high segmentation accuracy of our adopted model. While ensuring segmentation accuracy, FASNet has relatively fewer Params and 
FLOPs, with only 23.62 million parameters and 106.55 billion FLOPs, achieving lightweight model while maintaining accuracy. This 
significantly reduces training difficulty and application costs, minimizes model storage space and computational resources, and im-
proves model efficiency and deployment flexibility. This enables our cell segmentation model to run smoothly on low-cost hardware.

Figs. 11 and 12 show the advantage of FASNet in the iterations. Fig. 11 illustrates the accuracy of the different methods during the 
first 200 rounds of training. The image shows that CE-Net exhibits less stability and ultimately achieves the lowest accuracy. The 
FASNet approach is only marginally inferior to the DeepLabv3+ model in the initial training phase. However, after the 10th iteration, 
the accuracy values of FASNet quickly converge and surpass those of the other models. The accuracy remains relatively stable, reaching 
a final accuracy of 0.972. This indicates good results in cell nucleus segmentation in osteosarcoma pathology images, surpassing the 
segmentation performance of the other models. Fig. 12 shows the Recall of these models in the test set after 200 training sessions to 
stabilize the data. The images show that the values of FASNet in Recall perform better than the Recall of most of the models. Recall 
shows good results in segmenting cell nuclei in osteosarcoma pathology images, with clear boundaries between classes, and the model 
can find more target objects in the images, which has an advantage over the segmentation results of the rest of the models.

In Fig. 13, we have documented the loss values of the model at each epoch. As the training progresses, the loss gradually decreases, 
indicating the model’s convergence during the learning process. Specifically, the initial loss value is 0.2247, which decreases to 0.0192 
after 100 epochs, and further decreases to 0.0113 after 200 epochs. These results demonstrate the stability and convergence of our 
model during the training process.

4.5. Ablation experiments

We conducted ablation experiments to better validate that the model was impacted by the inserted FCA and FDA modules. We 
investigated the individual contributions of the FCA and FDA modules to the overall performance. In our experiments, each of them 
contributes to a substantial improvement in generalization performance. Specifically, we observed that the accuracy, precision, DSC, 
Recall, and IOU of the model had significant improvements when using the FCA module and the FDA module alone and that the 

Fig. 9. Comparison of IOU, DSC, and parameters of different models.
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simultaneous use of FCA and FDA had the largest improvement in the segmentation efficiency of the model. From the data in Table 5, 
we can conclude that inserting both FCA and FDA can maximize the performance of the original model and can have a significant 
improvement on the segmentation results of pathological images. The graph of cell nucleus segmentation results in Fig. 14 demon-
strates that the model consisting of the combination of modules we used has the best segmentation results. Ablation experiments show 
that adding FCA and FDA to the middle of the encoder and decoder helps to improve the adaptability of the original model to fresh 
samples. We are able to quantify the segmentation effect of the model also by considering the IOU parameters at the bottom of the 
image, and we can observe that the model with both FCA and FDA modules has the most powerful segmentation ability. Additionally, 
we conducted statistical hypothesis testing on the data, using the DSC score as an example. The original hypothesis was “the test set and 

Fig. 10. Comparison of Recall and FLOPs of different models.

Fig. 11. Accuracy of different models.

Fig. 12. Comparison of Recall for different models.
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training set have the same distribution”. A significance level of 0.05 was chosen. The final test yielded a p-value of 0.18, significantly 
higher than 0.05. Thus, we cannot reject the null hypothesis and accept the original hypothesis that “the test set and training set have 
the same distribution".

Fig. 13. Trend of training loss over the epochs.

Table 5 
Ablation experiments of FASNet.

Methods Accuracy Precision DSC Recall IOU

Baseline 0.923 0.724 0.732 0.712 0.578
Baseline + FCA 0.955 0.809 0.808 0.813 0.689
Baseline + FDA 0.941 0.780 0.778 0.784 0.665
All 0.972 0.856 0.844 0.880 0.704

Fig. 14. Effect of cell nucleus segmentation with different module combinations.
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Fig. 15 illustrates how the FCA and FDA modules enhance the segmentation capability of pathological images based on the original 
model. FCA improves the model’s segmentation ability by centrally aligning features in the images, while FDA distributes the 
alignment of features. We can observe from the images that the generalization ability of the FDA-only model is slightly weaker than 
that of the FCA-only model. This is because, without the alignment of feature information centers, only distributed alignment may 
produce inaccurate feature matching between different classes. Likewise, the absence of central alignment weakens the model’s 
capability to generate accurate predictions from new data sampled from the true probability distribution. Therefore, by integrating the 
FCA and FDA models, the segmentation ability of pathological images is optimized to its fullest extent.

5. Conclusion

Based on this, this study proposes a feature alignment-based detail recognition strategy for pathology image segmentation (FAS-
Net). In this study, we use a novel model (UNW) in generalized segmentation in the semantic perception domain to optimize the 
precision, accuracy and generalization ability of image segmentation in some complex tasks. The UNW network provides more explicit 
information about the target category by segmenting the image. The experimental evaluation metrics show that the model we used 
requires only a small amount of computational resources to achieve high segmentation accuracy and precision in a short period of time. 
In addition. Ablation experiments confirm the contribution of the module we employ to improve the efficiency of the model. Using this 
approach to process pathology images to provide medical diagnostic information can help specialists diagnose and treat patients faster 
and more accurately.

The current model still has room for improvement in terms of accuracy and robustness. In future research, we intend to integrate 
the feature alignment modules FCA and FDA into diverse backbone networks and enhance instance normalization and instance 
whitening to further enhance the model’s accuracy and robustness in unknown target domains. Additionally, we aim to combine 
different pathology images to facilitate the diagnosis of multiple diseases.
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