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Objective: Our objectives were to identify correlation patterns between complement and lipid pathways
using a multiomics data integration approach and to determine how these interconnections affect age-related
macular degeneration (AMD).

Design: Nested case-control study.
Subjects and Controls: The analyses were performed in a subset of the Singapore Indian Eye Study. We

randomly selected 155 AMD cases and age- and sex-matched them with 155 controls.
Methods: Firstly, a multiomics data integration method was used to identify correlation patterns between the

omics data. Then, we tested possible interactions between the lipids and complement proteins using logistic
regression models.

Main Outcome Measures: Age-related macular degeneration was determined according to the Beckman
classification system. We measured in serum samples 35 complement proteins and 66 lipids, and used 9 genetic
variants.

Results: Among the155AMDcases,93 (60.0%)hadearly and62 (40.0%) intermediateAMD.Firstly,we identified
2 clusters between complement proteins and lipids involving (1) mannan-binding lectin serine protease 1 and several
different high-density lipoproteinparticles, and (2) complement factorH-relatedprotein1, carboxypeptidaseNsubunit
2 andcomplement componentC8gammachain, andsphingomyelin anddifferent cholesterol. Secondly,we identified
1 interaction between complement protein 1R and sphingomyelin with an odds of AMD 2 times higher for individuals
with low levels of sphingomyelin and complement protein 1R (odds ratio ¼ 2.13 [1.09, 4.17]).

Conclusions: We report here, using a cutting-edge multiomics integration approach, the complex in-
terconnections between genetic, metabolomics, and proteomic data. This method permitted us to obtain a ho-
listic picture and identify multiomics signature of AMD pathophysiology. These results advocate for a
personalized therapeutic approach that accounts for multiple pathways. However, these results need to be
validated in larger studies with different ethnic groups.
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Age-related macular degeneration (AMD) is a leading cause
of irreversible blindness in Asia and worldwide.1 It is
known to be a multifactorial disease caused by a
combination of lifestyle and genetic factors.2e5 Several
pathways are involved in the pathogenesis of AMD, such as
complement system (CS) activation and lipid dys-
regulation.6e11 Although progress has been made in the
understanding of these pathways, treatment options to
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prevent AMD onset and progression remain limited because
the etiology and pathogenesis of AMD remain incompletely
understood.

Lipid metabolism and CS have close relationships;12e14

however, the mechanisms by which they interact to alter
the risk of AMD are unknown. Firstly, multiple complement
components and complement-regulatory proteins have
indeed been detected in high-density lipoprotein (HDL)
1https://doi.org/10.1016/j.xops.2024.100629
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particles, supporting close relationships between these 2
systems.15e17 Secondly, some lipid-related metabolites have
opposing effects on the risk of developing AMD, depending
on the CS allele distribution.12 For example, the effect of
extremely large very low density lipoproteins (VLDL)
particles shift from protective for individuals with the
genotype GG in the genetic variant rs116503776 [comple-
ment component 2- complement factor-ski2 like RNA
helicase] (odds ratio [OR] ¼ 0.82 [0.73, 0.91]), to increased
risk for individuals with the genotype AA (OR ¼ 3.83 [1.04,
14.18]); suggesting that the CS itself may regulate lipid
metabolism. Moreover, it has been shown that changes in
complement factor H (CFH) concentration can modify the
anti-inflammatory properties of large HDL particles.16

However, it is still unclear how these complex interactions
affect AMD pathophysiology.

Exploring the interactions between complex data corre-
sponding to different biological systems is methodologi-
cally challenging and requires the use of advanced
statistical models of systems biology. Integrating multio-
mics data sets may allow a holistic picture to be built up
that can explain such complex pathophysiology. This
approach has been, for example, used to investigate the
molecular changes during the first week of human life by
integrating different omics such as transcriptomic, proteo-
mic, and metabolomics and has produced novel and robust
biological insights.18 To the best of our knowledge, a
systematic multiomics data integration analysis has not
been conducted in the context of AMD. We propose here
to integrate 3 omics layers, i.e., genetics, metabolomics
and proteomics, in a data-driven approach to generate
new hypotheses and to further test them using classical
inferential models. Our objectives were (1) to identify
correlation patterns between genetic variants, complement
proteins and lipids using multiomics data integration
approach and (2) to determine how these interconnections
affect AMD.
Methods

Study Design and Participants

The analyses were performed in a subset of the Singapore Indian
Eye Study. The Singapore Indian Eye Study is a prospective
population-based study of 3400 subjects aged �40 years conducted
in Singapore.19 Participants underwent a standardized interview
and laboratory investigations. Informed written consent was
obtained from participants, ethical approval was obtained from
the Institutional Review Board of SingHealth, and all research
adhered to the tenets of the Declaration of Helsinki.

Among the 3400 participants, we excluded individuals (1) with
incomplete clinical data (n ¼ 431), or with missing information on
lipid levels (n ¼ 175) or genetic variants (n ¼ 862) and (2) with
any retinopathy (n ¼ 192), any cataract (n ¼ 810), or any type of
glaucoma (n ¼ 44). Among the remaining population (n ¼ 1213),
we randomly selected 200 individuals with AMD at the baseline
examination. Then, we selected our control population (individuals
free of AMD) using a matching based on age (5-year categories)
and sex. We found 197 pairs of cases and controls (3 cases did not
have any control with the same age category and sex). Finally, we
selected 155 pairs (n ¼ 310) who had enough serum stored (if the
2

case or the control within a pair did not have enough blood, then
the whole pair was excluded).

AMD Grading

In the Singapore Indian Eye Study, color fundus photographs were
graded by the Singapore National Eye Centre Ocular reading
center. Features of AMD were identified and severity of AMD was
determined according to the Beckman classification system.20 In
brief, an individual was considered free of any AMD if
pigmentary abnormalities (hyperpigmentation or depigmentation)
and drusen (>63 mm) were absent in both eyes. Early AMD was
defined as the presence of drusen >63 mm and �125 mm in �1
eye and without pigmentary abnormalities. Intermediate AMD
was defined as the presence of large drusen (>125 mm) or the
presence of pigmentary abnormalities in �1 eye. The analyses
were performed at the individual level with the Beckman grading
of the more severe eye considered for each individual.

Omics Data

Proteomics. A targeted liquid chromatographyemass spectrometry
proteomics technique was used to quantify protein’s serum con-
centrations. This technique allows the simultaneous measurement of
many proteins in a single experiment.We used 20 mLof stored serum
samples at the baseline visit. A reference peptide mix standard was
added to the reconstituted peptide sample according to manufac-
turer’s protocol (PlasmaDive Reference Peptides kit, Biognosys
AG). The reconstituted peptide samples were then analyzed on an
EASY-nLC 1200 system coupled to Orbitrap Exploris 480 mass
spectrometer (ThermoFisher Scientific). Orbitrap Exploris 480 mass
spectrometer was operated in data-independent and positive ioni-
zation mode. The resulting mass spectrometry/mass spectrometry
data were processed using Spectronaut (Biognosys AG) data-inde-
pendent acquisition analysis. Among the 313 proteins quantified, we
kept the 35 complement proteins. Five individuals had missing
complement protein values because they were below the detection
threshold (4 for mannose-binding lectin 2 and 1 for CFH-related
protein 5 proteins, respectively). We imputed these values by the
minimum values of the remaining individuals divided by 5.21 The
distributions were log transformed and standardized (centered and
scaled). Finally, 13 individuals with values lower than �5 and
higher than þ5 standard deviation were excluded.

Metabolomics Data. A high-throughput proton nuclear mag-
netic resonance metabolomics platform (Nightingale Health Ltd)
was used to measure metabolite’s serum concentrations at the
baseline visit. Details of the methodology and applications of the
nuclear magnetic resonance metabolomics platform have been
described previously.22 This method provides simultaneous
quantification of the following 150 blood lipid-related metabo-
lites: total and subfractions of cholesterol, triglyceride, phospho-
lipid, cholesterol ester, and free cholesterol in HDL, low density
lipoprotein and VLDL particles, phosphoglyceride, choline, apo-
lipoproteins, fatty acids, and small/medium/large/very large, and
chylomicrons and extremely large HDL/low density lipoprotein
and VLDL lipoprotein subclasses. Moreover, in each subclass, the
concentrations of lipids, triglycerides, cholesterol esters, free
cholesterol, and phospholipids were quantified. As the correlations
among these 150 lipid-related metabolites were very high, we did
not consider the levels of these subfractions in each lipoprotein
subclass, thus including a total of 66 lipid-related metabolites. The
distributions were log transformed and standardized (centered and
scaled). Finally, 10 individuals with values lower than �5 and
higher than þ5 standard deviation were excluded.

Genomics Data. We considered the lead single nucleotide
polymorphisms (SNPs) identified to be associated with AMD in the
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latest large international genome-wide association studies conducted
on 16 144 patients with AMD and 17 832 controls.3 Among the 34
significant SNPs, we considered the 9 involved in the lipid
(rs2043085 [hepatic lipase C], rs5817082 [cholesteryl ester
transfer protein], rs429358 [apolipoprotein E], rs2740488 [ATP-
binding cassette transporter A1], and rs11080055 [transmembrane
protein 97-vitronectin]) or complement pathways (rs10922109
[CFH], rs10033900 [complement factor I], rs116503776 [comple-
ment component 2-complement factor-ski2 like RNA helicase], and
rs2230199 [complement component 3]). For the 2 SNPs rs2230199
and rs429358, too few individuals were homozygous for the risk
allele (n¼ 4 and 2, respectively); we thus regrouped individuals with
at least a risk allele together (leading to binary variables). Otherwise,
for the rest of the SNPs, the 3 categories were considered. All the
SNPs were considered as continuous variables.

Statistical Analyses

The statistical analyses were conducted in 2 steps. First, we
generated new hypotheses using a data-driven approach, and sec-
ond, we formally tested these hypotheses using a classical statis-
tical framework. Firstly, we used a multiomics data integration
approach to determine (1) the correlation patterns between the 3
omics layer of information, i.e., genomic (genetic variants),
metabolomics (lipid-related metabolites), and proteomics (com-
plement proteins) and (2) the relative contributions of each of the
variables in each omics layer. Secondly, we tested the possible
interactions between the lipid-related metabolites and the com-
plement proteins based on the results of the first step using logistic
regression models (with multiple testing correction). Due to the
limited sample size, early and intermediate AMD cases were
pooled into a single AMD category.

The multiomics data integration method used here, called mul-
tiblock sparse projection to latent structure-discriminant analysis
(sPLS-DA), is an extension of a projection to latent structure-
discriminant analysis with multiple blocks of omics informa-
tion.23,24 Projection to latent structure-discriminant analysis is a
linear multivariate model which performs classification tasks by
seeking components that best separate the sample groups. By
calculating components from the original variables, this method re-
duces the data dimension and is thus able to process a very high
number of variables. Sparse projection to latent structure-
discriminant analysis is the sparse version that also selects vari-
ables using lasso penalization that best discriminate between groups.
The analytical aim of multiblock sPLS-DA is to identify a signature
composed of correlated features across different types of omics (a
multiomics signature) which can classify a given outcome. This
method is a holistic approachwith the potential tofind newbiological
insights not revealed by any single-data omics analysis.

The multiblock sPLS-DA requires in a single optimization
problem to both maximize correlations between the omics blocks
and classification of the outcome. To do so, it is required to provide
a design matrix which indicates which blocks should be connected
to maximize the covariance between components, and to what
extent. This pertains to the complexity of the analytical task
involved as several constraints are included in the optimization
procedure. The choice of this matrix can be based on prior
knowledge or data-driven. Due to the lack of knowledge on how
much our 3 omics layers are correlated, we have performed a
pairwise projection to latent structure analysis to examine the
correlation between pairs of components associated to each block.
The other arguments needed for this model were the number of
components (1 single value) and the number of variables to select
(1 value for each omics block and for each component). Both were
tuned using repeated cross-validation (fivefold cross-validation
repeated 50 times). We selected the arguments that minimized the
classification error rates. For the number of components, up to 5
components were tested. For the number of variables to select, we
tested the following grid values: [1, 2, 3, 4, 5, 6, 7, 8, 9] for the
genetic variants (n ¼ 9), [2, 5, 10, 15, 20, 25, 30, 35, 45, 55, 65] for
the lipids (n ¼ 66), and [2, 4, 6, 8, 10, 15, 20, 25, 30, 35] for the
complement proteins (n ¼ 35).

The second objectivewas to identify possible interactions between
the lipids and the complement proteins in relation to AMD. Because
the multiblock sPLS-DA model both optimizes correlations between
the omics data sets and the disease classification, it provides an elegant
way to identify interactions candidates. We chose pairs of lipids/pro-
teins that were selected by the multiblock sPLS-DA with correlations
�0.5. Then, all these interaction candidates were tested using logistic
regression models adjusted on the following possible confounders:
age, sex, hypertension, diabetes, bodymass index, smoking status, and
lipid-lowering medications. The lipids and complement proteins were
considered as continuous variables. We corrected for multiple testing
issues using the method developed by Gao et al to account for the
correlations.25 As 20 components explained 99.2% of the data
variability of the lipids and complement proteins, we used a
corrected P value equal to 0.05/20 ¼ 0.0025. Finally, for the
significant interactions, we performed 2 additional analyses: 1 using
a logistic regression model with the significant interacting terms
considered as binary variables (lower and higher than the median
value) and a generalized additive model (gam) to generate a 3-
dimensional plot of the interaction. Both models were adjusted with
the same possible confounders.

Finally, we compared the contributions of the lipids, comple-
ment proteins, and genetic variants selected by the multiblock
sPLS-DA model to the ORs estimated with a logistic regression
model. Each variable was tested in a separate model adjusted for
the same covariates considered in the previous analyses. All the
analyses were performed using R software version 4.3.1 (R
Foundation for Statistical Computing). The multiomics data inte-
gration was done using the R package “mixOmics.”24
Results

Study Population

Among the 155 individuals with AMD, 93 (60.0%) had early
and 62 (40.0%) intermediate AMD. The age and sex distribu-
tion were very similar, as a result of the matching between in-
dividuals with and without AMD, as well as other possible
confounders such as body mass index, and diabetes status
(Table 1). Projection to Latent Structure-Discriminant Analysis
were performed for each omics layer to explore their discrimi-
nation abilities (Fig S1, available at www.ophthalmology
science.org). Complement proteins visually enabled the best
discrimination, followed by genetic variants and lipids.

Multiblock sPLS-DA model tuning

The first argument to be tuned was the design matrix. The
correlations between the pairs of components in projection to
latent structure analyses were 0.29 (between complement
proteins and lipids), 0.23 (between lipids and genetic variants),
and 0.32 (between complement proteins and genetic variants).
We therefore considered an overall level of correlations be-
tween the omics layers of 0.3 in the design matrix. Using
fivefold cross-validation repeat 50 times, we selected 2 com-
ponents (Fig S2, available at www.ophthal
mologyscience.org). For the number of variables to retain,
3
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Table 1. Characteristics of the Study Population According to the AMD Status

No AMD (N [ 155) AMD (N [ 155) P Value

Age, median (IQR) 52.4 (47.1,59) 52.3 (47.7,59.1) 0.694
Sex, female (%) 77 (49.7) 77 (49.7) 1
BMI, median (IQR) 26.2 (23.8,29) 26.5 (23.9,28.8) 0.776
Hypertension, n (%) 75 (48.4) 83 (53.5) 0.363
Diabetes, n (%) 37 (23.9) 45 (29) 0.303
Lipid-lowering medication, n (%) 37 (23.9) 45 (29) 0.303
Smoking status, n (%) 0.199
Never smoked 119 (76.8) 114 (73.5)
Current smoker 26 (16.8) 22 (14.2)
Past smoker 10 (6.5) 19 (12.3)

AMD ¼ age-related macular degeneration; BMI ¼ body mass index; IQR ¼ interquartile range.
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we selected 3 genetic variants (2 in the first component and 1 in
the second), 32 lipids (2 in the first component and 30 in the
second), and 19 complement proteins (15 in the first
component and 4 in the second). Therefore, among 110
variables included in the multiblock sPLS-DA model (9 ge-
netic variants, 66 lipids, and 35 complement proteins), a total of
54 were selected in the final model. The distributions of the
lipids and complement proteins are presented Figure S3
(available at www.ophthalmologyscience.org).

Main AMD Contributors

The Figure 4 presents the contribution to AMD of each
genetic variant, lipid, and complement protein selected by
the multiblock sPLS-DA model. The 3 stronger contributors
were rs5817082 (variable importance [VI] ¼ 1.00),
rs2043085 (VI ¼ 0.74), and rs429358 (VI ¼ 0.67) for the
genetic variants; intermediate-density lipoprotein (IDL) par-
ticle (VI ¼ 0.95), remnant cholesterol (VI ¼ 0.32), and HDL
cholesterol (VI ¼ 0.31) for the lipids; and mannan-binding
lectin serine protease 1 (MASP1) (VI ¼ 0.85), inhibitor of
complement (VI¼ 0.44), and complement binding protein N
(VI ¼ 0.42) for the complement proteins (Fig 4).

The contributions estimated using the multiblock sPLS-
DA model were similar to the estimates obtained a logistic
regression model (Fig S5, available at www.ophthalmolo
gyscience.org). The 4 complement proteins significantly
associated with AMD using the logistic regression model
were all among the top 6 proteins with the highest
contributions with the multiblock sPLS-DA model.
Regarding the lipids, the only significant variable identified
with the logistic model was the level of IDL particles, which
was ranked as the most important lipid in the multiblock
sPLS-DA model. Finally, for the genetic variants, among
the 3 identified by the multiblock sPLS-DA model, 2 were
significant using the logistic model.

Correlation Patterns between Complement
Proteins and Lipids

Figure 6 shows the correlations between the complement
proteins and the lipids selected by the multiblock sPLS-DA
model. There were 2 main clusters of negative correlations
between the following complement proteins: complement
component 8 gamma (CO8G), complement factor A domain,
4

carboxypeptidase N subunit 2 (CPN2), CFH-related protein 1
(FHR1), complement component 6, complement component 8
beta; and the following lipids: remnant cholesterol, IDL par-
ticle, choline, phosphoglyceride, phosphatidylcholine, total
cholesterol ester, total phospholipid, and sphingomyelin and
between the complement protein MASP1 and several lipids
such as concentration of HDL particles, free cholesterol, and
cholesterol ester in HDL particle (Fig 6). Furthermore, there
was one cluster of positive correlations (with weaker
absolute values) between MASP1 and ratio omega6/omega3,
VLDL particle size, and ratio triglyceride/phosphoglyceride.
Figure S7 (available at www.ophthalmologyscience.org) and
Figure 8 present these correlations in network graphs, with
the subsets of correlations �0.50 and 0.75, respectively, to
simplify the visualization. Additional graphical outputs
showing these complex correlation patterns are presented in
the supplementary materials (Figs S9, S10, available at
www.ophthalmologyscience.org).

Correlation Patterns between Genetic Variants
with Complement Proteins and Lipids

The 3 genetic variants selected by the multiblock sPLS-DA
model were all located in genes involved in lipid meta-
bolism, respectively hepatic lipase C (rs2043085), choles-
teryl ester transfer protein (rs5817082), and apolipoprotein
E (rs429358). The strongest correlations were found be-
tween rs2043085 and the concentration of IDL particles and
between rs5817082 and apolipoprotein A1 and several HDL
subfractions such as cholesterol ester, free cholesterol, and
phospholipids (Fig 8, Fig S11, available at www.ophthalmol
ogyscience.org). Interestingly, these genetic variants also
show high correlations (although <0.75) with complement
proteins. The genetic variant rs5817082 was positively
correlated with MASP1; rs2043085 was positively
correlated with FHR1, CO8G, and CPN2; and rs429358
was negatively correlated with CO8G and CPN2 and
complement component 7 (Fig S12, available at
www.ophthalmologyscience.org).

Interaction between Complement Proteins and
Lipids

We tested the interactions between all the pairs of com-
plement proteins and lipids selected by the multiblock
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Figure 4. Contributions to AMD, expressed as variable importance, of the complement proteins (n ¼ 19) (A), lipids (n ¼ 32) (B), and genetic variants
(n ¼ 3) (C) selected by the multiblock sPLS-DA model. AMD ¼ age-related macular degeneration; SNP ¼ single nucleotide polymorphism; sPLS-DA ¼
sparse projection to latent structure-discriminant analysis.
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sPLS-DA model at a correlation cutoff �0.50. To do so, we
tested each interaction separately in a logistic regression
model adjusted for confounders (with lipids and comple-
ment proteins considered as continuous variables). After
correcting for multiple testing, only 1 interaction was sig-
nificant (P ¼ 0.002) between sphingomyelin and
Figure 6. Correlations between complement proteins (n ¼ 19) and lipids (n
projection to latent structure-discriminant analysis.
complement protein 1R (C1R) (Fig 13A). The odds of
AMD were 2 times higher for individuals with low levels
of sphingomyelin and C1R (lower than the median
values) (OR ¼ 2.13 [1.09, 4.17], P ¼ 0.028), compared
with individuals with high levels of sphingomyelin and
low level of C1R (Table 2, Fig 13B, C).
¼ 32) selected by the multiblock sPLS-DA model. sPLS-DA ¼ sparse
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Figure 8. Correlations between complement proteins (n ¼ 8), lipids (n ¼ 15), and genetic variants (n ¼ 2) selected by the multiblock sPLS-DA model
(only correlations �0.75 are considered in this graph to simplify the reading). sPLS-DA ¼ sparse projection to latent structure-discriminant analysis.
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Discussion

In this study, we used a cutting-edge statistical method to
integrate multiple omics data in order to better understand
the complex pathophysiology of AMD. More specifically,
Figure 13. A, Interaction estimates corresponding to all the combinations bet
multiblock sPLS-DA model (at a cutoff 0.50), i.e., the interaction candidates
teractions after correction for multiple testing. B and C increased in the odds of A
logistic regression adjusted on age, sex, hypertension, diabetes, body mass index
C1R considered as binary variables with low and high values corresponding t
additive model adjusted on the same variables (with sphingomyelin and C1R con
a significant effect. AMD ¼ age-related macular degeneration; C1R ¼ com
discriminant analysis.

6

we used this approach to investigate the interplay between
genetic variants, complement proteins, and lipids and
determine how it can affect AMD. First, we showed that
complement proteins and lipids were strongly inter-
connected within 2 main clusters. The first one was
ween the complement proteins (n ¼ 16) and lipids (n ¼ 23) selected by
. Estimates above the dotted red line corresponded to the significant in-
MD (expressed in odds ratio) according to sphingomyelin and C1R using a
, smoking status, and lipid-lowering medications (with sphingomyelin and
o values lower and higher than the median) (B); and using a generalized
sidered as continuous variables) (C). The asterisk in panel B corresponds to
plement protein 1R; sPLS-DA ¼ sparse projection to latent structure-



Table 2. Conjoint Effect of Sphingomyelin and C1R on the Odds
of AMD

Sphingomyelin C1R n OR P

Continuous Continuous 310 1.59 [1.18, 2.14] 0.002
High Low 88 1
High High 67 1.75 [0.90, 3.39] 0.097
Low High 88 1.26 [0.67, 2.37] 0.482
Low Low 67 2.13 [1.09, 4.17] 0.028

AMD ¼ age-related macular degeneration; C1R ¼ complement protein
1R; high ¼ higher than the median value; low ¼ lower than the median
value; OR ¼ odds ratio.
Median value for sphingomyelin ¼ 0.14; median value for C1R ¼ 0.11.
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composed of MASP1 and different HDL particles and HDL
subfractions. The second one was composed of several
complement proteins (such as FHR1, CPN2, and CO8G)
and different types of lipids (such as sphingomyelin,
remnant cholesterol, and IDL particles). Second, and more
importantly, we identified one interaction between sphin-
gomyelin and C1R, with 2 times higher odds of AMD for
individuals with low levels of sphingomyelin and C1R.

Integrating omics data sets offer the unprecedented op-
portunity to assess interactions between multiple omics data
and provide a more comprehensive understanding of dis-
eases’ biological pathways. The method chosen here
allowed the identification of molecular biomarkers across
different omics data that are correlated and associated with a
phenotype of interest. The classical reductionist approaches
which identify key features within each omics individually
would have failed to provide a comprehensive picture due to
the complexity of the relationships between the genetic
variants, the lipids, and the complement proteins. On the
contrary, integrating different omics data sets allowed us to
explore these complex multiomics interplays and determine
how they affect AMD. To make it possible, the method
relies both on dimension reduction and feature selection,
and maximizes both correlations between the omics blocks,
and classification of the outcome.

Because this multiomics integration model is complex
and more difficult to interpret compared to tradition infer-
ential models, we have compared the contributions of the
lipids, complement proteins, and the genetic variants using
this model to the estimates obtained using a logistic
regression model (Fig S5, available at www.ophthal
mologyscience.org). The results were very similar except
for the protein MASP1 which was not identified using the
logistic model. This discrepancy arises from the high
correlation of MASP1 with several lipids, as illustrated in
Figures 6 and 8. The multiblock sPLS-DA model opti-
mizes both the correlations between the omics blocks and
the contributions of each block to AMD. Therefore, this
model gave this protein a higher importance due to the
overall correlation structure of the data which could not be
accounted for by a simple logistic model. This difference
highlights the relevance of the multiomics model that in-
tegrates the different omics blocks in a single model to
obtain a multiomics signature of AMD.
The presence of complement proteins in lipoprotein
particles has been reported.15,16 For example, it has been
shown that CFH levels could be greatly increased in large
HDL and may explain the ability of HDL to prevent the
organization of complement membrane attack complex
and to suppress inflammation.16 However, most studies
were conducted only in HDL particles. Here, in this study,
we included many different types of lipids. We found 2
clusters between complement proteins and lipids: the first
one involving different HDL particles and subfractions
with MASP1 and the second one involving different
cholesterol (remnant cholesterol and total cholesterol ester)
and lipoprotein particles such as IDL, with different
complement proteins such as complement component 6,
FHR1, CPN2, and complement factor A domain. A
similar negative correlation between HDL particles and
MASP1 has been reported in a study conducted among
255 patients with AMD cases and 221 controls selected
from the Dutch and German European Genetic Database
(EUGENDA-Nijmegen and EUGENDA-Cologne).26 The
associations in the second cluster further extend our
understanding of the interconnections between lipids and
complement proteins. Interestingly, we also found high
correlations between genetic variants located in genes
involved in lipid metabolism with complement proteins
such as MASP1, CO8G, and CPN2. The understanding of
the interplay between complement proteins and lipids is
crucial as the complement proteins and lipids can regulate
each other (e.g., modification of the lipid inflammatory
properties by complement proteins and regulation of the
complement activation by lipid components), which may
have important implications in AMD pathophysiology.

Among all the possible interactions between complement
proteins and lipids, we found a significant one between
sphingomyelin and C1R. The odds of AMD were 2 times
higher for individuals with low levels of sphingomyelin and
C1R. Sphingolipids are known to be involved in the regu-
lation of many physiological and pathophysiological pro-
cesses in the retina.27 Their dysregulation is an important
element in the onset and progression of retinal diseases,
including AMD.27 Moreover, homeostasis of different
sphingolipids plays a role in the maintenance, progression,
and regulation of the immune response.28 Regarding C1R,
studies have shown increased expression of mRNAs of
C1R gene in some AMD lines compared with
controls.29,30 Interestingly, it has been shown that the
NOD-like receptor family pyrin domain containing 3
inflammasome, that is responsible for a chronic self-
perpetuating inflammatory process which has a prominent
role in AMD,31 is promoted by several factors including
lipid accumulation and complement activation.32 It is
therefore possible that the interaction we found here
between sphingomyelin and C1R represents a molecular
signature of inflammasome activation in AMD
pathophysiology. It is worth noting that a similar synergy
between the complement (C5a and its C5aR1 receptor)
and glycosphingolipid systems results in a massive
generation of proinflammatory cytokines, chemokines, and
growth factors and shown to promote immune
dysregulation and tissue damage in coronavirus disease
7
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2019 and Gaucher’s disease.33 Similarly, sphingolipid
metabolism and complement activation products have
essential roles in promoting tumor survival.34 Although
promising, our findings need further research to elucidate
the exact mechanisms at play between lipids and
complement components.

Several clinical trials targeting different components of
the CS have completed or are currently ongoing. So far,
most of the candidate therapeutic complement compounds
tested have shown limited success.35 The mechanism by
which the different risk factors interact and converge
toward AMD are not fully understood and therefore drug
discovery is challenging. Our findings suggest that to
fully understand the role of the complement pathway and
to be able to use it as a therapeutic candidate, other
pathways should be accounted for, notably those
pertaining to lipid metabolism and complement
dysregulation. Our findings also indicate that eventually a
personalized medicine approach which takes into account
lipid metabolism and complement regulation will be
needed in managing AMD.

The principal strength of this study is its unique combi-
nation of multiomics data sets, i.e., genetic, metabolomics,
and proteomic, to explore their complex interconnections
and how these affect the risk of AMD. We have used
cutting-edge analytical techniques that have allowed us to
combine information from different evaluations into a single
analysis instead of considering data from each omics sepa-
rately. Our study also suffers from limitations. First, we only
included individuals of Indian ancestry. Therefore, further
studies are crucial, especially with larger sample sizes and
including other ethnicities to investigate the generalizability
8

and reproducibility of our results in different populations
and geographical locations where cultural factors influence
diet and consequently lipid metabolism. Second, the asso-
ciations between genetic variants and the other omics, i.e.,
complement proteins and lipids, were performed using
correlations. While this may not be the most appropriate
metric to use here, the methods implemented are not yet able
to include categorical variables and thus still need to be
improved. Finally, because of the limited sample size, early
and intermediate AMD were pooled in a single category.
We also did not include individuals with late AMD since
early stages of the disease are more relevant for translational
purposes. Further studies thus need to be conducted based
on AMD stages.

To summarize, we report here, using a cutting-edge
multiomics integration approach, the complex in-
terconnections between genetic, metabolomics, and proteo-
mic data, and their role in AMD pathophysiology. This
method permitted us to integrate the outputs from different
omics data to obtain a holistic picture and identify multio-
mics signature of AMD pathophysiology. We confirm the
existence of connectivity between complement proteins and
lipids and identify among the high number of lipids and
complement proteins a specific interaction between sphin-
gomyelin and C1R that might be responsible for driving an
inflammatory process, thus increasing the risk of AMD.
These findings have clinical implications in terms of un-
derstanding AMD pathophysiology and advocate the
development of a personalized therapeutic approach that
could account for the multiple etiological pathways. How-
ever, these findings need to be validated in larger studies
with different ethnic groups.
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