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A B S T R A C T

Background: Dietary quality has been linked to better glycemic control, but the precise molecular mechanisms giving rise to these asso-
ciations are not fully understood.
Objectives: To examine the association of metabolites associated with the intake of a healthy diet with measures of insulin/glucose
homeostasis.
Methods: Using cross-sectional data from 295 United States adults, the associations between 3 diet pattern scores and metabolome-wide
metabolites were estimated via linear regression models, which controlled for demographic factors and health behaviors. Subsequently,
the associations between the diet-related metabolites with 6 measures of glucose/insulin homeostasis were examined in similar models. A
Bonferroni correction was applied to control the family-wise error rate at 5%.
Results: Fifty-five metabolites were significantly associated with �1 diet score (all P < 1.7*10–5). When these were summed into each of the
3 diet-specific metabolite summary scores, all 3 aggregate measures showed strong associations with 5 out of 6 measures of glucose/insulin
homeostasis (P ¼ 9.7*10–5–4.1*10–13).
Conclusions: Adherence to a priori-defined “healthy diet” is associated with the plasma metabolites that, in turn, are associated with better
glycemia. If the associations between replicated in future studies and examined using large-scale longitudinal data, the identified molecules
could yield insights into mechanisms by which diet may support glucose and insulin homeostasis.
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Introduction

Diet is a critical lifestyle component of type 2 diabetes
(T2D) risk. The American Diabetes Association promotes an
overall healthy dietary pattern, with a focus on individual
Abbreviations: AMED, a Mediterranean-style; DASH, Dietary Approaches to Stop H
Eating Index; MILES, Microbiome and Insulin Longitudinal Evaluation Study; MSS, me
oral glucose tolerance test; T2D, type 2 diabetes.
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foods, as the most effective strategy for the primary and
secondary prevention of T2D [1]. The Healthy Eating Index
(HEI), which captures adherence to the USDA’s Dietary
Guidelines for Americans, the Dietary Approaches to Stop
Hypertension (DASH) diet, and a Mediterranean-style diet
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tabolite summary score(s); MWAS, metabolome-wide association studies; OGTT,
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(AMED) all offer similar degrees of protection against
T2D [2,3].

However, the precise molecular mechanisms by which these
diet patterns convey protection are not well delineated. As the
plasma metabolome measures an abundance of small molecules
that reflect, in part, both dietary intake and metabolic health,
metabolomic data offer promise for illuminating whether there
are biological pathways between diet and indicators of metabolic
health, such as dysglycemia [4]. To date, several studies have
identified metabolites associated with either self-reported di-
etary intake [5–9] or dysglycemia [10]; however, whether me-
tabolites associated with dietary intake are also associated with
T2D has not been examined in a single unified analysis.

To better understand the pathways linking the intake of a
healthy diet to better glucose and insulin homeostasis, the cur-
rent analyses conducted metabolome-wide association studies
(MWAS) with each of 3 healthy diet patterns (HEI, DASH, and
AMED scores) and subsequently examined the associations of
any metabolites associated with �1 healthy diet pattern with 6
measures of glucose/insulin homeostasis.
Methods

Participants
Participants were drawn from the Microbiome and Insulin

Longitudinal Evaluation Study (MILES) [11], a cohort of 353
United States adults, ages 40–80 y. Exclusion criteria at enrollment
included 1) severe illness (e.g., actively treated cancer), 2) recent
(�1 mo) use of microbiome-altering medications (e.g., antibiotics
or metformin), 3) current use of oral steroids, 4) inflammatory
bowel disease, 5) previous surgery for weight loss, 6) prescription
therapy for chronic digestive issues such as constipation or diar-
rhea, 7) current pregnancy, 8) end-stage renal disease, 9) heavy
alcohol use (self-reported), and/or 10) T2D determined either by
self-reported history or point of care fasting glucose�126 mg/dL.

Eligible individuals were invited to arrive fasted (overnight
fast) for participation in a clinic visit, which included an oral
glucose tolerance test (OGTT). During the OGTT, participants
completed questionnaires on health behaviors, and had anthro-
pometric and clinical measures taken by trained study staff.

All subjects gave written informed consent prior to partici-
pation, and the study was approved by Institutional Review
Boards at participating centers.
Measures
Dietary intake

Habitual dietary intake over the past yearwasassessedusing the
most recent version of the Diet History Questionnaire (DHQ) at the
time: the DHQ II [12]. Participants reported on their consumption
frequency andaverageportion size for 132 foodsover the past year.
Habitual intake of 176 micro- and macro-nutrients and 124 foods
and beverages, based on the USDA’s MyPyramid Equivalents
Database and Food Patterns Equivalents Database. This informa-
tionwas used to calculate 3 dietarypattern scores: theHEI (the sum
of 13 dietary components included in the 2015 Dietary Guidelines
for Americans, each calculated as a ratio per 1000 kcals [13]); the
DASH (sum of 8 quintile components [14]); and AMED score (the
sum of 9 components cut at the sex-specificmedian, with a score of
1 added for males who report consuming 1–2 alcoholic drinks per
2

day on average, and females who report ~1 alcohol drink per day
on average [15]).

Details on the components comprising individual scores are
available in the Supplemental Methods. Twenty participants had
diet data recoded to “missing” for reporting an implausible en-
ergy intake (600 � kcals/d � 6000 for males and 400 � kcals/
d � 4000 for females; Supplemental Figure 1).

Glucose homeostasis traits
Venous blood was drawn before, 30 min after, and 120 min

after ingestion of a 75-g glucose load.We focused on 6 traits in this
study: fasting glucose, fasting insulin, fasting C-peptide, insulin
sensitivity, insulin secretion, and disposition index (DI). Insulin
sensitivity was calculated using the Matsuda Insulin Sensitivity
Index, which correlates strongly with quantification by euglyce-
mic clamp [16,17]. Insulin secretion was calculated as the ratio of
the area under the curve (AUC) for insulin frombaseline to 30min
over the corresponding AUC for glucose [17]. DIwas calculated as
the product of insulin sensitivity and insulin secretion.

Covariates
Height and weight were recorded by trained study staff using

a stadiometer and a calibrated scale. Self-reported age, sex, race,
education, and income levels were recorded via electronic
questionnaires, with study staff available to answer questions.
Physical activity was assessed via survey, and analyzed as the
sum of light, moderate, and vigorous physical activity in meta-
bolic equivalents minutes per week. Fifty-eight participants were
missing covariate data and were excluded from analyses (Sup-
plemental Figure 1).

Metabolome-wide metabolites
Plasma samples were assayed with untargeted ultra-HPLC

coupled to tandem mass spectrometry (ThermoFisher Scientific
Q-Exactive) and GC-MS (Orbitrap). Peak alignment and quality
control were conducted on raw data via an in-house chemical
reference library, with >3500 authentic standards identified by
retention time/index), mass to charge spectral profile, in-source
fragment, multimers formation, and fragmentation data. The
Kyoto Encyclopedia of Genes and Genomes classifications were
used to group known compounds into 9 classes (amino acids,
carbohydrates, cofactors and vitamins, energy metabolites,
lipids, nucleotide metabolites, peptides, and xenobiotics). Un-
known chemical identities were tagged with a unique identifier
according to an in-house spectral library of >7000 unknowns
(denoted by “X” followed by the in-house number). Values were
quantified for 1525 known and unknown compounds, of which
1500 with variance >0 were included in analyses.

The metabolites were analyzed in duplicate due to the avail-
ability of an updated metabolite panel during the study period.
The coefficient of variation (CV) was calculated from the dupli-
cate data and, due to the skewness of metabolomic data, esti-
mated using the CV-analysis of variance (CV-ANOVA) model
recommended by Røraas et al. [18]. The range of CVs for all
metabolites was 0–135%, with a mean of 8.5 � 17.7%, and the
majority of metabolites (86.6%) having CVs <20%. (Supple-
mental Table 1).

Analyses
All analyses were conducted using the latest version of R

software (version 4.0.5.) [19].



TABLE 1
Mean � SD, or frequency (þ overall percentage; %) for demographic,
health, and behavioral characteristics of the Microbiome and Insulin
Longitudinal Evaluation Study participants.

Demographics

Age, y 59.60 (9.07)
Sex, female, n (%) 218 (62%)
Race
African American, n (%) 129 (37%)
Non-Hispanic White, n (%) 224 (63%)

Education
High school or less, n (%) 33 (9%)
Some college, n (%) 102 (29%)
College, n (%) 122 (35%)
Postgraduate education, n (%) 96 (27%)

Health factors
BMI, kg/m2 28.30 (7.43)
Fasting glucose, (mg/dL) 98.29 (10.92)
Fasting insulin, (μU/mL) 11.63 (9.22)
Fasting C-peptide, (ng/mL) 2.35 (1.14)
Insulin sensitivity index 5.05 (3.69)
Insulin secretion 0.44 (0.30)
Disposition index 1.67 (0.90)

Health behaviors
AMED score 4.18 (1.86)
DASH score 24.01 (4.50)
HEI score 68.36 (10.58)
Average energy intake, kcals/d 1825.72 (915.10)
Physical activity, MET-min 2279.26 (2930.46)
Smoking status, current smoker, n (%) 64 (18%)

Abbreviations: AMED, a Mediterranean-style diet; DASH, Dietary Ap-
proaches to Stop Hypertension; HEI, Healthy Eating Index; MET-min,
metabolic equivalent minutes; SD, standard deviation.
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Data preparation
All variables (including metabolites) were included after an

inverse normal transformation with blom constant [20] to
ensure an approximately normal distribution (Supplemental
Table 1).

Relationships between diet pattern, metabolites, and glucose
and insulin homeostasis traits

All relationships of interest were examined using linear
regression models, which controlled for age, sex, race, smoking
status, highest education level, income level, daily energy intake,
and physical activity level as covariates. First, we conducted
individual MWAS with each diet pattern score. Next, for each
metabolite associated with �1 diet pattern in the MWAS, we
examined the associations with each measure of glucose and
insulin homeostasis. Subsequently, 3 diet-specific metabolite
summary scores (MSSs) were created, in which standardized
values of all metabolites showing a significant association with a
given diet pattern were summed, with metabolite values reverse
scored where the MWAS yielded a negative beta (β), and their
associations with each measure of glucose and insulin homeo-
stasis were estimated. Finally, J-tests were used to test whether
the strength of associations with glucose and insulin homeostasis
measures differed between diet pattern scores compared with
diet-specific MSSs conducted using J-tests [21].

Sensitivity analysis
The MWAS was re-conducted, controlling for BMI (in kg/m2).

Significance. Within each set of analyses, significance was set
using a Bonferroni correction for multiple testing, maintaining
the family-wise error rate at 5%. For the MWAS, this was based
on a spectral decomposition of eigenvalues to determine the
effective number of independent tests; for other analyses, this
was based on the number of associations conducted.

Model fidelity. Multicollinearity was assessed for all models via
the variance inflation factor. No predictors in any model exceed
our threshold of variance inflation factor >5.00 for multi-
collinearity [22].

Results

Descriptive information is available in Table 1.

MWAS
Full MWAS results are available in Supplemental Table 2. The

MWAS revealed a total of 89 significant metabolite-diet associ-
ations (N¼ 35 for HEI, N ¼ 30 for DASH, N ¼ 24 for AMED; all P
< 1.5*10–5; Figure 1, Table 2). These encompassed 55 unique
metabolites from 5 classes: lipids (N¼ 17), xenobiotics (N¼ 10),
amino acids (N ¼ 6), cofactors/vitamins (N ¼ 5), and carbohy-
drates (N ¼ 1), with 2 partially characterized molecules and 11
unknown molecules (Table 2). The mean correlation between
the metabolites was r ¼ 0.07, with a range of r ¼ –0.72 to 0.95
(Supplemental Table 3, Supplemental Figure 2). When a
dissimilarity matrix was computed using Euclidean distance and
the Ward algorithm [23], the Duda-Hart stopping indicated that
the metabolites clustered into 4 groups (Supplemental Figure 2).
Seven (12.7%) metabolites were associated with all 3 dietary
3

patterns (Figures 1 and 2, Table 2). Conversely, 28 metabolites
(50% of known molecules) were significantly associated with 1
diet pattern only (Figures 1 and 2, Table 2). Controlling for BMI
did not materially change results (Supplemental Table 4).
Associations between diet-specific MSSs and
measures of glucose and insulin homeostasis

Of the 55 diet-related metabolites, 9 were also significantly
associated with fasting glucose, 14 with fasting insulin, 14 with
C-peptide, 18 with insulin sensitivity, 2 with insulin secretion,
and 11 with DI (all P < 3.0*10–4; Supplemental Table 5). Two
metabolites were associated with all 6 measures of glucose and
insulin homeostasis and, noting that insulin secretion showed
very few associations with diet-related metabolites, a further 3
metabolites were associated with all measures of glucose and
insulin homeostasis except insulin secretion (all P < 3.0*10–4;
Supplemental Table 5). Thirty-two molecules did not show a
significant association with any measure of glucose and insulin
homeostasis, although 5 showed associations with �1 measure
of glucose and insulin homeostasis that approached significance
(defined as: 1.0*10–4> P > 3.0*10–4; Supplemental Table 5).

When combined into diet-specific aggregate scores, each MSS
was strongly correlated with the associated diet pattern score (r
¼ 0.48–0.61, all P < 2.0*10–16), and each diet score explained
31–43% of the variance in the respective MSS (43% in HEI MSS,
43% in DASHMSS, and 31% in AMEDMSS). Cross-pattern scores
were lower for diet scores (r ¼ 0.51–0.62, all P < 2.0*10–16;
Supplemental Table 6) for MSSs (r ¼ 0.80–0.93, all P <

2.0*10–16; Supplemental Table 6).



FIGURE 1. Standardized parameter estimates from metabolome-wide association studies with each of the Healthy Eating Index (HEI; A), the
Dietary Approaches to Stop Hypertension (DASH; B), and a Mediterranean-style diet (AMED; C). Within each panel, only significant associations
with a given diet pattern are annotated with the metabolite name. Across panels, label colors and metabolite colors denote significance at a
Bonferroni corrected P < 1.7*10–5. All models controlled for age, sex, race, physical activity, education level, energy intake (kcal/d) and
smoking status.
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All 3 diet-specific MSS were significantly associated with 5
out of 6 measures of glucose/insulin homeostasis (all P ¼
9.7*10–5 – 4.1*10–13; Table 3). The proportion of variance in
each glucose/insulin homeostasis measure explained by the
respective MSS was 5–8% (Table 3), whereas the individual diet
scores only explained �3% in glucose/insulin homeostasis
(Table 3). J-tests revealed this difference was significant, with
each diet-specific MSS explaining significantly more of the
variance in glucose/inulin homeostasis than the respective diet
scores (P ¼ 0.003–9.8*10–12; Table 3, Figure 3).

When additionally controlling for BMI, the associations with
insulin and glucose homeostasis were attenuated, although the
same pattern of relative association effect sizes for diet scores
compared with MSSs was seen (Supplemental Table 7).
Discussion

The current analyses sought to use untargeted metabolomic
data to investigate whether molecules associated with 3 healthy
diet patterns were also associated with glucose and insulin ho-
meostasis. These metabolome-wide investigations indicated both
shared and diet-specific diet-metabolite associations across multi-
ple metabolite classes. When the metabolites associated with each
diet pattern were aggregated together, the diet-specific MSSs
showed strong and consistent relationships with better glucose/
insulinhomeostasis. These latter relationshipswere in the expected
direction and only surprising for their magnitude, which was
significantly greater than the observed diet-glycemia relationships.

Our analyses yielded 55 metabolites frommultiple metabolite
classes, including lipids, xenobiotics, amino acids, cofactors/
4

vitamins, and carbohydrates, that were associated with �1
healthy dietary pattern in the MILES cohort. Although lipids and
xenobiotics showed the largest number of associations (N ¼ 20
and N ¼ 10, respectively), our platform also quantified a greater
number of metabolites from these classes relative to others.
Overall, 3% of quantified amino acids, 9% of quantified carbo-
hydrates, 12% of quantified vitamins/cofactors, 3% of quantified
lipids, and 4% of quantified xenobiotics were significantly
associated with �1 healthy diet pattern, making it difficult to
ascertain whether 1 class of compounds was overrepresented in
the associations. This number and pattern of diet-metabolite
associations, including the relative representation of the
various metabolite classes among the associations, is similar to
previous MWAS, increasing our confidence that the 3 healthy
diet patterns are associated with both shared and diet-specific
metabolites across a breadth of metabolite classes [5–9].

Despite confidence in the pattern of diet-metabolite findings,
we urge caution in interpreting specific metabolites as bio-
markers of a given diet until our results are confirmed in inde-
pendent replication analyses. Seventeen of the 68 diet-
metabolite associations identified in the current analyses that
included an identified (named) compound have been associated
with the same diet pattern, in the same direction, in �1 prior
study (6/25 known compounds associated with HEI, 9/22
associated with DASH, and 2/23 with AMED [5–9]). Three such
metabolites are notable for showing associations with all 3 diet
patterns: β-cryptoxanthin, a carotenoid, and a precursor of
vitamin A [24], which is found in tropical and citrus fruits [25];
glycerate, a carbohydrate derived from fructose metabolism
[26], and indolepropionate, an amino acid metabolite of tryp-
tophan arising from the catabolism of phytochemicals and fiber



TABLE 2
For significant metabolite associations in metabolome-wide associations studies with each the Healthy Eating Index-2015, the
Dietary Approaches to Stop Hypertension, and a Mediterranean-style diet, standardized parameter estimates for the metabolite
associations with all 3 healthy diet patterns.
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[27,28]. Although these compounds may be interpreted as the
strongest candidates for biomarkers of a healthy diet, they
nonetheless should be seen as preliminary until subject to
extensive additional replication efforts.

The extent to which dietary intake is reflected in the plasma
metabolome is moderated by a complex set of intrinsic and
extrinsic factors (e.g., [29]). Therefore, in addition to more
universal biomarkers of dietary intake, we expected to identify
molecules that more selectively correlated dietary intake in the
MILES cohort as a function of cohort characteristics such as mean
age, racial and ethnic diversity, geographical location, and the
year of data collection. Thus, all molecules were investigated for
associations with glucose and insulin homeostasis traits. Insulin
secretion during the 2-h OGTT was notable for showing the least
number of diet-related metabolite associations, with the 5 other
measures showing similar numbers of associations (N ¼ 9–18).
Alongside the associations with self-reported diet patterns, this
suggests that healthful diets generally have beneficial associa-
tions with tendencies toward insulin and glucose homeostasis
rather than with any specific pathway. Across all 44 known
compounds identified with �1 healthful diet, there was little
evidence of prior associations with T2D or its clinical features.
Among our diet-related lipids, 1-lignoceroyl-GPC (24:0) and
sphingomyelin (d18:0/18:0, d19:0/17:0) have previously been
associated with diet-related traits [30,31] and were associated
with fasting insulin, C-peptide, and insulin sensitivity in our
7

analysis. Thus, the identification associations with �1 measure
of insulin and glucose homeostasis for 17 other known com-
pounds [1-eicosenoyl-GPC (20:1), 1-erucoyl-GPC (22:1),
1-arachidoyl-GPC (20:0), N-stearoyl-sphinganine (d18:0/18:0),
methyl glucopyranoside (α þ β), cystine, 1-lignoceroyl-GPC
(24:0), tartronate, 1-behenoyl-GPC (22:0), β-sitosterol, 1-nervo-
noyl-GPC, 1-nervonoyl-GPC (24:1n9), catechol sulfate, guaiacol
sulfate, branched chain 14:0 dicarboxylic acid, glycerate, glycine
conjugate of C10H14O2, 10-heptadecenoate (17:1n7), adrenate
(22:4n6), (14 or 15)-methyl palmitate (a17:0 or i17:0)] repre-
sent novel associations that warrant further investigation and
should be considered preliminary until replicated in independent
cohorts. That 30 diet-related compounds were not associated
with any of our measures of T2D risk was to be expected. For
example, even though circulating carotenoids have been asso-
ciated with better glucose homeostasis [32–34], β-cryptox-
anthin, the carotenoid associated with all 3 diet patterns in the
current analyses but not with any measure of insulin and glucose
homeostasis, has not been previously associated with T2D, or its
clinical factors.

Compared to individual compounds, the MSSs provided the
most persuasive evidence that the bioactive compounds arising
from dietary intake link diet to T2D. All 3 were strongly associ-
ated with glucose/insulin homeostasis, except for insulin secre-
tion, in the expected direction. This pattern of results, that is, the
relative association effect sizes for diet scores compared with



FIGURE 2. Exploration of significant metabolite-diet associations within and across each of the Healthy Eating Index 2015 (HEI-2015), the
Dietary Approaches to Stop Hypertension (DASH), and a Mediterranean-style diet (AMED). (A) Associations with each of the 3 diet patterns for all
metabolites showing �1 significant association with �1 diet pattern in a metabolome-wide association study (P < 1.7*10–5 after a Bonferroni
correction based on the effective number of independent tests). Note: þ denotes significant associations (P < 1.7*10–5). (B) Venn diagram of the
number of significant associations (P < 1.7*10–5 after a Bonferroni correction based on the effective number of independent tests) within and
across metabolome-wide association studies for each of the 3 diet patterns. (C) A breakdown of the metabolite class membership accounting for
each significant diet-metabolite association (P < 1.7*10–5 after a Bonferroni correction based on the effective number of independent tests),
arising from metabolome-wide association studies with each of the 3 diet patterns.
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diet-metabolite scores, remained when additionally controlling
for BMI, although as expected from our previous analyses [34,
35], the associations for both diet scores and metabolite scores
were attenuated.

This pattern of associations, observed when comparing the
size of associations of glucose/insulin homeostasis measures
with the diet compared with diet-related metabolites (both in-
dividual metabolites and MSS), replicated a pattern of results
seen in 3 of our prior investigations, whereby associations be-
tween health indicators and metabolomic correlates of food
intake are orders of magnitude stronger than the associations of
those same health measures and dietary intake [35–37]. Across a
growing body of work, this observation has been replicated
across different cohorts, different metabolomic assays, and
different diet components and so could be considered robust
[35–37]. However, why the magnitude of relationships with
health differ is beyond the scope of the current investigation.
One possibility is the reduction in measurement error for
metabolomic quantification compared with diet self-assessment
[38]. An additional possibility is that metabolite levels reflect
8

multiple other environmental exposures or genetic vulnerabil-
ities. Finally, the ability of metabolites to reflect the physiolog-
ical effects of dietary intake at the individual level (i.e., after
digestion, processing, absorption, and accounting for differences
in food metabolism) could also drive stronger associations. To
fully understand these differences, future research could explore
how using more objective dietary measures affects the magni-
tude of these associations. Furthermore, examining specific
characteristics of study populations, such as age or glycemic
status, could shed light on how these factors influence associa-
tions between diet, metabolites, and health outcomes. Such in-
vestigations could offer insights into why metabolomic data
appear to provide more robust indicators of diet-health re-
lationships than traditional dietary assessments. Although our
current study does not pinpoint the exact reasons for these dif-
ferences, it underscores the significance of metabolomic infor-
mation in enhancing our understanding of diet-related health
impacts.

Our study benefited from a detailed characterization of
glucose/insulin homeostasis ascertained via an OGTT,



TABLE 3
Standardized parameter estimates for associations between 6 glucose and insulin homeostasis traits with scores representing
adherence to each of the 3 healthy diet patterns: the Healthy Eating Index-2015, the Dietary Approaches to Stop Hypertension,
and a Mediterranean-style diet, and with metabolite summary scores for the same dietary patterns.
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FIGURE 3. Standardized parameter estimates for associations of 6 glucose and insulin homeostasis traits with 3 healthy diet scores and with
metabolite summary scores for each of the 3 healthy diet scores.
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combined with an untargeted (untargeted with regard to spe-
cific compound classes) metabolomic approach. Our analyses
yielded 55 diet-metabolite associations from multiple metabo-
lite classes, including lipids, xenobiotics, amino acids, co-
factors/vitamins, and carbohydrates, the majority of which
represent the first associations of their kind in the literature
and, therefore, require replication in further analyses. Howev-
er, these advantages necessitated stringent corrections for the
number of tests conducted, and our ability to identify diet-
related metabolites was limited to those metabolites meeting
(or exceeding) these thresholds. Although we attempted to
mitigate any unwanted effects this could have on true associ-
ations through, for example, correcting based on the estimated
effective number of independent as opposed to the number of
metabolites, given that our study does not include replication
attempts, we retained a Bonferroni correction to balance type I
compared with type II errors. Systematic biases likely influ-
enced the self-reported dietary intake data [38], and although
our food frequency questionnaire (FFQ) captured a wide vari-
ety of food groups, it only included a limited number of indi-
vidual foods. Despite adjustments for potential confounders,
our observational study cannot rule out possible residual con-
founding, thus precluding causal inferences. In light of these
differences, the novel diet-metabolite associations identified
here should be treated with caution. The nature and extent of
dietary intake reflected in the plasma metabolome are moder-
ated by intrinsic and extrinsic factors (e.g., [29]), and thus, we
expected that metabolites would be selectively correlated with
dietary intake across different cohorts but not others as a
function of cohort characteristics. The MILES cohort consists of
older United States adults (mean age ~60 y) who self-reported
10
their race as “Black” or “White,” living within traveling dis-
tance of Wake Forest University (where the study visits were
conducted), and all of whom were free from T2D. Given that
factors such as age [29] and glycemia status [37] moderate
how food is digested, it should not be assumed that the results
of the current study would generalize to populations with
different socio-demographic compositions. Although this makes
replication challenging, it also highlights the importance of
replication efforts, especially for the diet-metabolite associa-
tions, but also for all observations presented here.

Our results indicated that healthy diet patterns are associated
with multiple shared and diet-specific plasma metabolites. When
these metabolites are aggregated in diet-specific MSSs, the
summary scores show strong associations with multiple traits
relating to glucose and insulin homeostasis, such as lower fasting
glucose, lower fasting insulin, lower C-peptide concentrations,
higher insulin sensitivity scores, and higher DI. The associations
between the MSSs and insulin and glucose homeostasis are
markedly stronger than those of self-reported dietary intake with
the same traits. This could suggest that individual differences in
how healthy diets are metabolized may moderate the effects of a
healthy diet pattern on health, and the extent to which differ-
ences in diet and diet-metabolite relationships modulate the ef-
fects of diet on T2D should be the subject of future investigations.
However, in highlighting the potential importance of individual
differences to the results of diet-metabolite, health in-
vestigations, the results also speak to needing caution with
generalizations beyond the current study. Still, regardless of
these future endeavors, this study provides persuasive evidence
that the inclusion of metabolite data is an important addition to
diet-health investigations.
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