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Abstract 

The goal of this work was to quantify the effect of school closure during the first year of coronavirus disease 2019 
(COVID‑19) pandemic in Switzerland. This allowed us to determine the usefulness of school closures as a pandemic 
countermeasure for emerging coronaviruses in the absence of pharmaceutical interventions. The use of multivariate 
endemic‑epidemic modelling enabled us to analyse disease spread between age groups which we believe is a neces‑
sary inclusion in any model seeking to achieve our goal. Sophisticated time‑varying contact matrices encapsulating 
four different contact settings were included in our complex statistical modelling approach to reflect the amount 
of school closure in place on a given day. Using the model, we projected case counts under various transmis‑
sion scenarios (driven by implemented social distancing policies). We compared these counterfactual scenarios 
against the true levels of social distancing policies implemented, where schools closed in the spring and reopened 
in the autumn. We found that if schools had been kept open, the vast majority of additional cases would be expected 
among primary school‑aged children with a small fraction of cases filtering into other age groups following the con‑
tact matrix structure. Under this scenario where schools were kept open, the cases were highly concentrated 
among the youngest age group. In the scenario where schools had remained closed, most reduction would also be 
expected in the lowest age group with less effects seen in other groups.
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Introduction
The coronavirus disease 2019 (COVID-19) pandemic 
disrupted daily life and changes to routines were made 
in accordance with public health regulations. In 2020, 
non-pharmaceutical interventions were put in place to 
reduce exposure to and spread of the disease. It is known 

that school closures have an effect on social mixing and 
so school closures are considered useful for some infec-
tious disease outbreaks but not necessarily all [7]. The 
implications of school closures are manifold and are not 
restricted to changes in numbers of cases (knock-on 
effects include decreased socialisation skills among chil-
dren and economic impacts through the reduced labour 
of guardians having to shift their focus to child rearing) 
meaning it is not a policy decision to be made lightly. As 
not everyone in a population attends school, we need 
age-stratified surveillance data to answer the question 
of what the impact of school closure is. In this work, 
we wish to determine the impact of school closures for 
COVID-19 control in Switzerland though the methods 
are applicable to other countries.
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In earlier work [2] we considered evidence which sug-
gested the effect of school closure in the canton of Zurich 
seemed to not be large for the early coronavirus out-
break. The evidence was evaluated in terms of reduction 
in disease transmission observed through a decrease in 
cases. The canton of Zurich is the most populous region 
of Switzerland. The analysis of data from the canton of 
Zurich suffered from low numbers of observed cases in 
the youngest age group. This proof-of-concept study pro-
vided a starting ground for further developing the meth-
ods used to examine these kinds of policy questions using 
endemic-epidemic models with time-varying weights. 
We now consider a longer time frame (until the end of 
2020) and a greater population (the whole of Switzer-
land). This also allows us to evaluate the performance 
of the analysis at a greater resolution. Considering cases 
at national level rather than regional level induces addi-
tional challenges as social distancing policy varies across 
the country. As our study is not stratified by geographi-
cal region–our focus is age groups–these differences in 
policy need to be incorporated. Here we showcase how 
to incorporate policy indicators which are more nuanced 
than those used in our previous work.

The endemic-epidemic framework for infectious dis-
ease modelling is a class of time-series based regres-
sion models used for the analysis of infectious disease 
case counts arising from routine surveillance systems. It 
is a versatile framework which has been applied to the 
analysis of many disease outbreaks with varying charac-
teristics. Endemic-epidemic modelling is considered a 
useful tool for emergency response related to infectious 
disease outbreaks as it fulfils many of the requirements 
for disaster response models raised by Brandeau et  al. 
[6]. In particular, endemic-epidemic modelling addresses 
real-world infectious disease problems such as detec-
tion of outbreaks and populations at increased risk and 
is designed for maximum usability by response planners 
by virtue of being released as open source publications 
and software which means we avoid issues with disease 
knowledge being pay-walled during ongoing outbreaks 
as seen in the 2014 Ebola virus disease outbreak [8]. The 
framework also makes a good compromise between sim-
plicity and complexity, and due to its statistical nature 
is designed in a manner which captures inherent uncer-
tainties. Endemic-epidemic modelling facilitates know-
ing when disease is endemic (prevalence levels are in the 
range of expected values) and when disease is epidemic 
(incidence is higher than expected), at which point con-
trol measures may need introducing or intensifying. This 
work provides an insight into how control measures can 
be incorporated in endemic-epidemic models through 
the inclusion of time-varying contact matrices.

To accomplish our goal, we fit an endemic-epidemic 
model to a multivariate time series of age-stratified 
COVID-19 cases in Switzerland and then examine two 
counterfactual scenarios of the policy implemented; the 
true school closures consisted of schools being closed 
early in the year and reopening for the second half of the 
year (scenario A). We consider the counterfactual sce-
narios where schools did not close (always open; scenario 
B and where the schools remain closed during the sec-
ond half of the year (always closed; scenario C). The addi-
tional scenario is possible due to the longer time frame 
considered in this work. Scenario B is similar to the sce-
nario considered in our earlier analysis.

Methods
This work is preregistered and has a study protocol [3] 
which is considered a useful manner of working but cur-
rently rare in epidemic modelling. The protocol outlines 
the modelling considerations we made before work began 
and may serve as a useful resource for the interested 
reader.

Data
In this work we consider daily data ( t = 1, . . . , 312 = T  ) 
where the study period commences on  24th February 
2020 and the final observation at time T occurs on  31st 
December 2020. COVID-19 case data is provided by the 
Swiss public health authority (Bundesamt für Gesund-
heit) and includes case counts by date reported strati-
fied by age group. We asked for cases given by the same 
age groups we considered in our Zurich analysis as this 
roughly divides the population into those of compulsory 
education age including compulsory kindergarten/pre-
school/reception (0–14 year olds), higher education and 
young workers (15–24), parents (25–44), middle-aged 
workers (45–65), retirees (66–79), and the elderly (80+). 
Our age group thresholds include the commonly used 
cut-off of 65 years of age considered in epidemiology, 
when health is expected to change.

Figure 1 shows the case data; the daily number of cases 
per 100,000 age group population (upper panel), the dis-
tribution of cases per 100,000 population over time (mid-
dle panel), and cases by weekday reported (lower panel). 
The upper panel shows the oscillatory behaviour known 
to epidemic curves as well as weekly systematic fluctua-
tions in surveillance. The middle panel shows a shift in 
the age distribution of cases across the study period 
which further motivates the inclusion of age groups in 
our modelling approach. The lower panel shows the 
distribution of cases across the days of the week, where 
we see a systematic fluctuation in the reporting system. 
The legal workdays in Switzerland are Monday through 
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Friday. Most cases are reported on Mondays which is the 
start of the week according to European norms and the 
number of reported cases drops across the week while 
fewer cases are reported on weekends (Saturday and 
Sunday).

To capture baseline transmission opportunities 
between age groups we include a contact matrix in our 
endemic-epidemic model. Contact matrices encapsu-
late the number of contacts an average person in the 
population has with other population members of the 
same and different ages in different settings such as the 
workplace or school. Their inclusion in the endemic-
epidemic framework was an approach introduced by 

Meyer and Held [17] which provided more realism 
than making an assumption of mixing patterns for the 
population. Existing contact diary-based contact matri-
ces for Switzerland are only based on a small number 
of observations (54 observations) [15], which led us to 
use a synthetic contact matrix in place of this empiri-
cal one. A synthetic contact matrix is constructed on 
the basis of demographic information. In particular 
national statistics on household composition, aver-
age school class size, age, and employment is used to 
create a synthetic population. The contact network 
of this synthetic population is used to determine the 
contact matrix. Finally, the synthetic contact matrix is 

Fig. 1 Daily COVID‑19 cases per 100,000 population by age group (upper). Relative incidence by age group (middle). Number of cases reported 
by weekday (lower)
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calibrated with empirical matrices created for Europe. 
An overview of other developments for contact matri-
ces can be found in Bekker-Nielsen Dunbar [1].

We chose to use the synthetic matrices by Mistry et al. 
[18] as they were both 1) newer and 2) given with a cer-
tain level of uncertainty which we could incorporate into 
our modelling approach. The synthetic contact matrix is 
constructed on the basis of household size, school enrol-
ment records, and employment data (see [18], for details).

From the synthetic contact matrix we obtain the per 
capita relative frequency of contact ca,a′,s between age 
group a and age group a′ in setting s (shown in Fig.  2 
which describes the pattern of mixing in each setting 
considered) and the disease-specific weights ds in set-
ting s for constructing contact matrices for respiratory 
disease, which are 4.11 for household setting, 11.41 for 
school setting, 8.07 for work setting, and 2.79 for general 
community setting (shown in Fig. 3). This means school 
has the largest weight and so changes to these contacts 
are expected to have the biggest impact. In high income 
countries (of which Switzerland has the highest income 
globally), most contacts occur in educational settings 
[19], so the choice does not seem unreasonable. These 
construction weights ds are provided with standard 
errors. When constructing ca,a′ we used the Swiss popu-
lation (Table 1) rather than the Zurich population which 
we considered in earlier work (see [2], for the analysis 
of Zurich) such that the population used to weight the 
synthetic contact matrix was the one being studied. This 
means the contact matrix used in this work is not exactly 

the same as the one considered previously. The Mistry 
et  al. [18] contact matrices are created with respiratory 
diseases in mind where school closure is a first line of 
defence against disease outbreaks. The synthetic contact 
matrix was used to inform the time-varying transmis-
sion weights wa,a′,t which determine the amount of trans-
mission between age group a and age group a′ at time t, 
which is explained in more detail below.

Contact setting-specific daily policy adjustments ps,t are 
informed by information provided by the Swiss authori-
ties. This information is used to quantify the amount of 
disease control measures enacted. We focus on those meas-
ures which have the aim to decrease contact. Following the 
Oxford University policy classifications we consider: school 
closure (“C1”), workplace closure (“C2”), and restrictions 
on gatherings (“C4”). We code our policy indicators to take 
the same levels as the Oxford scheme allowing researchers 
familiar with the controlled vocabulary established by that 
research group to comprehend our indicators. We reversed 
and rescaled the indicators such that ps,t ∈ [0, 1] where 0 
reflects a situation of maximal measures in place and 1 is 
full relaxation of measures (source information is in our 
study protocol https:// osf. io/ fgrdy).

The non-pandemic school closure adjustment hs,t is 
created based on information from Schweizerische Kon-
ferenz der kantonalen Erziehungsdirektoren [23] and 
reflects closures of school during the academic year due 
to half term and other school holidays. These closures 
reduce contact independently of disease control meas-
ures; notably Easter is a period where less contacts in 

Fig. 2 Unweighted contact matrices ca,a′ ,s from Mistry et al. [18] via Laboratory for the Modeling of Biological and Socio‑technical Systems [16]

https://osf.io/fgrdy
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school settings would be expected as Switzerland is a 
predominantly Christian country. The adjustment takes 
values hs,t ∈ [0, 1] where 0 means that all schools in Swit-
zerland are closed on that day and 1 means all schools 
are open. The values hs,t takes for the school setting are 
shown in Fig.  3 while hs,t ≡ 1 for all other contact set-
tings (meaning no adjustment). The calculation of hs,t is 
informed by population data from Eurostat [11] (popula-
tion by region). The construction of ps,t , hs,t , and wa,a′,t is 
explained in more detail in the following section.

Fig. 3 Time series of indicators ( ps,t ), disease setting‑specific weights for contact matrices ( ds ), and holiday score ( hs,t for the school setting). The 
lowest panel shows the product, gs,t

Table 1 Swiss population counts in 2021 by age group

Age group Population count Proportion

0‑14 1,294,918 0.150

15‑24 901,783 0.105

25‑44 2,383,179 0.277

45‑65 2,511,163 0.292

66‑79 1,061,320 0.123

80+ 453,670 0.053
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Model
The endemic-epidemic model is a time series regression 
model used for infectious disease surveillance which sees 
frequent use for applications which require the incorpora-
tion of transmisson between population strata [12, 20, 26]. 
In an age-stratified endemic-epidemic model, case counts 
Yat are indexed by time t and age group a. The age groups 
considered are 0–14, 15–24, 25–44, 45–65, 66–79, and 
80+ years; the same used in Bekker-Nielsen Dunbar et al. 
[2]. Case counts given past cases are assumed to follow 
an overdispersed negative binomial distribution with age-
dependent overdispersion parameters ψa . The mean �at is 
additively decomposed into endemic and epidemic compo-
nents. Log-linear predictors for the endemic and epidemic 
components are given by νat and φat respectively. The 
endemic component is additionally weighted by population 
fractions ea , where we used population data from Eurostat 
[10] (population by age group), given in Table 1 to inform 
this part of the model. This functions as a model offset (see 
[17], for description of model offsets).

The epidemic component is an autoregressive process 
additionally driven by cases in other age groups a′ in previ-
ous time periods t − ℓ up to a maximum lag of ℓmax where 
uℓ determines by how much previous cases are weighted. 
We chose to use a Poisson-distributed lag distribution 
uℓ such that the majority of the weight need not be given 
to the immediately preceeding cases allowing for a serial 
interval of more than a single day. The maximum lag rep-
resents the maximum length of the serial interval we might 
conceive in our modelling efforts; we chose ℓmax = 7 as the 
literature suggests early types of COVID-19 have a serial 
interval within a week [21].

Our endemic-epidemic model with time dependent [2, 
13] contact matrix weights [17] and higher order lag [5] is 
given by

Transmission between age groups is determined by a 
time-dependent contact matrix wa,a′,t . The time-varying 
contact matrix wa,a′,t is the total average contacts at time t 
constructed by a weighted sum

(1)

Yat | Ya,t−1, . . . ,Ya,t−ℓmax ∼ NegBin(�at ,ψa)

�at = νatea

endemic

+φat

a′

ℓmax

ℓ=1

uℓwa,a′,tYa′,t−ℓ

epidemic

uℓ ∝
κℓ−1

(ℓ− 1)!
· exp(−κ), κ > 0, ℓ = 1, . . . , ℓmax

(2)wa,a′,t =
∑

s

gs,t · ca,a′,s

where gs,t is a weight that depends on the setting s the 
contact occurred in and changes occuring at time t. It 
is created from the combination of the weights used to 
construct contact matrices ( ds given by Mistry et al. [18] 
which depend on setting s), the time-dependent setting-
specific policy adjustments ( ps,t which depend on time 
t and setting s) and whether an adjustment needs to be 
made to incorporate non-pandemic school closure due to 
school holidays ( hs,t which depends on setting s as it only 
affects schools and time t):

Since school holidays in Switzerland vary not only 
between regions, but also within them, we construct 
binary indicators for all of the sub-regions r within a 
region R where we assign 1 to a specific day t if t is not 
a school holiday and 0 otherwise. In a second step, we 
average the binary indicators of all sub-regions r within 
a region R in order to obtain a regional average indica-
tor for that day. Subsequently, we use population weights 
to calculate the national indicator hs,t . The sub-regions 
are unweighted in our averaging as we were not able to 
determine population sizes at school district level. We 
calculate

where 1 is an indicator function and nR denotes the num-
ber of sub-regions within region R. This gives us a pop-
ulation-weighted indicator with values hs,t ∈ [0, 1] which 
incorporates the variation of number of school children 
in regions.

We fit the model (1) with predictors

where αa denotes a fixed effect of age group a, x1t is an 
indicator for public holidays, x2t is an indicator for week-
ends, and zt are effect-coded weekday effects with Mon-
day as the reference value (six in total). Effect-coded 

(3)gs,t = ds · ps,t · hs,t

(4)

hs,t =

{
∑

R

∑

r∈R 1{t is not a school holiday in subregion r}(t) /nR

populationR
s = school

1 otherwise

(5)
log(νat ) = α(ν)

a + β
(ν)
1 x1t + β

(ν)
2 x2t + γ (ν) sin(2π t/365+ δ(ν))

log(φat ) = α(φ)
a + β

(φ)
1 x1t + β

(φ)T
2

zt + γ (φ) sin(2π t/365+ δ(φ))
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variables are also known as sum-to-zero contrasts. This 
means Monday always takes the value −1 and the week-
day of interest takes the value 1 while all other weekdays 
are 0. We include a non-linear time trend in the form of 
a sinusoidal wave expressed by its amplitude γ and phase 
δ [22]. Our model has 31 parameters (estimates are given 
in Table  3) which are estimated using a maximum like-
lihood approach computed with standard errors. Infor-
mation on the full model selection procedure (where 
we also considered effects of temperature, testing rate, 
and a linear time trend) can be found in the supporting 
information.

Counterfactual scenario prediction
Determining the expected size of the outbreak is crucial 
to policy makers who need to determine how resources 
are to be allocated. As the outbreak is ongoing, the pre-
dicted final size considered here is the predicted num-
ber of infections over the time window considered 
rather than the traditional metric used by compartmen-
tal modellers: the total number of infections over the 
entire outbreak period. Predicted cases are based on a 
path trajectory (a long-term expected prediction calcu-
lated recursively on the basis of one-step predictions) 
following Held et  al. [14] assuming no changes to the 
model parameters across the scenarios considered. This 
means we predict the model (1) with the given ea and fit-
ted ν̂at , φ̂at , and ûℓ effects for three different versions of 
wa,a′,t (for scenarios A, B, and C). The two counterfac-
tual scenarios are implemented by including transmis-
sion weights informed by gs,t,a,a′ = ds · qs,t,a,a′ · hs,t where 
g now depends on age group. In particular we consider 
three scenarios (provided with the shorthand names we 
use based on their effect on the youngest age group):

Scenario A (“true measures”) This is the true meas-
ures scenario where schools closed in the spring and 
reopened in the summer where wa,a′,t is populated by 
the relevant policy information without adjustment 
as in (2). This is the same scenario considered in 
model fitting to obtain the model coefficients used in 
prediction of final size and simulation of uncertainty 
for the prediction.
Scenario B (“schools open”) This is a scenario where 
schools are never closed for the youngest age group 
(0–14), i.e. remain open across the entire study 
period. All other measures are as in Scenario A. 

(6)

qs,t,a,a′ =







1 a = 0-14 or a′ = 0-14 and s = school
ps,t a �= 0-14 and a′ �= 0-14 and s = school
ps,t s �= school

Scenario C (“schools closed”) This is a scenario where 
schools close and remain closed. School closure once 
again affects age group 0–14 and their contacts. All 
other measures are as in Scenario A. We implement 
this by setting 

 where t0 denotes the date schools are first closed 
 (16th March 2020).

The changes only affect age group 0–14 when the con-
tact matrix is multiplied by gs,t,a,a′ so the 0–14 row 
and column in Fig. 2 are changed in the school setting 
(school aged children and their contacts). The time 
series of all four setting-specific policy indicators ps,t 
can be seen in Fig. 3 (the building blocks of (2), (6), (7)). 
The truth (scenario A) is expected to lie somewhere 
between the two counterfactual scenarios (scenarios B 
and C), see Table 2. Examining the deviation these sce-
narios have allows us to evaluate the effect of disease 
control measures used. It is implicitly assumed that the 
fitted effects ν̂at , φ̂at , ûℓ do not vary across scenarios.

To incorporate parameter uncertainty in our projec-
tions, we utilise Monte Carlo simulation. We sample 
the weights ds with uncertainty estimates given in Mis-
try et  al. [18] assuming they are independently nor-
mally distributed. To incorporate model uncertainty 
we sample the coefficients ν̂at , φ̂at , ψ̂a , κ̂ , of our fitted 
endemic-epidemic model assuming a multivariate nor-
mal distribution; the asymptomatic normal distribu-
tion of the maximum-likelihood estimates. Using these 
n = 1000 samples we then use the path trajectory pre-
diction approach to obtain n simulated expected case 
counts under the scenarios considered. This enables 
us to incorporate uncertainty in our projections. We 
examine the expected increase in cases when schools 
are always open (scenario B) and the expected decrease 
in cases when schools are always closed (scenario C) 
and compare this with the expected number of cases 
under the policy used (scenario A).

(7)

qs,t,a,a′ =







ps,t t < t0 and a = 0-14 or a′ = 0-14 and s = school

ps,t a �= 0-14 and a′ �= 0-14 and s = school

0 t ≥ t0 and a = 0-14 or a′ = 0-14 and s = school

Table 2 Overview of starting dates and scenarios considered in 
90 day projection windows

First scenario window Second scenario window
16th March 2020 12th May 2020

A Closed Open

B Open (change) Open

C Closed Closed (change)
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We also conducted sensitivity analyses of the assump-
tions made in constructing the transmission weights 
wa,a′,t . The sensitivity analyses attempt to provide fur-
ther realism with respect to how household contacts may 
be affected by school closure. This provides additional 
extensions to the analysis of Zurich data as here we only 
considered household contacts to not be affected by pol-
icy ps,t |s=household ≡ 1 . The sensitivity analyses can be 
found in the supporting information.

Results
In total 256 models were fit to the outbreak data and 
Bayesian information criterion was used as a goodness-
of-fit measure to determine the best fitting model (see 
the supporting information for details). We chose this 
as Bayesian information criterion should fit the cor-
rect model in theory while Akaike information criterion 
would be expected to overfit. Due to diverging estimates 
in the model–likely due to low values in the transmission 
weights matrix wa,a′,t or low case counts Yat observed in 
certain age groups–models which did not have converg-
ing effects were excluded from the selection process. 
Divergence was determined on the basis of the size of the 
standard deviation of the estimated model coefficients. 
It may happen that the additive decomposition into 
endemic and epidemic components is not identifiable.

In particular, α(ν)
80+ (the fixed effect of the oldest age 

group in the endemic component) was excluded due to 
having a very small estimate with a huge standard error. 
This means the coefficient α(ν)

80+ was restricted to be zero 
on the log-scale while the corresponding epidemic effect 
α
(φ)
80+ was estimated from the data. The best fitting model 

has 31 parameters including the lag parameter κ . The 
model contains systematic fluctuations in the form of 
weekly effects, as we expected based on the exploration 
of the case data, and additional fluctuations in the form 
of the sinusoidal waves. As we only use one year’s worth 
of data in this work, we cannot denote this fluctuating 
trend “seasonality” but with a longer time frame it would 
be expected to capture such effects. There is not much 
knowledge about seasonal variation of COVID-19 at the 
time of analysis so we note that with only one harmonic 
in the epidemic component and not even a whole year of 
data, this may induce additional uncertainty in our simu-
lations and predictions.

Model fit
The model has a good fit to the case data based on visual 
inspection (Fig.  4 upper panel). The endemic propor-
tion is relatively small, about 14% for the two youngest 
age groups but below 2% for the age groups 45–65 and 
66–79. The serial interval peaks somewhat early (Fig.  4 
lower panel) compared with what is expected from the 

literature. This has been observed in other endemic-epi-
demic models for COVID-19 and is thus likely an artefact 
of the model.

The parameter estimates in Table 3 suggest fewer cases 
on weekends and public holidays, which aligns with our 
intuition based on the exploratory data analysis of the 
case counts and could reflect changes in contact pat-
terns hence transmission opportunities on those days. 
The endemic rate is approximately halved during week-
ends. The other endemic time effects (public holidays and 
sinusoidal amplitude) are estimated with relatively large 
uncertainty, which relates to their smaller contribution 
to the mean. The weekday effects of the epidemic com-
ponent imply above-average autocorrelation on Tuesdays 
and Wednesdays, with a similar reduction of about 50% 
during weekends. The amount of variation in the age-
specific parameters is comparable in both model compo-
nents: the estimates for exp(α(ν)) (scaling the population 
fractions) range from 9.45 to 130 (with the value for 
the 80+ group fixed at 1), and the epidemic coefficients 
exp(α(φ)) (that scale weighted past cases) range from 
0.023 to 0.389. The largest overdispersion (excess vari-
ance) is found for the youngest age group ψ̂0−14 = 0.229 
while the smallest value is found for the oldest age group 
ψ̂80+ = 0.043.

Disease control scenarios
The path trajectories allow us to examine temporal 
changes that are not evident when projections are sum-
marised as a final size estimate. The counterfactual sce-
narios’ path trajectories are compared in Fig.  5 which 
shows the ratio of predicted cases under a counterfac-
tual scenario and predicted cases under the original 
scenario A for the 90 days after measures were intro-
duced (scenario B, 90 days from  17th March 2020) or 
lifted (scenario C, 90 days from  12th May 2020). This 
means we conditioned on fewer days when predicting 
for scenario B and had higher case counts included in 
our prediction of scenario C (as April was included). 
Scenarios A and C show much more distinct behaviour 
for school-aged children. We see the difference in pat-
terns for age group 0–14 seems to be correlated with 
school holidays hs,t (Fig. 3).

The final epidemic size estimates (with uncertainty 
bounds) within each scenario are given in Fig. 6 and are cal-
culated by summing the predicted number of cases across 
the 90 day projection window. Large differences are not 
found in the final epidemic size estimates (Fig.  6). Table  4 
shows the differences and ratios between expected cases of 
scenario A and scenarios B and C for the 90 day periods. 
Due to the time-sensitive nature of the policy questions 
being considered, the focus of this work was not calibration 
(the match of observations and predictions) but rather the 
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differences in scenarios. We discuss the difficulties of fore-
casting in more detail in our discussion. We are most inter-
ested in the ratio between the predicted case counts: the 
percentage increase and decrease in cases is at most ten per 
cent for both scenarios (the ratio is 1.11 for scenario B and 
0.99 for scenario C). Most of the effect is found among the 
youngest group, which have 82 per cent more cases for sce-
nario B and 8 per cent fewer cases for scenario C. The rela-
tive difference in expected cases between scenarios A and B 
suggests that case numbers in the other age groups would 
not have increased a lot if schools were left open and regard-
ing scenario C, as expected; closing schools decreases cases.

Discussion
In our earlier work attempting to provide evidence-
based information for policy makers, we found that an 
endemic-epidemic model (a two-component model 
for infectious disease) provided a good fit for data from 
Zurich, Switzerland [2]. The model had effects of day 

of the week, public holidays, testing rate, and age in the 
endemic components and the same effects as well as a 
centred linear time trend in the epidemic component. 
This model suggested if there was no school closure, an 
increase in cases would be expected in the youngest age 
group (0–14) in April and later in other age groups. After 
the youngest age group, the next age group expected to 
experience an increase in cases compared with the true 
school closure implemented are the parents of the first 
age group (25–44; parents). In examining Zurich, the 
main group of concern was the oldest age group (80+) 
and they were found to be consistently the lowest in 
terms of expected increase in cases compared with what 
was projected when schools were closed.

Here we extended this work further motivated by the 
fact the usefulness of school closure to combat COVID-
19 was not fully determined by end of the “first wave”. 
Schools in Switzerland re-opened after the summer of 
2020 but at the time questions of whether to close them 

Fig. 4 Model fit (coloured area) and observed cases (points) in the different age groups (above) and estimated serial interval distribution (below). 
The age groups have different y‑axis limits in the model fit plots
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remained. Ulyte et al. [24] tested Swiss school children for 
COVID-19 during the outbreak and concluded that not 
much transmission was occuring in schools. In our work 
we were able to examine school closure at greater spatial 
and temporal scale than previously which is a strength 
of the approach. Other countries were observed to have 
different levels of school closure during the study period 
compared with Switzerland and so the “ideal” amount of 
closure remains to be determined. We note that school 
closures are a primary measure for disease control but 
other measures such as masked students or vaccinated 
students which seek to reduce within-class disease risk 
may be a better option later in the outbreak [9]. We 
remain cognisant that the purpose of school is not just 
educational and it is important to investigate the impact 
of this as the knock-on effects to children’s health of 
remote learning are expected to be a topic of interest for 
years to come. While the current work considers only the 
options of schools open or closed, the methodology used 
could also be used to examine use of masks in educational 
settings, provided evidence is available to inform the 
time-varying transmission weights and so is very versatile.

In the age group 80+ we find that incidence is com-
pletely explained by the epidemic component φ so the 
endemic component was not identifiable and diverged. 
It is not ideal that α(ν)

80+ was restricted to be zero but the 
alternative approach of setting all α(ν) values to be the 

same would also not have been ideal since the results 
imply they differ across age groups (Table 3). The analy-
sis we present is ecological as we aggregated our indica-
tors across the federation of Switzerland although they 
differ across regions. Ideally we would have liked to have 
done a spatio-temporal analysis across age groups but 
as we were interested in specific age groups rather than 
ten-year age bands, we could not utilise the openly avail-
able data from the public health authorities, and had to 
choose to focus on age over age and space.

The uncertainty shown in Fig.  5 is the uncertainty of 
the predicted mean. Scenario C has more data to pre-
dict in the one-step prediction approach used to calcu-
late this mean due to its prediction window starting later. 
We suspect fewer cases early on in the study period to be 
the cause of more uncertainty in the left panels of Fig. 5. 
There is less uncertainty on the predictions in scenario C 
but we also observed fewer cases (the incidence was low 
in the summer). Due to the time-sensitive nature of the 
policy questions being considered, the focus of this work 
was not calibration (the match of observations and pre-
dictions) but rather the differences in scenarios. However, 
we note that there are greater discrepancies between the 
predicted number of cases and the true number of cases 
for the real scenario in the analysis of scenario B (Fig. 6). 
Scenario B underestimates the number of cases while 
Scenario C sometimes overestimates the number while 

Table 3 Model parameter estimates

Endemic Epidemic Other parameters

Coefficient Estimate Std. Error Coefficient Estimate Std. Error Coefficient Estimate Std. Error

α
(ν)
0-14

2.806 0.218 α(φ)
0-14

‑3.776 0.059 ψ0−14 0.229 0.030

α
(ν)
15-24

4.868 0.185 α(φ)
15-24

‑2.482 0.043 ψ15−24 0.125 0.013

α
(ν)
25-44

4.036 0.185 α(φ)
25-44

‑2.172 0.027 ψ25−44 0.067 0.007

α
(ν)
45-65

2.673 0.288 α(φ)
45-65

‑2.170 0.023 ψ45−65 0.059 0.006

α
(ν)
66-79

2.246 0.321 α(φ)
66-79

‑1.883 0.027 ψ66−79 0.074 0.009

α(φ)
80+

‑0.945 0.018 ψ80+ 0.043 0.009

β(φ)

day of the week Tuesday

0.378 0.021

β(φ)

day of the week Wednesday

0.119 0.022

β(φ)

day of the week Thursday

‑0.032 0.022

β(φ)

day of the week Friday

0.001 0.022

β(φ)

day of the week Saturday

‑0.404 0.023

β(φ)

day of the week Sunday

‑0.684 0.024

β
(ν)

weekend
‑0.850 0.100

β
(ν)

public holiday
‑0.582 0.462 β(φ)

public holiday

‑0.327 0.063

β
(ν)

amplitude
2.070 0.191 β(φ)

amplitude

0.711 0.018

β
(ν)

phase
‑2.487 0.030 β(φ)

phase

1.447 0.012

log κ 0.082
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the total number of observed cases is within the predic-
tions. The predicted means are made on the basis of the 
same model which was fit over the entire study period 
(Fig. 1). The reason for predicting a 90 day window rather 
than the entire year is that we find it unlikely that a deci-
sion maker at a public health agency would not revisit a 
decision made within a 90 day period, so predicting cases 
until the end of the period the model is fit on strikes us 
as a less useful exercise. The large increase in cases at the 

end of the study period (which the model is fit to) might 
influence the models ability to predict lower case counts.

We briefly summarise the comparison of results with 
the Zurich analysis (see [2], for details). By virtue of the 
shorter time frame of the earlier analysis, we are unable 
to note similarities and differences with scenario C as this 
information is not available at Zurich level. The model for 
Zurich contains more effects than the model used here. 
The Zurich model has β(ν)

weekdays , β
(φ)
t  , β(ν)

testing rate , and 
β
(ν)
time . Notably, the Zurich analysis has additional time 

Fig. 5 Comparison between simulated number of mean cases over 90 days from  17th March 2020 for scenarios A (true measures) and Scenario 
B (schools open) and 90 days from  12th May 2020 for scenarios A (true measures) and C (schools closed). Showcased are the  10th,  50th, and  90th 
percentiles of ratios of simulated path trajectories. The ratios of predicted mean cases for scenario B (schools open) divided by those predicted 
under scenario A (true measures, left) and for scenario C (schools closed) over the number of cases predicted in scenario A (right). The y‑axis 
is log‑transformed and is provided with different limits to showcase the different patterns between the age groups as well as focus on the individual 
patterns themselves



Page 12 of 14Bekker‑Nielsen Dunbar et al. BMC Infectious Diseases         (2024) 24:1372 

effects while our current model only contains a non-lin-
ear time effect in the form of the sinusoidal waves. While 
the models are different, the estimated discrete-time 
serial interval ûℓ is similar. Some of the building blocks 
used to construct the models are the same for the two 
studies: ps,t and ds are the same in the two studies. The 
relative increase (determined by calculating the ratio of 
predicted cases under scenario B and scenario A) takes 
values closer to 1 (no difference) for all age groups but 
the youngest. For Zurich the relative increase in these age 

groups is no more than five per cent, while it is slightly 
larger for the current work (ranging from 1.05 to 1.82 
compared to 1.01 to 1.05). Many of the 90th percentiles 
( P90 values) in Table 4 are a ten-fold increase with those 
found for Zurich. The ratio for the youngest age group 
(0–14) is much greater in the current work with no over-
lap with the values found in the previous work.

One of the limitations of our work is that as we work 
with observational data, we find associations rather than 
causes. This makes interpretation difficult. To examine the 

Fig. 6 Comparison between simulated number of cases over 90 days from  17th March 2020 (left) for scenarios A (true measures) and Scenario B 
(schools open) and 90 days from  12th May 2020 (right) for scenarios A (true measures) and C (schools closed). Showcased are the  10th,  50th, and  90th 
percentiles (referenced as P10, P50, and P90, respectively) as well as the observed case counts in the period considered

Table 4 Comparisons of the number of cases in scenario A (true measures) with the number of cases in scenarios B (schools open) 
between  17th March 2020 and 90 days and C (schools closed) between  12th May 2020 and 90 days

B - A B / A C - A C / A

Age P10 P50 P90 P10 P50 P90 P10 P50 P90 P10 P50 P90

0‑14 162.9 240.0 404 1.76 1.82 1.87 ‑27.5 ‑20.85 ‑16.98 0.91 0.92 0.93

15‑24 45.1 89.9 218 1.06 1.09 1.12 ‑16.6 ‑9.38 ‑5.98 0.99 0.99 1.00

25‑44 192.9 362.3 821 1.10 1.12 1.15 ‑64.4 ‑36.03 ‑23.15 0.98 0.99 0.99

45‑65 153.3 311.5 773 1.07 1.09 1.12 ‑55.2 ‑30.08 ‑18.96 0.98 0.99 0.99

66‑79 48.9 113.8 323 1.04 1.06 1.08 ‑13.5 ‑6.92 ‑4.05 0.98 0.99 0.99

80+ 37.3 90.5 271 1.04 1.05 1.07 ‑9.5 ‑4.69 ‑2.62 0.98 0.99 0.99

Total (summed) 641.7 1,207.1 2,820 1.09 1.11 1.13 ‑186.0 ‑107.83 ‑71.69 0.98 0.99 0.99
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robustness of our association, we conducted a sensitivity 
analysis assuming a trade off between household contacts 
and school contacts to reflect more time spent at home by the 
school-aged children. We have not considered an effect on 
the workplace setting as a result of school closure due to the 
composition of most Swiss households. Namely, according to 
the World Bank, the labour force participation among women 
in Switzerland is 62.4 per cent (the proportion of the popula-
tion aged 15 and older that is economically active) and only 
30.3 per cent of middle and senior management is women. 
Culturally, Swiss women are expected to be stay at home par-
ents, and this is seen in statistics on “employment models in 
couple households” collected by the Swiss Federal Statisics 
Office which shows that for households with children the 
adult woman is either part-time employed or economically 
inactive. As a result of the model selection performed in this 
paper, we would not expect to see large changes to the work-
place setting when schools are closed, as additional resources 
for childcare at home will not be needed.

COVID-19 is a notifiable disease in Switzerland. This means 
cases detected must be reported to the authorities. Using case 
counts from routine surveillance systems means we are work-
ing with the reported cases. Cases not detected by the sur-
veillance system contribute to underreporting. For univariate 
endemic-epidemic models it is possible to correct for under-
reporting however this requires additional, external infor-
mation to inform a single reporting rate parameter [4]. The 
underreporting may differ throughout the week, as reflected 
in the distrbution seen in Fig. 1 (lower panel), and hence the 
correction may need not be constant as expected for routine 
surveillance settings. Underreporting may be expected as 
a result of asymptomatic cases. In Switzerland, testing was 
subject to having symptoms or exposure to a confirmed case 
and testing beyond this was self-funded rather than govern-
ment-funded. We have previously included a testing rate in 
endemic-epidemic models for COVID-19 [13] to capture the 
impact of underreporting as testing has an inverse relationship 
with underreporting. As a result of our model selection, the 
final model does not include testing (shown in the supporting 
information).

Finally we note that the existence of pharmaceutical coun-
termeasures does not guarantee their use. Vaccines are 
recommended to prevent disease, disability, and death in 
children [25]. However, with novel vaccines for pandemic 
control, children may be included in secondary but not 
primary trials and so may not be included in immunisa-
tion programmes as soon as a prophylaxis is tested safe and 
made available to the population. For this reason, we believe 
gaining an understanding of the impact of school closures in 
the absence of vaccine to still be an interesting and relevant 
area of research.
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