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Abstract

Lower urinary tract dysfunction (LUTD) is a debilitating condition that affects millions of 

individuals worldwide, greatly diminishing their quality of life. The use of wireless, catheter-free 

implantable devices for long-term ambulatory bladder monitoring, combined with a single-sensor 

system capable of detecting various bladder events, has the potential to significantly enhance the 

diagnosis and treatment of LUTD. However, these systems produce large amounts of bladder data 

that may contain physiological noise in the pressure signals caused by motion artifacts and sudden 

movements, such as coughing or laughing, potentially leading to false positives during bladder 

event classification and inaccurate diagnosis/treatment. Integration of activity recognition (AR) 

can improve classification accuracy, provide context regarding patient activity, and detect motion 

artifacts by identifying contractions that may result from patient movement. This work investigates 

the utility of including data from inertial measurement units (IMUs) in the classification pipeline, 

and considers various digital signal processing (DSP) and machine learning (ML) techniques for 

optimization and activity classification. In a case study, we analyze simultaneous bladder pressure 

and IMU data collected from an ambulating female Yucatan minipig. We identified 10 important, 

yet relatively inexpensive to compute signal features, with which we achieve an average 91.5% 

activity classification accuracy. Moreover, when classified activities are included in the bladder 

event analysis pipeline, we observe an improvement in classification accuracy, from 81% to 
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89.0%. These results suggest that certain IMU features can improve bladder event classification 

accuracy with low computational overhead.

Clinical Relevance: This work establishes that activity recognition may be used in conjunction 

with single-channel bladder event detection systems to distinguish between contractions and 

motion artifacts for reducing the incorrect classification of bladder events. This is relevant for 

emerging sensors that measure intravesical pressure alone or for data analysis of bladder pressure 

in ambulatory subjects that contain significant abdominal pressure artifacts.

Keywords

Ambulatory urodynamic monitoring; activity recognition; feature optimization; bladder event 
detection

Introduction

Urodynamic studies (UDS) are the gold standard for diagnosing and managing Lower 

Urinary Tract Dysfunction (LUTD). These studies utilize multiple catheters and create 

artificial test conditions to assess bladder function. Specifically, the bladder is retrogradely 

filled with saline at superphysiological infusion rates. Typically, two catheters are used: an 

intraurethral catheter to measure intravesical pressure (Pves) and a rectal balloon catheter 

to measure abdominal pressure (Pabd). Detrusor pressure (Pdet) is computed by finding the 

simultaneous difference between vesical and abdominal pressure, which is then used to 

distinguish between bladder contraction events and abdominal-induced increases in Pves. 

However, due to the high infusion rates and the dual-sensor system, UDS can be susceptible 

to artifacts, potentially leading to diagnostic inaccuracies.1,2 The use of wireless, catheter-

free implantable devices can enable long-term ambulatory bladder monitoring during natural 

filling to enhance the diagnosis of LUTD. Recently published works have demonstrated 

significant progress toward developing wireless sensors to enable long-term ambulatory 

UDS.3–5 However, it is expected that extended ambulatory bladder monitoring will generate 

large datasets of pressure recordings spanning days or weeks, and this single-sensor data will 

include Pabd and contributors to Pves other than Pdet.

For treatment, neuromodulation via electrical stimulation can increase bladder capacity6 

and is a potential solution after the failure of more conservative approaches.7 However, 

conditional stimulation requires sensory feedback to determine bladder activity and for 

accurate stimulation, bladder events must be detected near the onset of a contraction. 

State-of-the-art research is investigating conditional neurostimulation using wireless sensors 

in clinical settings.8–11 Prior work in bladder event detection for conditional stimulation 

has demonstrated the feasibility of distinguishing between bladder contractions and 

abdominal artifacts arising from movement such as coughs, laughs, sneezes, etc., in the 

clinical setting.12 However, real-time conditional stimulation in ambulatory settings presents 

additional challenges since long-term sensor data will contain physiological noise caused by 

patient movement in addition to other sensor noise.

To tackle these diagnostic and treatment challenges, one potential solution is to monitor and 

classify patient activity in tandem with bladder pressure. While this results in significant 
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additional data for processing, it provides important context for the bladder activity. 

Integrating patient activity with an event detection system may improve the classification 

of bladder events by distinguishing between true contractions and motion artifacts. However, 

typical activity recognition (AR) systems incur large computational overheads, making 

their integration with low-power mobile devices impractical. In this work, we aim to 

reduce the computational burden associated with activity recognition AR through the use 

of digital signal processing (DSP) and machine learning (ML) techniques, then integrate the 

activity recognition AR into a bladder event detection algorithm for single-channel systems. 

We begin with a popular human activity recognition (HAR) dataset13 and apply various 

optimization techniques, leading to a significant reduction in the computational overhead 

while maintaining acceptable activity classification accuracy. Finally, we perform a case 

study on simultaneous bladder pressure and inertial data collected from an ambulating 

female Yucatan minipig to test the performance of the optimized AR and its integration with 

a bladder event detection system. Specifically, we present the following contributions:

1. We utilize the HAR dataset to refine the feature space and reduce computational 

complexity while minimally impacting the activity classification accuracy.

2. We develop and implement a sensor fusion algorithm to integrate activities 

classified from inertial features with simultaneous bladder pressure recordings in 

real time.

3. We evaluate our approach on an ambulating Yucatan minipig and demonstrate an 

improvement in bladder event detection accuracy.

The rest of the paper is organized as follows: Section “Background” presents the 

background on ambulatory urodynamic monitoring and AR. Section “Methodology” 

discusses the methodology where optimization techniques to reduce the computational costs 

of implementing AR are presented, along with a case study utilizing the pig dataset. It 

also presents the integration of the activity data with a bladder event detection system to 

identify motion artifacts. Section “Results” delves into the results where the optimized AR 

is assessed on the HAR and pig datasets. The bladder event detection system with integrated 

activity data is also evaluated. We discuss the results in context with related work in Section 

“Discussion” and conclude with future work in Section “Conclusion.”

Background

Ambulatory urodynamic monitoring and treatment

In clinical UDS procedures, two separate catheter-based sensors are used, one measuring 

bladder pressure Pves, and the other measuring abdominal pressure Pabd. Detrusor pressure 

Pdet generated from bladder contractions is then obtained by computing the simultaneous 

difference between Pves and Pabd, as shown in equation (1).

Pdet = Pves − Pabd

(1)
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Catheter-based measurements make long-term bladder monitoring impractical, and even 

short-term monitoring during ambulation is difficult. As such, current options for treatment 

through electrical stimulation are limited to open-loop modalities. Devices like the InterStim 

Implantable Stimulator (Medtronic) have been employed to manage conditions such as 

overactive bladder by delivering continuous stimulation to the sacral nerve.14,15 Conditional 

neuromodulation can also inhibit unwanted bladder contractions or address feelings of 

urgency while reducing the risk of habituation and conserving battery life.16 However, for 

effective stimulation in closed-loop neuromodulation, contractions must be detected near 

onset, typically within seconds. Such an approach therefore requires real-time feedback on 

bladder activity.

In general, many of the challenges associated with ambulatory bladder monitoring can be 

addressed through the use of wireless implanted sensors. Numerous recent studies propose 

the use of wireless implanted sensors to provide long-term measurement data during natural 

filling.5,8,17–20 Others have noted that a wireless implant, paired with a smart algorithm 

(either in the implant, or else in the external receiver to which the implant transmits 

measurement data), can enable personalized, closed-loop treatment of UDS.8,9,21,22

However, long-term monitoring and conditional neuromodulation come with their own set of 

challenges:(1) long-term monitoring will result in very large and potentially noisy datasets, 

and (2) without a second sensor, the measured pressure will contain artifacts from Pabd 

which may confound a closed-loop control system. For diagnosis, inspecting days, weeks, 

or months worth of noisy data is impractical; for treatment, closed-loop neuromodulation 

would require a method to either (1) estimate detrusor pressure from bladder pressure 

and/or (2) detect true bladder contraction events in the presence of significant physiological 

noise. While existing work in bladder pressure signal analysis has demonstrated effective 

techniques for accurately detecting bladder events in real-time using Pves, this was done 

in clinical settings23,24 with limited physiological noise, and few abdominal artifacts. Real-

world conditions are far more variable.

In this paper, we propose the use of a second, worn sensor—an inertial measurement 

unit (IMU)—to provide additional context for the measured bladder pressure signal. The 

additional context can be utilized, for example, in classifying the individual’s current 

movements as a particular activity. This can enable more accurate characterization of 

bladder events in long-term data, and also be used by a control algorithm when deciding 

whether or not to trigger stimulation.

Activity recognition and feature optimization

AR aims to interpret movement by analyzing sensory data obtained from interactions with 

the environment. Sensors such as accelerometers and gyroscopes, which are commonly used 

for tracking body movement and orientation, detect changes in motion and measure angular 

velocity and rotation, respectively. These sensors can be built on a single chip and can be 

found in several commercial electronic devices.25–27 This is the case with IMUs, which 

are widely used in HAR as they are wearable and long-lasting autonomous devices.28–31 

By analyzing the data from these sensors, AR systems can identify and classify various 

basic and dynamic activities. Recently, several research groups have established benchmark 
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datasets for AR by simulating real-life scenarios, variabilities, and activities.13,32–34 They 

serve as a standard reference point for ML models trained in recognizing various activities 

from accelerometry or gyroscopic features. In the context of bladder event detection, human 

activity can provide additional context about what the individual was doing at the time, 

which may affect the bladder pressure. For example, running may result in changes in 

bladder pressure due to the contribution of abdominal muscles; conversely, while at rest, an 

increase in bladder pressure is more likely to be due to the detrusor muscle contracting. The 

use of IMU data for contextualization of bladder pressure is compelling, particularly if it can 

improve bladder event detection accuracy.

However, AR systems generally have high computational complexity and this kind of sensor 

data generates massive amounts of unlabeled data, which may make meaningful feature 

extraction more difficult and hinder accurate activity classification. Moreover, the feature 

extraction cost typically dominates the test-time runtime cost in AR implementations.35,36 

Processing a large number of features requires more computational resources and can 

result in slower execution times. As shown in Table 1, the cost of computing features 

(indicated very low, low, medium, and high) can vary in complexity and should be 

considered, especially for on-chip AR. Most time-domain features such as mean and 

standard deviation require limited operations that have a linear relation to the number of 

input samples n, and these operations are typically arithmetic additions and subtractions. 

While some features may exhibit a linear relationship between operations and input samples 

that include multiplications and divisions, there may also be features that are quadratic, 

increasing the computational cost. Along with cost, storage, and memory operations should 

also be considered to store temporary variables in addition to storing the input signal 

data. Additionally, frequency-domain features are computationally more expensive than 

time-domain features as they require a Fast Fourier Transform (FFT) to be performed. For 

example, in this work, we utilize a dataset from13 that consists of 561 time and frequency 

domain features such as mean, standard deviation, kurtosis, skewness, correlation, energy, 

entropy, etc. The features are computed for signal “windows” which consist of n samples 

(e.g., n = 256, representing2.56 s worth of data at a 100 Hz sample rate), in order to form a 

feature vector. Moreover, windows may overlap, for example, the first window may go from 

time t = 0 to t = 256, and the second may go from t = 128 to t = 384, and so on. Each feature 

vector is input to an ML classifier, which then processes and classifies it. In the case of AR, 

these classes may be walking, running, or other activities the classifier has been trained to 

recognize.

ML techniques such as random forests (RF), Gaussian Naïve Bayes (GNB), and logistic 

regression (LR) have been employed in the context of AR to analyze raw sensor signals 

and build large feature sets for activity classification.37–39 Both GNB and LR are attractive 

classifiers for AR as they can handle high-dimensional data such as sensor data from 

wearable devices or monitoring systems efficiently. They can be applied to real-time 

classification and can be extended to handle multi-class classification, which is important 

for AR. Feature reduction techniques can be employed to optimize large feature space and 

reduce computational complexity by selecting a subset of the most discriminative features or 

by transforming the original features into a lower-dimensional representation. In this work, 

we explore principal component analysis (PCA),40 random forest (RF) feature importance,41 
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and random projections (RP)40 to optimize the feature set and compare ML classifiers GNB 

and LR for activity classification.

Methodology

The primary objectives of this work are: (1) to optimize the feature space to reduce the 

overall computational overhead of AR implementation with minimal loss in accuracy, 

and (2) to integrate the generated activity data with simultaneous bladder pressure data, 

enhancing bladder event detection. Specifically, we first used the HAR dataset to evaluate 

three feature space reduction methodologies. In addition, we explored three sample rates

—the original, 100 Hz, and two filtered and downsampled rates of 50 and 25 Hz, in 

an effort to optimize the activity classification process. We then conducted a case study 

on an ambulating Yucatan minipig in which an implantable bladder pressure monitor, the 

Urological Monitor of Conscious Activity (UroMOCA) device—had been implanted. The 

UroMOCA provided Pves, while a worn IMU provided simultaneous accelerometry and 

gyroscopic data. This was then assessed with the optimized AR framework. Finally, the 

classified activities were input, along with the bladder pressure, to a bladder event detection 

algorithm, allowing us to evaluate the effect of incorporating activity classes on bladder 

event classification accuracy. The following subsections provide additional details on each 

step of the methodology.

Optimizing the activity recognition process

HAR dataset.—The HAR dataset consists of experiments conducted on 30 participants 

aged between 19 and 48 years. Each participant performed basic activities such as walking, 

sitting, standing, and lying while wearing a Samsung Galaxy S II smartphone on their waist. 

The smartphone’s built-in accelerometer and gyroscope recorded three-dimensional linear 

acceleration and angular velocity sampled at 100 Hz. These experiments were captured 

on video to aid in manual data labeling and the dataset was randomly divided into 70% 

training and the remaining 30% for testing. The recorded signals were processed from 

the accelerometer and gyroscope by filtering out noise and segmented into 2.56-second 

sliding windows, each overlapping the next by 50%. The acceleration data, containing both 

gravitational and body movement elements, was divided using a Butterworth low-pass filter 

with a cutoff frequency fc = 0.3 Hz. This split the data into components of body acceleration 

and gravitational forces. For every window, a feature vector was derived by analyzing 

aspects in both the time and frequency domain. A total of 561 time and frequency domain 

features were obtained. This dataset is described in detail in Anguita et al.13 and is freely 

available.

Feature optimization for HAR.—To optimize the HAR dataset, we utilized PCA, RF 

feature importance, and RP to obtain the most important features from the large feature 

space. Moreover, computationally dependent features were identified to avoid redundant 

recomputation. We then compared ML classifiers GNB and LR for activity classification.
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Case study on pig data for bladder event classification

Pig dataset.—In vivo procedures were approved by the Institutional Animal Care and Use 

Committee (IACUC) of the Cleveland Clinic, Cleveland, OH. Data were collected using the 

UroMOCA device that wirelessly measures bladder pressure and volume without catheters.4 

The subject involved in this study was a female Yucatan minipig. The UroMOCA was 

surgically implanted via laparotomy and cystotomy under anesthesia. The bladder capacity 

of the subject was determined using gravity filling before UroMOCA implantation. Baseline 

cystometry was performed using a 5-fr dual lumen catheter while saline was infused at 

20 mL/min to measure Pves. After recovery from implantation, pressure and volume were 

recorded for at least 3 h per session while the subject was awake and untethered. Following 

2 weeks of UroMOCA implantation, device functionality was assessed via cystometry and 

saline bolus infusions while the subject was anesthetized. Two weeks later, after additional 

conscious ambulatory recordings, the subject was euthanized. This work utilized a total 

of five recordings from the pig dataset sampled at 100 Hz, across three different days, 

consisting of at least 3 h of recorded bladder pressure and volume data. Acceleration and 

gyroscope data were captured using the SparkFun OpenLog Artemis, an open-source data 

logger with a built-in logging feature for the triple-axis accelerometer and gyroscope. This 

data logger was inserted into a pocket on a vest worn by the pig. For this study, the 

accelerometer and gyroscope recordings were sampled at 100 Hz to align with the HAR 

dataset, and the UroMOCA data collection rate. To validate the IMU readings, manual 

annotations were recorded, detailing the pig’s observed activities including voiding events. 

These annotations were subsequently used to confirm accuracy of the sensor data, ensuring 

that the IMU measurements precisely reflected the actual movements of the pig. The overall 

data processing methodology is outlined in Figure 1.

Activity recognition and classification.—Movement data were collected from the 

OpenLog Artemis datalogger/IMU’s built-in triaxial accelerometer and gyroscope. A fifth 

order median filter was initially applied for denoizing. A 0.3 Hz cutoff frequency was used 

to separate body and gravity components from the signals. Fixed-width windows of 256 

samples, overlapping by 50%, were processed. All 561 features were initially computed for 

each of these 256 sample windows, as described in Anguita et al.13,42 We then evaluated the 

performance of PCA, RF feature importance, and RP in conjunction with ML classifiers to 

optimize the AR procedure. Once the most important features were identified, GNB and LR 

were evaluated for activity classification. Training and testing were performed in a random 

70–30 split. Based on our experiments, we found that RF feature importance, combined with 

the LR classifier, was able to identify the 10 most discriminative features, out of 561 total 

features, and then use those limited features to maximize activity classification accuracy. 

The experiments were repeated after downsampling the IMU signals to 50 and 25 Hz, to 

further reduce the overall computational overhead by 50% or 75%, respectively. To evaluate 

the performance of the AR system, the following metrics were measured: (1) Accuracy, 

which measures the number of samples correctly predicted to the total number of samples; 

(2) F1-score, computed as the harmonic mean of precision and recall. While the accuracy 

metric is provided, F1 is preferred in this context due to the imbalance in class sizes. The 

metrics are described in detail below:
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Accuracy = TP + TN
TP + TN + FP + FN

(2)

Precision = TP
TP + FP

(3)

Recall = TP
TP + FN

(4)

F1 − score = 2 * Precision * Recall
Precision+Recall

(5)

After detecting activities, the corresponding activity IDs and their timestamps were 

integrated into the bladder event detection framework to evaluate multimodal sensor fusion 

in bladder event classification.

Bladder event classification.—The event detection algorithm utilized single-sensor 

Pves to detect bladder events, including contractions and other abdominal-induced artifacts. 

A series of processing stages were used to distinguish pressure caused by Pdet from 

that caused by Pabd. These stages involved initial filtering, wavelet transformation, and 

adaptive thresholding.23 The signal was first filtered to eliminate noise using an exponential 

moving average (EMA) filter, with a low-pass cutoff frequency of 0.1 Hz. A multi-level 

wavelet transform was then applied to the filtered output, where the Daubechies 4-tap 

wavelet was used as the basis function. The output included approximation and detail 

coefficients, where the approximation coefficients reflected the signal’s general trend, while 

the detail coefficients represented abdominal artifacts and other sensor noise. Maximum 

pressure peaks were identified in the signal to account for changes in pressure. An adaptive 

thresholding approach in the wavelet space was then used. A user-selectable percentile, for 

example, 90th, was selected. Samples in the wavelet space were sorted in rank order. In the 

next window, a transformed sample exceeding this threshold, typically a high-pressure event, 

was categorized as a bladder contraction.23 First, these pressure-only detected bladder events 

were evaluated. Then, the output activity IDs and timestamps from the AR pipeline were 

integrated into the bladder event detection system to validate the detected bladder events. 

The specific way in which AR can impact bladder event detection can potentially vary; 

for example, contractions detected during a “run” (RN) event may be categorized one way, 

while contractions detected during a “stand/stationary” (ST) activity may be categorized 

another way. For the purpose of our experiments, bladder events detected during an activity 

period (WK, RN) were considered to be motion artifacts (false positives).
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Results

Feature optimization on HAR dataset

We first utilized the HAR dataset to evaluate the different feature reduction techniques in 

conjunction with signal processing and ML classifiers to optimize activity classification. 

The feature space from the HAR dataset consisted of 561 features where the original 

classification accuracy was 96%. As previously stated, computing all 561 features consumes 

significant computational resources. Table 2 shows classification results when using only 

the 50 most important features, as identified by PCA, RF, and RP. We found that features 

identified by RF used in conjunction with the LR classifier achieved a detection accuracy 

of 93.9%, a 91.0% decrease in the feature space costing a 2.2% decrease in activity 

classification accuracy. In general, this approach may be applied iteratively in a design space 

exploration to find a subset of n features for which the resulting accuracy loss is within 

acceptable bounds.

Application to the pig dataset

We applied these optimization techniques (LR in conjunction with the RF feature 

importance) to the IMU data collected from the pig subject. Across all trials, we achieved 

an average 91.5% classification accuracy using a feature subset of 10 features for data 

down-sampled to 50 Hz, which resulted in a 98.2% reduction in the feature space, with 

a 4.8% reduction in activity classification accuracy. The results of classification accuracy 

after applying the optimization techniques for varying Fs are shown in Table 3. Table 

4 shows the confusion matrix of all the detected activities in the pig dataset. The trade-

off between prediction accuracy and cost could be viewed in terms of portability cost 

for on-board classification of activities. In resource-constrained wearable and implantable 

medical devices, the computational and memory costs of handling a large feature space 

can impact power consumption, execution times, and overall device size. Therefore, 

while there is a decrease in accuracy, the optimizations to the feature space reduced 

significant computational demands to allow for more practical and efficient deployment 

of the model, paving the way for eventual on-board activity classification. To evaluate 

the significance of individual features, we ran feature importance across all trials over 20 

iterations. This allowed us to compute the mean importance of each feature and utilize this 

ranking to consistently identify the most important features. Figure 2 shows the top 15 

identified features. The figure illustrates the results of employing RF feature importance 

to identify features for activity classification, where the x-axis denotes the calculated 

“feature importance,” a numerical indicator of each feature’s relative contribution to the 

model’s predictive accuracy. The higher the value, the more critical the feature is deemed. 

The y-axis lists the top 15 features, with those prefixed by “t” extracted from the time 

domain (TD), representing raw and statistical measures over time, and those prefixed 

by “f” from the frequency domain (FD), encapsulating the distribution and intensity of 

the signal. For example, time-domain features such as t_body_acc_jerk_Mean(), capture 

statistics like the rate of change in acceleration, which can be directly observed over 

time, whereas, frequency-domain features like f_body_acc_Mag_energy(), offer insight into 

periodic motion characteristics, crucial for detecting repetitive activities. The top identified 

features include signal magnitude area (sma) of body acceleration, maximum (max) value 
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of body acceleration, standard deviation (std) of the magnitude of body acceleration, 

interquartile range (iqr), etc.

Bladder event classification

In this study, “Experiments” (exp) refers to distinct days on which data was collected, while 

“Trials” denotes the individual recording sessions. To account for motion artifacts in the 

recordings, the output activity IDs and timestamps from the optimized AR framework were 

integrated with the bladder event detection system. The time signals were synchronized, and 

changes in pressure with respect to motion artifacts were assessed. The detected events were 

validated against annotated notes consisting of voiding events, which constituted our ground 

truth. These annotations also included detailed timestamps corresponding to the activities 

performed by the pig subject. In Figure 3, bladder events from two experiments in the pig 

dataset are depicted. Events detected were differentiated based on true bladder contractions 

and abdominal artifacts. In this work, we used the terms correctly classified and incorrectly 

classified to describe true positive (TP)/true negative (TN) rates and false positive (FP)/

false negative rates (FN), respectively. The results of the bladder event detection system 

are shown in Table 5 where total detected events were the events detected before activity 

validation and valid events were the events verified after activity integration. Across all 

the trials, the average correctly classified before activity validation was 81%. To account 

for motion artifacts, activity data was integrated into the bladder event detection system 

highlighting different activity regions. Contractions found during activity periods were 

considered incorrectly classified events and were invalidated, which improved the bladder 

event classification to 89%. By integrating an additional sensor to monitor motion activity, 

the system’s ability to cross-verify detected bladder events was enhanced, thereby reducing 

the FP rate and consequently, improving the classification accuracy. Incorporating this extra 

parameter allowed us to utilize a multimodal approach to validate detected contractions, 

distinguishing true contractions from motion artifacts to provide more reliable insights into 

bladder pressure changes in ambulatory settings.

Discussion

This study underscores the effectiveness of multimodal sensor fusion in bladder event 

detection, where we combined bladder pressure data with real-time movement activity to 

enhance the accuracy of detecting bladder events beyond what is achievable with single-

channel measurements alone. By integrating activity data, this approach not only helped 

differentiate between true bladder contractions and motion-induced artifacts to reduce the 

FP rate but also provided insightful contextual information about bladder events. This 

distinction is particularly important for emerging sensors that measure Pves alone and 

to analyze bladder pressure data from ambulatory subjects that are typically prone to 

significant Pabd artifacts.

Implementing optimized AR has the potential to improve real-time conditional stimulation 

in ambulatory settings by reducing FPs caused by patient movement. This study focused 

on optimizing the AR process by reducing the feature space and down-sampling the data 

with minimal accuracy loss, thereby decreasing the computational overhead required for 
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activity classification. While the AR experiments could be simplified to classify “at rest” 

or “motion,” the inclusion of specific movements such as walking and running, despite 

potential differences in gait between humans and pigs, is crucial. These activities are generic 

enough to capture basic motion patterns rather than specific behaviors unique to humans. 

Moreover, to evaluate the significance of individual features, we ran feature importance 

across all trials over 20 iterations. This process helped to identify consistently important 

features and provided a more robust estimate of feature importance. Additionally, the 

biomechanical differences are less significant in the context of this study, where the primary 

objective was to optimize AR process and leverage a multimodal sensor fusion approach 

to enhance the accuracy of bladder event detection systems in ambulatory settings with 

eventual application to human studies. A notable challenge encountered in this research 

involved synchronizing activity timestamps with bladder pressure data. Incompatibilities 

between the timestamps of these data streams led to the exclusion of one experiment from 

analysis, as the misalignment would lead to incorrect event classification. In the future, 

expanding this work to larger datasets and human studies will provide valuable insights 

to further enhance optimization strategies for both AR and bladder event detection in 

low-power bladder pressure monitoring implants. Moreover, we aim to expand our study 

to investigate the integration of similar sensor technologies such as a volume sensor with 

pressure and activity detection to improve patient monitoring and real-time conditional 

stimulation using wireless sensors in long-term ambulatory settings.

Conclusions

AR is crucial in personalized healthcare, enhancing the reliability of bladder event detection 

by providing contextual information, identifying motion artifacts, and reducing false 

positives in ambulatory settings. This study focused on optimizing AR through advanced 

feature reduction techniques and machine learning to minimize computational demands 

while maintaining accuracy. Our methods were validated using the HAR dataset consisting 

of 561 features and further applied to IMU data from an ambulating Yucatan minipig 

equipped with the UroMOCA device, achieving significant feature optimization with 

minimal accuracy loss. Furthermore, this study demonstrated the potential of multimodal 

sensor fusion in enhancing bladder event detection by integrating real-time movement 

activity with bladder pressure data. The integration of AR with ambulatory UDS can 

significantly enhance the accuracy of long-term diagnostics for LUTD by providing 

contextual data that helps distinguish between true bladder events and motion-induced 

artifacts. Additionally, AR may potentially be applied in neuromodulation strategies to 

reduce false positives in event classification systems, ensuring that electrical stimulation is 

administered precisely when true bladder contractions occur, thus improving the efficacy of 

treatments for LUTD. In the future, we aim to expand our work on larger datasets, human 

studies and explore additional approaches to enable on-chip activity tracking to improve 

wireless, catheter-free ambulatory bladder monitoring and treatment.
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Figure 1. 
Overview of the methodology. Simultaneous pressure and IMU recordings were collected 

from an ambulating Yucatan minipig subject.
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Figure 2. 
Top 15 features identified by the random forest feature importance technique across all trials 

in the pig dataset, identified by time/frequency (t/f) domain, body/gravity components, axis 

(x, y, z) or magnitude, and function (e.g., maximum, minimum, mean, etc., out of which top 

10 were used for activity classification.).
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Figure 3. 
(a) Contraction events detected in Experiment 1 (pressure-only) displaying only the bladder 

pressure data with contractions identified, without considering activity data. (b) Similar 

to (a), showing detected contractions without activity integration for Experiment 2. (c) 

Validated events in Experiment 1 with activity integration: Incorporating activity data, 

differentiating between valid and invalid contractions. Events categorized as invalid occur 

during activity periods. (d) Similar to (c) for Experiment 2. The color regions in (c) and 

(d) represent different activities: green for “WK” (walking), yellow for “ST” (standing/

stationary), and blue for “RN” (running).
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Table 2.

Results of classifiers on the HAR dataset with feature size n = 50, using features identified by principal 

component analysis (PCA), random forests (RF), and random projections (RP), with classifiers Gaussian 

Naïve Bayes (GB) and logistic regression (LR).

Technique Classifier Accuracy (%) F1-score

PCA GB 87.8 0.88

LR 93.9 0.94

RF GB 87.1 0.88

LR 93.9 0.94

RP GB 87.3 0.87

LR 93.8 0.94
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Table 3.

Results of activity classification in pig dataset using logistic regression (LR) for varying sampling frequencies 

(Fs).

Exp. Trials (Fs) Accuracy F1-score

P1 100 96.8 0.97

2 50 92.2 0.91

25 88.1 0.87

P2 100 95.4 0.95

1 50 90.1 0.89

25 83.9 0.83

P3 100 96.9 0.97

2 50 92.3 0.92

25 88.5 0.88
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Table 4.

Confusion matrix of the detected and verified activities for all experiments in the pig dataset.

Experiment Trials Activity T’ F’

P1 2

WK T 11 1

F 1 11

RN T 8 1

F 1 8

ST T 13 1

F 1 13

P2 1

WK T 3 1

F 1 3

RN T 1 0

F 0 1

ST T 1 1

F 1 1

P3 2

WK T 6 1

F 1 6

ST T 10 2

F 2 10

Activities include Walk (WK), Run (RN) and Stand (ST).
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