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Abstract 

Radiopharmaceutical therapy (RPT) is an emerging prostate cancer treatment that delivers radiation to specific 
molecules within the tumor microenvironment (TME), causing DNA damage and cell death. Given TME 
heterogeneity, it's crucial to explore RPT dosimetry and biological impacts at the cellular level. We integrated 
spatial transcriptomics (ST) with computational modeling to investigate the effects of RPT targeting 
prostate-specific membrane antigen (PSMA), fibroblast activation protein (FAP), and gastrin-releasing peptide 
receptor (GRPR) each labelled with beta-emitting lutetium-177 (177Lu) and alpha-emitting actinium-225 (225Ac). 
Methods: Three ST datasets from primary tissue samples of two prostate cancer patients were obtained. 
From these datasets, we extracted gene expressions, including FOLH1, GRPR, FAP, and Harris Hypoxia, and 
estimated the proportions of different cell types—epithelial, endothelial, and prostate cancer (PC) cells—in the 
corresponding ST spots. We computed the spatiotemporal distribution of each RPT targeting PSMA, FAP, and 
GRPR at each ST spot by solving the partial differential equation (PDE) using a convection-reaction-diffusion 
(CRD) model, assuming similar pharmacokinetic parameters across all ligands. A well-established 
physiologically based pharmacokinetic (PBPK) model was used to simulate the input function in the prostate, 
carefully calibrated to deliver 10 Gy to the prostate tumor over 20 days. Dosimetry was estimated using the 
Medical Internal Radiation Dose (MIRD) formalism, applying the dose point kernels (DVK) method. The 
survival probability was estimated using the linear quadratic model, applied to both beta-emitting RPT labeled 
with 177Lu and 225Ac. A modified linear quadratic model was used to estimate the bioeffect of the alpha-emitting 
RPT. 
Results: The results demonstrate distinct dose-response and efficacy patterns across ST samples, with 
FAP-targeted RPT exhibiting limited effectiveness in tumor cell-rich areas compared to PSMA- and 
GRPR-targeted therapies. GRPR-targeted RPT showed higher resistance in hypoxic regions relative to the 
other therapies. Additionally, 225Ac-labeled RPT was more effective overall than 177Lu-labeled RPT, especially in 
areas with low cancer-cell fraction or high hypoxia. The findings suggest that a combination of 225Ac-labeled 
FAP- and PSMA-targeted RPT offers the best therapeutic strategy. 
Conclusion: The proposed method, which combines ST and computational modeling to determine the 
dosimetry and cell survival probability of RPT in the TME, holds promise for identifying optimal personalized 
RPT strategies. 

Keywords: Radiopharmaceutical/Radioligand Therapy (RPT/RLT), Prostate Cancer, Spatial Transcriptomics, Pharmacokinetic 
modeling, Dosimetry 
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Introduction 
Radiopharmaceutical therapy (RPT) has recently 

gained increasing attention in advancing cancer 
treatment strategies. The primary objective of 
molecular target-specific RPT is to deliver radiation 
specifically to target molecule that is expressed on the 
surface of cancer cells or to the tumor 
microenvironment (TME), inducing DNA damage 
and ultimately leading to cell death[1–8]. The 
evolving landscape of RPT prominently centers on 
two clinically approved cancer targets: 
prostate-specific membrane antigen (PSMA) and 
somatostatin receptor 2 (SSTR2). It also encompasses 
an expanding list of candidates, including fibroblast 
activation protein (FAP), gastrin-releasing peptide 
receptor (GRPR), and Integrin αvβ6, with ongoing 
clinical studies demonstrating their potential in 
treating various metastatic cancers[8,9]. Amongst 
these, PSMA-targeted RPT has emerged as a crucial 
treatment option for metastatic castration-resistant 
prostate cancer (mCRPC)[1–3,10,11]. Notable 
radioligands employed in PSMA-targeted RPT are 
labeled with lutetium-177 (177Lu) and actinium-225 
(225Ac)[12–15]. While 177Lu emits beta particles with an 
maximum energy of 498 KeV and a tissue range of 0.7 
to 2.1 mm, 225Ac emits alpha particles with energies 
ranging from 5.8 to 8.4 MeV and a tissue penetration 
of 47 to 85 µm[2]. Alpha particles, characterized by 
high linear energy transfer (LET), can cause severe 
DNA double-strand breaks (DSBs) regardless of dose 
rate, cell cycle, or oxygenation status [13,16]. 
Consequently, patients who do not respond to 
beta-emitting RPT may potentially overcome 
resistance by receiving alpha-emitting RPT as it 
induces cellular death even with minimal alpha 
particle traversal through the cell nucleus[13,16,17]. 
Clinical trials are currently underway to validate the 
efficacy of alpha-emitting RPT[4,6,18].  

In RPT, an absorbed dose serves as a key 
physical quantity for translating biological effects 
such as toxicity and tumor reduction[3,6,19]. 
Absorbed dose is defined as the energy absorbed per 
unit mass of tissue by ionizing radiation and relies on 
the spatiotemporal distribution of radionuclides 
which can be estimated by pharmacokinetic models 
and the types of emitted radiation[20–23]. However, 
the distribution of radiopharmaceuticals within tumor 
tissue may exhibit significant heterogeneity due to 
variations in local physiology and the biochemical 
properties of radiopharmaceuticals[24–26]. Moreover, 
the TME inherently contributes to heterogeneity in 
absorbed dose and, consequently, biological 
effects[19,22]. The TME comprises diverse cellular 
components, including cancer-associated fibroblasts 
(CAFs) and endothelial cells of the neo-vasculature, 

which can influence the processes of pro-/anti- 
tumorigenic factors characterized by acidity, altered 
metabolism, and hypoxia[27,28]. For instance, 
hypoxia has been identified as one of the resisting 
factors in RPT[29]. In addition, the expression levels of 
target molecules, such as PSMA in prostate cancer 
cells, varies depending on the specific location of the 
cancer cells within the TME[30]. Hence, under-
standing these cellular-level variations is crucial, 
especially for alpha-emitting RPT, as it requires 
precise dose assessment at the microscopic scale due 
to its limited radiation penetration depth[25,26].  

Spatial transcriptomics (ST) is a cutting-edge 
technique that revolutionizes our understanding of 
tumor heterogeneity, providing genome-wide expres-
sion data with spatial information at the resolution of 
dozens of cells[31–34]. It combines a barcode-based 
RNA capture method with high-throughput RNA 
sequencing to reconstruct spatially resolved 
transcriptomic information[31]. Hence, ST offers a 
unique opportunity to study the heterogeneity of gene 
expression patterns within tumors and the complex 
interactions between various cell types within the 
TME[35–37]. In this regard, incorporating high 
resolution molecular information derived from ST, 
such as PSMA expression and hypoxia gene 
signatures, and the distributions of various cell types 
into RPT dosimetry simulation enables a more precise 
assessment of therapeutic response and facilitates the 
optimization of treatment strategies[29,38–40]. 

In this study, our objective was to develop a 
comprehensive method for modeling the dosimetry 
and biological effects of RPT at the cellular level, with 
a focus on addressing microscopic heterogeneities. To 
achieve this, we employed ST and pharmacokinetic 
models, focusing on RPT with 177Lu and 225Ac-labelled 
ligands. We leveraged ST datasets of prostate cancer 
(PC) tissue and extracted the spatial distribution of 
various gene expressions associated with TME such as 
a gene coding the target for RPT and hypoxia-related 
gene signature as well as cell types (epithelial, endo-
thelial, and malignant cells) within the microscopic 
tumor tissue[39]. Subsequently, we computed the 
spatiotemporal biodistribution of each radiopharma-
ceutical using a three-compartment (interstitial, 
bounded, internalized) convection-reaction-diffusion 
(CRD) model, incorporating various ST-based feature 
maps. The absorbed dose map was then calculated 
using dose-point kernel (DPK) method, following the 
Medical Internal Radiation Dose (MIRD) formalism. 
The resulting dose distribution was analyzed using 
the dose-volume histogram (DVH). Finally, we 
assessed the biological effect by calculating the cell 
survival probability using a linear quadratic (LQ) 
model and modified LQ model, which accounts for 
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the dose and hypoxia map derived from ST 
datasets[40–43]. 

Results 
In silico modeling with spatial transcriptomics 

Our methodology for determining the dose and 
cell survival probability of RPT with the ST is outlined 
in the Methods section, accompanied by a schematic 
summary of study design (Figure 1). Initially, we 
utilized the CellDART[44] algorithm to estimate the 
spatial distribution of cell types in TME, integrating 
ST data with single-cell RNA-seq data (scRNA-seq) 
obtained from PC tissues. Subsequently, utilizing the 
spatial distribution maps of various cell types and 
gene expression within the TME, we simulated the 
spatial-temporal distribution of [177Lu]Lu- and 
[225Ac]Ac-PSMA-ligand over a 14-day period 
targeting 10 Gy by solving partial differential 
equations (PDEs) representing the three-compartment 
CRD-based model. Absorbed dose map was then 
estimated by integrating activities solved by PDEs 
and employing the DPK method. Additionally, we 
quantified the bioeffect of the corresponding dose 
map by calculating cell survival probability using LQ 
models. The feasibility of the model was tested in 
prostate cancer tissues for PSMA-targeted RPTs. It 
was also tested for FAP and GRPR, which are other 
emerging targets for RPT in cancer. 

Spatial distribution of endothelial cells, tumor 
cells, hypoxia, and PSMA binding density 

Three PC tissues were utilized for in silico 
modeling of PSMA-targeted RPTs (Figure 2). The first 
PC tissue (PC1) was extracted from a stage IV prostate 
cancer patient presenting with acinar cell carcinoma 
and the international society of urological pathology 
(ISUP) grade of 2 or 3. The second and third PC 
tissues (PC2 and PC3) were both obtained from 
treatment-naïve prostate cancer patients with 
adenocarcinoma and the ISUP grade of 3. ST data 
revealed heterogeneous spatial distributions of PSMA 
expression, hypoxia, endothelial cells, and PC cells, 
while distributions of the other cell types were also 
identified (Figure S1A-S1C). The capture area for all 
three ST datasets illustrated (Figure 2) is 6.5 x 6.5 mm. 
There are a total of 4992 total spots per capture area 
and each spot is 55 µm in diameter with a 100 µm 
center to center distance between spots. FOLH1 
expression is used as surrogate for PSMA expression, 
and hypoxia distribution is estimated using gene sets 
defined by the Harris hypoxia signature[39]. Three PC 
tissues showed distinctive spatial patterns of gene 
expression and cell types (Figure S2B-S2D). In PC1, 
distinct proportions of ST spots encapsulated vascular 

structures (5.35%), hypoxic regions (9.59%), and high 
PSMA density regions (56.49%). PC2 exhibited 
different percentages, registering at 25.42%, 15.08%, 
and 27.14%, respectively. Meanwhile, PC3 reported 
percentages of 12%, 14.22%, and 41.85%. The 
dissimilarity between the distributions of vessel and 
PSMA density maps measured by Kullback-Leibler 
divergence (KLD) was 0.20, 0.95, and 0.25 for each 
respective dataset. Similarly, the dissimilarity 
between the distributions of hypoxia and PSMA 
density maps exhibited values of 0.33, 1.13, and 0.89 
for the three datasets, respectively. 

Dose distribution in PSMA-targeted RPTs 
The spatiotemporal distributions of radioactivity 

corresponding to [177Lu]Lu- and [225Ac]Ac-PSMA- 
ligand were simulated based on the derived maps of 
cancer cells and gene expression. The resulting 
absorbed dose maps were derived, and kernel density 
estimation (KDE) was applied to visualize the 
probability density distribution of the dose in the 
tumor cell-abundant region (Figure 3), while the DVH 
analysis provided insights into the distribution of 
absorbed doses in entire region (Figure S2A). Across 
all three tissue simulations, [225Ac]Ac-PSMA-ligand, 
on average, deposited a lower dose in the target area 
compared to [177Lu]Lu-PSMA-ligand. Specifically, in 
PC1, the average absorbed doses were 12.97 Gy and 
9.08 Gy for [177Lu]Lu-PSMA-ligand and 
[225Ac]Ac-PSMA-ligand, respectively. For PC2, these 
values were 3.54 Gy and 2.39 Gy, and for PC3, 4.60 Gy 
and 2.83 Gy. Consequently, the KDE exhibited a 
steeper curve centered around zero for [225Ac]Ac- 
PSMA-ligand compared to [177Lu]Lu-PSMA-ligand.  

Overall, elevated doses were delivered to ST 
spots with a higher concentration of PC cells. 
However, the dose plateaued after reaching a certain 
threshold in PC1 and PC3 (Figure S3A). For example, 
in PC1, when examining tumor cell-depleted regions, 
we found a positive relationship between dose and 
tumor cell fraction in for both 177Lu (Spearman ρ = 
0.304, p < 0.0001) and 225Ac (Spearman ρ = 0.305, p < 
0.0001). However, in tumor cell-abundant regions, we 
observed no significant relationship between dose 
and PC cell fraction in neither [177Lu]Lu- nor 
[225Ac]Ac-PSMA-ligand. Conversely, in PC2, spots 
with a higher tumor cell fraction consistently received 
a higher dose. In both tumor cell-depleted region and 
tumor cell-abundant region, 177Lu and 225Ac showed 
positive relationship between the tumor cell fraction 
and the absorbed dose. Notably, 177Lu showed 
stronger correlation (tumor cell-depleted: 0.348, 
p<0.0001, tumor cell-abundant: 0.416, p<0.0001), 
compared to 225Ac (tumor cell-depleted: 0.183, 
p<0.0001, tumor cell-abundant: 0.364, p<0.0001). 
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Figure 1. Schematics of dose and bioeffect modeling on based spatial transcriptomics (ST). (A) The distributions of various cell types (endothelial, epithelial, 
tumor, …) are determined using CellDART utilizing single-cell RNA-seq data (scRNA-seq) and ST. (B) The tissue composition is subsequently clarified by delineating the spatial 
distribution of distinct cell types and gene expressions. (C) Each ST spot comprises a small number of cells, each contributing to the heterogeneity of the tumor 
microenvironment (TME). (D) The prostate-membrane specific antigen (PSMA, green) is expressed on the surface of the prostate cancer cell (magenta). Radioligands labeled 
with 177Lu or 225Ac are primarily utilized for PSMA-targeted radiopharmaceutical therapy (RPT), emitting beta and alpha particles, respectively. Simulating the time-activity curve 
(TAC) of the radioligand in each spatial transcriptomics (ST) spot involves solving a partial differential equation (PDE) representing a pharmacokinetic model. Dose and its 
bioeffect are modeled using a dose point kernel (DPK) and a modified linear quadratic (LQ) model. This allows for the assessment of RPT efficacy in each ST spot. 

 

Cell survival probability analysis in 
PSMA-targeted RPTs 

Cell survival probability within tumor 
cell-abundant regions was estimated, and the density 
distribution was visualized using KDE (Figure 4) in 
simulations of both [177Lu]Lu- and [225Ac]Ac-PSMA- 
targeted RPT. Notably, distinct peaks in cell survival 
probability were observed in both cases, with 
[177Lu]Lu- exhibiting a more pronounced difference 

between the means of these peaks compared to 
[225Ac]Ac-PSMA-targeted RPT. This observation 
suggests that [225Ac]Ac-PSMA-targeted RPT induces a 
more selective response in cell survival probability, 
with cells belonging to either peak more likely to be 
killed. Conversely, in [177Lu]Lu-PSMA targeted RPT, 
regions corresponding to the second peak exhibit a 
higher survival probability, indicating greater 
resistance to RPT. 
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Figure 2. Spatial Transcriptomics (ST) mapping of prostate cancer (PC) tissue (PC1 - top, PC2-middle, PC3 - bottom). Each ST spot covers cell types/gene 
expression within a diameter of 55 micrometers, with a distance of 100 micrometers between the spots. The fractions of different cell types (endothelial and prostate cancer 
cells) in the corresponding ST locations are mapped. The color scale for each cell type represents the fraction of that specific cell type in each ST spot, with all cell type fractions 
summing up to 1, reflecting the cellular composition in each ST location. The Hypoxia map shows the distribution of the hypoxia-related gene scores, Harris Hypoxia, while the 
PSMA density map illustrates the spatial expression of the PSMA encoding gene, FOLH1. The color scale for both Hypoxia and PSMA density map represents the values after 
normalization and log-transformation of raw counts of each Harris Hypoxia and FOLH1 expressions. 

 
 The simulation result suggests that within the 

TME, tumor cell-abundant regions are more 
responsive to RPT, whereas tumor cell-depleted 
regions tend to exhibit resistance following RPT. 
Notably, 225Ac-labeled RPT demonstrates superior 
efficacy in reducing tumor cell survival probability 
especially in tumor cell-depleted areas, compared to 
177Lu-labeled RPT. The average cell survival 
probabilities within tumor cell-abundant regions were 
determined to be 0.21 and 0.11 in PC1, 0.50 and 0.27 in 
PC2, and 0.48 and 0.27 in PC3 for [177Lu]Lu- and 
[225Ac]Ac-PSMA-ligand, respectively. In tumor 
cell-depleted region, the corresponding averages were 
0.51 and 0.31 in PC1, 0.74 and 0.42 in PC2, and 0.60 
and 0.31 for [177Lu]Lu- and [225Ac]Ac-PSMA-ligand, 
respectively. With an increase in tumor cell fraction in 
ST spots, the cell survival probability decreased 
(Figure S3B).  

Influence of PSMA receptor density and 
hypoxia in PSMA-targeted RPTs 

The PSMA density exhibited a strong negative 
correlation with cell survival probability in all tissue 
samples, particularly in tumor cell-abundant regions 

in both [225Ac]Ac- (PC1: Spearman ρ = −0.76, p<0.0001, 
PC2: Spearman ρ = −0.68, p<0.0001, PC3: Spearman ρ 
= −0.66, p<0.0001) and [177Lu]Lu-PSMA-targeted RPT 
simulation (PC1: Spearman ρ = −0.76, p<0.0001, PC2: 
Spearman ρ = −0.59, p<0.0001, PC3: Spearman ρ = 
−0.64, p<0.0001) (Figure 5A). Overall, Compared to 
[177Lu]Lu-, [225Ac]Ac-PSMA-targeted RPT 
demonstrated lower resistance to RPT in areas with 
low PSMA density, resulting in a decreased cell 
survival probability. The influence of PSMA density 
on tumor cell killing effect was slightly more 
pronounced in [177Lu]Lu- compared to 
[225Ac]Ac-PSMA-targeted RPT in regions with low 
PSMA density. This suggests that the efficacy of RPT 
was more sensitive to PSMA density in 177Lu than in 
225Ac.  

Hypoxia showed a weak positive correlation 
with cell survival in both [177Lu]Lu- and 
[225Ac]Ac-PSMA targeting RPT within the tumor 
cell-depleted region in general (Figure 5B). However, 
a weak or no significant correlation was observed in 
the tumor cell-abundant region. Despite hypoxia 
being traditionally regarded as a resistance factor for 
RPT, its impact was relatively inconsequential in the 
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regions where a proportion of PC cells is higher. 
When comparing the cell survival probability in 
[177Lu]Lu- and [225Ac]Ac-PSMA, [225Ac]Ac-PSMA 
exhibited an overall lower probability of cell survival 
across all hypoxia score ranges in the tumor 
cell-abundant regions. While both 177Lu and 225Ac 
exhibited variable patterns of association with cell 
survival in three tissues, 225Ac had a relatively 
consistent cell survival compared to 177Lu, irrespective 

of the degree of hypoxia. 
In additional analyses, the association between 

cell survival with hypoxia and PSMA density was 
analyzed in tumor cell-abundant regions of PC1 tissue 
using various thresholds (Figure S4A). Notably, 225Ac 
exhibited an increased probability of cell death in 
regions characterized by low PSMA density and high 
levels of hypoxia, compared to 177Lu (Figure 
S4B-S4F).  

 

 
Figure 3. Absorbed Dose of [177Lu]Lu- and [225Ac]Ac-PSMA-targeted RPT in three prostate cancer tissues. The spatial distribution of D is depicted derived from 
each 177Lu- (left) and 225Ac-PSMA-targeted RPT simulation (middle). Kernel Density Estimation (KDE) demonstrates the distribution of D (right) in the tumor cell-abundant area 
for 177Lu-PSMA-targeted RPT (yellow) and 225Ac-PSMA-targeted RPT (turquoise), defined by a cutoff of 0.01 in the prostate cancer map. The dashed line indicates the average 
values of D. 



Theranostics 2024, Vol. 14, Issue 18 
 

 
https://www.thno.org 

7128 

 
Figure 4. Cell Survival Probability (Ps) of [177Lu]Lu- and [225Ac]Ac-PSMA-targeted RPT in three prostate cancer tissues. The spatial distribution of Ps is 
depicted derived from each [177Lu]Lu- (left) and [225Ac]Ac-PSMA-targeted RPT (middle) simulation. Kernel Density Estimation (KDE) demonstrates the distribution of Ps (right) 
in the tumor cell-abundant area for [177Lu]Lu- (yellow) and [225Ac]Ac-PSMA-targeted RPT (turquoise), defined by a cutoff of 0.01 in the prostate cancer map. The dashed line 
indicates the average values of Ps. 

 

In silico modeling for other targets: FAP and 
GRPR 

The proposed method is readily adaptable to a 
diverse spectrum of RPT target molecules and 
radionuclides, providing a more flexible approach to 
predict and comprehend the efficacy of RPT. In this 
study, we extended the application of our model to 
investigate the spatial distribution and biological 
effects of GRPR and FAP-targeted RPTs. Although the 
parameters for PBPK and CRD models vary 
depending on the characteristics of the ligand in 
practice, here we assumed that RPTs targeting GRPR 

and FAP have the similar pharmacokinetic 
characteristics as those targeting PSMA.  

FAP exhibited an overall weakly negative 
correlation with the tumor cell fraction (Spearman ρ = 
−0.070, p=0.0001) (Figure 6A). The cell survival 
probability showed a weak correlation with tumor 
cell fraction (177Lu: Spearman ρ = −0.081, p<0.0001, 
225Ac: Spearman ρ = −0.083, p<0.0001) and mildly 
increased in the tumor cell-abundant regions for both 
177Lu- and 225Ac-labeled RPTs (Figure 6C). Despite 
this, overall cell survival was lower in 225Ac- 
compared to 177Lu-labeled RPTs. In the case of GRPR, 
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the distribution of tumor cells was weakly and 
positively correlated with the GRPR expression 
(Spearman ρ = 0.198, p<0.0001) (Figure 6B). 
Accordingly, the tumor cell fraction showed a 
negative correlation with cell survival probability 
(177Lu: Spearman ρ = −0.408, p<0.0001, 225Ac: 
Spearman ρ = −0.339, p<0.0001) (Figure 6D). The cell 
survival rate was consistently lower in 255Ac-labeled 
RPTs compared to 177Lu-labeled RPTs. In both FAP 
and GRPR, there was a trend toward an abrupt 
increase in cell survival probability in highly hypoxic 
regions, which was more pronounced in 255Ac-labeled 
RPTs.  

FAP, GRPR and PSMA 
The biological effect of RPTs using different 

targets, FAP, GRPR, and PSMA, was compared 
(Figure 7A). In general, PSMA exhibited lower cell 
survival compared to FAP and GRPR in most regions 
for both 177Lu and 255Ac-labeled RPTs, indicating the 
effectiveness of targeting PSMA. Yet, 225Ac showed 
higher treatment efficacy in FAP or GRPR than in 
PSMA at multiple spots of ST (FAP > PSMA: 11.4%, 
GRPR > PSMA: 10.25%), while in 177Lu, fewer spots 

showed superior efficacy (FAP > PSMA: 6.8%, GRPR 
> PSMA: 3.2%) (Figure 7B). For FAP, when the 
corresponding spots were mapped to the tissue, their 
distribution was concentrated at the tumor 
cell-depleted region where the PSMA density is lower 
and FAP density is higher than in the abundant 
region. In the case of GRPR, fewer spots showed 
differences with PSMA compared to FAP, and the 
distinction between FAP and GRPR was less 
pronounced in 255Ac than in 177Lu. Also, in 225Ac, 
fewer spots showed ineffectiveness, e.g. cell survival 
probability above 0.5, in both targets (FAP and PSMA: 
0.8%, GRPR and PSMA: 1.0%), compared to those in 
177Lu (FAP and PSMA: 12.5%, GRPR and PSMA: 
13.0%) (Figure 7C). When the resistant spots were 
mapped to the tissue, a substantial overlap was 
observed with regions identified as more effective in 
either FAP or GRPR than PSMA, but only for 
177Lu-labeled RPTs. This suggests that despite limited 
cell-killing effect with GRPR and FAP in these 
samples, these two different targets exhibited 
improved efficacy over PSMA in some regions 
supporting combination therapy. 

 

 
Figure 5. Correlation between influencing factors of PSMA-RPT and cell survival probability in the tumor cell-abundant regions of three prostate cancer 
tissues (PC1-top, PC2-middle, PC3-bottom). (A) Correlation between PSMA density and cell survival probability (B) Correlation between hypoxia and cell survival 
probability. The solid line represents the estimation based on locally estimated scatterplot smoothing (LOESS) local regression fitting, and the area around the solid line indicates 
the 95% confidence of the fitting lines. 
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Figure 6. Cell survival probability of RPTs for two additional targets: fibroblast activation protein (FAP) and gastrin-releasing peptide receptor (GRPR). 
(A) The spatial distribution of FAP expression mapped from spatial transcriptomics (ST) of PC1 and the correlation between the prostate cancer cell fraction and FAP expression 
level. (B) The spatial distribution of GRPR expression mapped from ST of PC1 and the correlation between the prostate cancer cell fraction and GRPR expression level. (C) The 
spatial distribution of cell survival probability in [177Lu]Lu-labelled FAP-targeted RPT (left, top) and [225Ac]Ac-labelled FAP-targeted RPT (right, top). Correlation between cell 
survival probability and the prostate cancer cell fraction (middle)/hypoxia(bottom) in FAP-targeted RPT. (D) The spatial distribution of cell survival probability in 
[177Lu]Lu-labelled GRPR-targeted RPT (left, top) and [225Ac]Ac-labelled GRPR-targeted RPT (right, top). Correlation between cell survival probability and the prostate cancer cell 
fraction (middle)/hypoxia(bottom) in GRPR-targeted RPT. The solid line represents the estimation based on locally estimated scatterplot smoothing (LOESS) local regression 
fitting, and the area around the solid line indicates the 95% confidence of the fitting lines. 
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Figure 7. Efficacy of RPT utilizing various targets: Fibroblast activation protein (FAP), gastrin-releasing peptide receptor (GRPR) and prostate-specific 
membrane antigen (PSMA). (A) The scatter plots show the comparison in cell survival probability between FAP-/GRPR-targeted RPT and PSMA-targeted RPT. The dots 
located below the diagonal line indicate the region where the efficacy of the PSMA-targeted RPT is lower than that of the FAP- or GRPR-targeted RPT. (B) The spatial distribution 
of spots showing higher efficacy in either FAP- or GRPR- compared to PSMA-targeted RPT. (C) The spatial distribution of the spots showing resistance in both FAP-PSMA and 
GRPR-PSMA pairs. The red dots indicate the corresponding locations of the spots, while the white dots represent the remaining spots within the tumor-cell abundant region 
using threshold of 0.01. 
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Discussion 
RPT has emerged as a promising and safe 

targeted approach for treating various cancers. In this 
study, we proposed a novel approach to 
microscopically analyze the dosimetry and biological 
effects of RPT by combining novel ST techniques and 
conventional pharmacokinetic modeling. Utilizing ST 
data from prostate cancer tissue, we simulated PSMA, 
FAP, and GRPR-targeted RPTs with both beta- and 
alpha- emitting ligand accounting for the complex 
heterogeneities within the TME. In the case of 
PSMA-targeted RPT, ST spots with a higher PC cell 
fraction received a higher dose, resulting in lower PC 
cell survival probability. Even in ST spots with lower 
PC cell fraction, 225Ac demonstrated a lower cancer 
cell survival probability, indicating its high efficacy in 
RPT. Our in silico model challenged traditional 
notions, indicating minimal implications of hypoxia 
resisting PSMA-RPT in both tumor cell-abundant and 
depleted regions. Yet, [225Ac]Ac-PSMA-ligand 
displayed increased efficacy compared to [177Lu]Lu- 
PSMA-ligand, underscoring its potential in 
overcoming hypoxic microenvironments. Further-
more, the strong negative correlation of PSMA 
density with cell survival rate, particularly 
accentuated in 225Ac, adds a layer of intricacy to RPT 
dynamics, highlighting the importance of considering 
ligand-specific responses for enhanced therapeutic 
outcomes. When our proposed in silico model was 
applied to FAP and GRPR, 225Ac consistently showed 
superior efficacy compared to 177Lu, although the two 
targets exhibited distinct spatial patterns of response 
to RPT. Since FAP had a trend of lower expression at 
the tumor cell-abundant region than in the depleted 
region, it showed resistance to RPT in tumor 
cell-enriched regions. The overall therapeutic efficacy 
of PSMA was superior compared to FAP and GRPR, 
assuming that both ligands possess similar 
pharmacokinetic parameters. These findings 
emphasize the diverse responses to different targets 
and radionuclides, underscoring the need for tailored 
approaches in RPT.  

Understanding the biological impact of RPT 
relies on accurately assessing the absorbed dose, 
which, in turn, faces challenges due to spatial and 
temporal heterogeneities[45]. Spatially, RPT deposits 
nonuniform energy in tissues, influenced by factors 
such as molecular target distribution and physiolo-
gical tracer transport[24,26,27,35]. Temporally, the 
dose rate is determined by the initial activity and 
half-life, affecting DNA double-strand break 
induction kinetics and treatment outcome[46]. A 
recent study showed the heterogeneity of absorbed 
dose and the biological effect of alpha and beta 
emitting RPTs by integrating autoradiography with 

hematoxylin and eosin stained slide from a mouse 
model of prostate cancer[47]. In the current work, we 
specifically addressed the spatial complexities of the 
TME in dosimetry. Leveraging ST, a cutting-edge 
technique offering genome-wide expression profiling 
at a micrometer scale, our study pioneers the 
application of ST to microscopic dosimetry for RPT. 
This approach comprehensively considers variables 
such as spatial distribution of the target, diverse cell 
types, and the functional characteristics of the TME 
simultaneously. 

On a microscopic level, the TME, comprising 
elements such as blood vessels and CAF, plays a role 
in altering RPT resistance and clinical outcomes[48]. 
The targeted dose for this study was 10 Gy 14 days 
post-injection using the prostate tumor model29, and 
the dose delivered to PC cells was better conformed to 
the target dose in [177Lu]Lu- compared to 
[225Ac]Ac-PSMA-targeted RPT (Table S1, Figure 
S2C). Yet, in 225Ac, the dose distribution was less 
heterogeneous and more selective to tumor 
cell-abundant areas. In RPT, factors such as injected 
activity, vessel distribution, and input function (IF) 
add complexity to achieving targeted dose precisely. 
In our investigation, the IF of 225Ac was scaled down 
by a factor of 100 compared to 177Lu, aligning with 
clinical practice of injected dose. Nevertheless, this 
resulted in lower conformity index (CI) values, 
particularly in the case of 225Ac, suggesting the need 
for a reevaluation of current injected dose practices in 
the clinical setting. In particular, the CI values in PC2 
were significantly low in both 177Lu and 225Ac, 
potentially attributed to the low PSMA density in the 
tissue and its minimal overlap with vascular matrices 
(Figure S2B-S2C). Despite both PC1 and PC3 
exhibiting high PSMA density, CI values were higher 
in PC1, indicating better conformity with the targeted 
dose. Despite low vascularity in PC1, its relatively 
high overlap with PSMA density may contribute to 
higher CI values. This underscores the importance of 
a careful investigation into the current norm of fixed 
injected dose, considering both PSMA density and its 
overlap with the vascular component in TME for 
precise therapy when utilizing PSMA-ligands. 
Furthermore, the shorter-pathlength beta emitter such 
as 177Lu and alpha emitter such as 255Ac travels 
relatively short range, therefore, their microscale 
dosimetry in tissue particularly crucial[45]. On the 
other hand, due to its shorter range and smaller 
S-value kernel size compared to 177Lu, 225Ac exhibited 
a narrower dose distribution with a higher peak 
(Figure 3), translating into smaller HI and GI values. 

 Overall, a consistently lower cancer cell survival 
probability was observed in 225Ac compared to 177Lu 
in all three PC tissues (Figure 4). This discrepancy can 
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be attributed to the distinct characteristics of alpha 
particles, which possess significantly greater energy 
per disintegration and exhibit a relatively limited 
penetration range compared to beta particles, 
categorizing them as high-linear energy transfer (LET) 
radiation sources[14]. Recent clinical investigations 
have showcased the efficacy of alpha-emitting 
radiopharmaceuticals as a salvage therapy 
subsequent to the inadequacy of beta-emitting 
RPT[49–51]. Although 177Lu-labeled RPTs showed a 
higher average absorbed dose than 255Ac-labeled RPTs 
in the three tissues (Figure 3), probably due to the 
cross-fire effect of 177Lu, higher DSB load in 225Ac 
resulted in an overall lower average cancer cell 
survival. The cell survival probability distributions for 
both 225Ac and 177Lu revealed two distinctive peaks, 
with the second peak in the distribution of 177Lu 
indicating considerable resistance to therapy. The 
emergence of these dual peaks in the cell survival 
probability distribution could likely result from the 
interplay between the heterogeneous target molecule 
distribution and distance from the vessels (Figure 2 
and Figure 4). PC2 and PC3 exhibited greater 
resistance in both [177Lu]Lu- and [255Ac]Ac-PSMA- 
targeted RPT, represented by a higher proportion of 
spots belonging to the second peak than PC1. This 
could be attributed to a significant decrease of PSMA 
density in the tumor cell-abundant and endothelial 
cell-depleted regions of PC2 and PC3 compared to 
PC1, leading to inefficient delivery of the RPTs to 
those areas (Figure S2D). 

Recent efforts have been directed towards 
elucidating the factors that influence RPT, 
encompassing target molecule density, hypoxia, 
vascularization, and DNA repair pathways[52]. We 
evaluated the relationship between cell survival 
probability and RPT influencing factors in the tumor 
cell-abundant regions, such as target molecule density 
and hypoxia. Notably, target density displayed a 
negative correlation with the cell survival rate in 
PSMA, FAP, and GRPR (Figure 6C-6D, Figure S5). In 
contrast to 177Lu, 225Ac exhibited a low cancer cell 
survival probability even in areas with low target 
density, which can be attributed to the high DSB load 
induced by alpha particles. However, within ST 
regions characterized by elevated target density, the 
cell survival probability did not necessarily exhibit a 
decreasing trend; in some instances, particularly for 
PSMA and GRPR, it even displayed a slight increase. 
In both the 177Lu- and 225Ac-PSMA targeting RPT 
graphs, there is a slight trend towards increased cell 
survival at the very tail of the distributions for PC1 
and PC2 (Figure 5A, Figure S4). For GRPR, the spatial 
expression pattern is sparse with many identical 
values due to the intrinsic limitation of spatial 

transcriptomics (Figure S5B). To better represent this, 
we created a bar graph displaying the median cell 
survival values within each bin of target expression 
(e.g., GRPR or FAP), divided into 10 intervals (Figure 
S8). Notably, a slight increase in cell survival 
probability was observed in highly target-rich areas, 
particularly with 177Lu- -GRPR targeting RPT, 
although this effect was confined to just a few spots 
on the graph's right side. Meanwhile, when RPT is 
directed at cells in the surrounding TME instead of 
directly targeting cancer cells, such as through FAP 
targeting, both 177Lu and 225Ac may exhibit reduced 
effectiveness in cancer cell-enriched areas. However, 
225Ac still maintains a slightly higher efficacy. This 
assertion has been substantiated through data, 
confirming its greater effectiveness even in these 
scenarios. It could explain the intratumoral 
heterogeneity of biological effect and consistently 
showed the higher efficacy of 225Ac in areas of low 
target density compared with 177Lu-labeled RPT 
(Figures 4, Figure 5A). In other words, the longer 
penetration depth in 177Lu-labeled RPT leads to a 
broader crossfire effect in cancer cell rich areas, while 
we could theoretically show that 225Ac proved more 
efficient in eliminating cells in low target expression 
areas, because its cancer cell killing relies more on the 
higher LET. 

On the other hand, the simulation revealed no 
significant correlation between hypoxia and cell 
survival probability with variable association patterns 
observed across the three tissues (Figure 5). Tumor 
hypoxia resulting from inadequate vascular networks 
can lead to resistance and poor response to RPT[18]. 
In this study, we used LQ model for 177Lu and 
adapted LQ model for 225Ac to account for the 
significant disparity in DSB rates between the two 
RPT modalities[29]. When modeling cell survival 
probability via the LQ model, we considered tumor 
hypoxia as a critical factor linked to RPT resistance 
and assigned distinct LQ parameters for each 
normoxia/hypoxia ST region. In regions 
characterized by notably intense hypoxia, 225Ac 
exhibited no significant increase of cell survival 
whereas 177Lu showed variable patterns of cell 
survival change. This partly supports the notion that 
225Ac, which mostly induces DSB, is less affected by 
oxidative damage-related SSB than 177Lu. The 
proposed method was further applied to in silico 
modeling of FAP- and GRPR-targeted RPTs. Of note, 
there was a more abrupt increase of RPT resistance in 
the highly hypoxic region for both 255Ac-labeled FAP 
and GRPR-targeted RPTs compared to 177Lu-labeled 
RPTs. This may be due to applying the same 
parameters of the LQ models in the highly hypoxic 
region as those used for PSMA, which may be 
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suboptimal for other targets such as FAP and GRPR, 
given their more sparse distribution patterns. 

The current in silico modeling approach allows 
for the simulation of biological effect of various RPTs 
with different targets and isotopes. As ST technology 
becomes more popular and datasets grow, our 
method facilitates the screening of RPT efficacy for 
various types of tumor tissues that show large 
intertumoral heterogeneities. Besides, as for the 
comparison between PSMA, FAP, and GRPR, we 
could further dissect the characteristics of TME by 
explaining on the microscale efficacy of RPTs where 
some targets are better than the other. To further 
refine the suggested model, an in-depth exploration of 
detailed spatial maps encompassing genes associated 
with DNA repair pathways is essential. Integrating 
these maps into both dose and bioeffect simulations 
will be crucial to finely dissect the influencing factors 
of RPTs. This approach will enable a more refined 
stratification of these factors and contribute to a 
deeper understanding of the therapy's dynamics. 
Additionally, our method allows for virtual 
experiments with RPT, accounting for various kinetic 
parameters and TME heterogeneities, as 
demonstrated using pharmacokinetic parameters 
from newly developed ligands [53,54] (Figure S9, 
Supplementary material). 

Notwithstanding the significant findings, this 
study possesses certain limitations that warrant 
consideration. One of the limitations of this study 
stems from its sole dependence on ST simulations, 
which hinders the ability to establish direct causal 
links behind the variations observed in cell survival 
probability. While the proposed method offers a 
valuable opportunity to explore dosimetry and its 
bioeffects within the tumor microenvironment—a 
critical area of study—this approach still requires 
preclinical or clinical validation. Future investigations 
should prioritize the examination of specific immune 
or radiation damage biomarkers in tissue samples and 
compare these findings with the biological effect 
predictions generated by our proposed model. 
Additionally, future studies should explore the spatial 
transcriptomics of samples collected both before and 
after radiopharmaceutical therapy (RPT) to gain 
insights into how RPT alters the tumor 
microenvironment. The sample size in the current 
study is also limited for drawing broad conclusions. 
However, despite this limitation, the spatial patterns 
of biological effects observed from PSMA-targeted 
radiopharmaceutical therapy across three distinct 
prostate cancer tissues (PC1, PC2, and PC3) were 
consistent with prostate cancer cell fractions as 
depicted in Figure S3B. Moreover, GRPR, which is 
predominantly expressed in the tumor core, exhibited 

correlation patterns similar to those of PSMA. In 
contrast, FAP, which is more prominently localized at 
the tumor periphery, displayed distinct patterns, as 
shown in Figure 6. These findings indicate that our 
simulations reliably capture the expected spatial 
distribution and associated biological effects of RPT. 
Additionally, ST relies on transcript data, which does 
not directly mirror protein expression. This 
discrepancy could lead to differences in real-world 
simulations, despite RNA transcripts typically being 
indicative of protein expression. Moreover, the 
simulation process itself is not without challenges. A 
concern is linked to the inherent limitations of ST, 
which provides transcriptomic profiles at a resolution 
spanning dozens of cells rather than at the single-cell 
level. Considering that ST spots within the tumor 
cell-abundant region comprise a mixture of tumor 
cells and stromal cells, the assumption of 
homogeneity in PSMA density and the degree of 
hypoxia within each spot may not be completely 
accurate. Furthermore, although the predicted cell 
death fraction within the tumor cell-abundant region 
is primarily associated with the PC cells, it can also be 
attributed to stromal cells, especially in the case of 
177Lu, where the crossfire effect is more pronounced. 
A third complexity lies in the temporal heterogeneity, 
which was considerably simplified in our simulations. 
Lethal events associated with dual DNA DSBs 
manifest when the time interval between two distinct 
radiation incidents results in the misrepair of two 
SSBs during the repair process. If the time interval 
between the first and second DSBs is substantial, the 
first DSB may undergo repair prior to being 
improperly joined with the second DSB. This intricate 
process, elucidating the impact of dose rate and 
fractionation on the yield of lethal damage and 
ensuing cell survival, was simplified via the 
utilization of the LQ model, with parameter values 
adopted from prior literature. It's important to note 
that we did not explore the effects of dose rate and cell 
cycle in this study.  

Methods 
Generation of microscopic scale tumor 
microenvironment (TME) maps using ST 

Three publicly available Visium ST datasets were 
collected from primary tissue samples of two prostate 
cancer patients: one diagnosed with acinar cell 
carcinoma (PC1: https://www.10xgenomics.com/ 
resources/datasets) and the other with 
adenocarcinoma (PC2 and PC3: https:// 
data.mendeley.com/datasets/svw96g68dv/1). 
Subsequently, the obtained data were processed by 
applying the normalization and log-transformation 
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(Seurat package, V4.1.1)[55].  
 Various gene expressions (FOLH1 and Harris 

Hypoxia) were extracted in each ST spot locations and 
the proportions of cell type (epithelial, endothelial, 
and PC cell) were estimated in corresponding ST 
spots. The resulting maps were used to delineate the 
vessel (endothelial cell), hypoxia (Harris Hypoxia), 
PSMA binding density (FOLH1), and PC cell regions 
for the dosimetry and their biological effect 
simulation in this work. FOLH1 is the gene that 
encodes PSMA, and Harris Hypoxia is a gene set 
related to hypoxia [39]. The enrichment scores of gene 
expressions were calculated (GSVA package, 
V1.48.1)[56,57], and the single-sample Gene Set 
Enrichment Analysis (ssGSEA) method was applied 
with Poisson kernel to the raw count data. On the 
other hand, the proportion of each cell type in given 
ST spot was estimated by employing two public 
scRNA-seq datasets from PC patients[58,59].  

In particular, the cell type deconvolution 
method, CellDART[44] were utilized. CellDART first 
trains the model to predict cell composition from 
virtual cell mixtures created from the scRNA-seq 
dataset and then adapts the neural network to predict 
the composition from real ST spots. During the 
analysis, the raw count matrices from both scRNA-seq 
and ST datasets were used, along with the cell type 
annotation information provided in the 
literatures[58,59]. All analyses were performed using 
the default parameters suggested in the user guide.  

The disparities in spatial distribution across the 
three datasets were analysed by measuring the 
relative volumes, overlap, and dissimilarity between 
vessel, hypoxia, and PSMA binding density maps. 
The relative volume was determined as the ratio 
between the number of ST spots containing the 
respective binarized maps using k-mean clustering 
and the total number of ST spots. Additionally, 
relative PSMA density was defined as the mean value 
over the maximum value of the PSMA density map. 
The dissimilarity between two maps was calculated 
using Kullback-Leibler divergence (KLD). 

Spatiotemporal biodistribution of [177Lu]Lu- 
and [225Ac]Ac-PSMA-ligand 

Spatiotemporal biodistributions of [177Lu]Lu- 
and [225Ac]Ac-PSMA-ligand were simulated on the ST 
domain using the triangular mesh (Figure S6A- S6B). 
We used MATLAB's PDE Toolbox with a mesh 
generated using generateMesh, setting Hmin to 80 µm 
and Hmax to 160 µm for a balance between accuracy 
and efficiency, resulting in an approximate mesh edge 
size of 100 µm (Figure S6B). The radiopharmaceutical 
initially enters the tumor interstitium from the 
vasculature through a combination of diffusion along 

the concentration gradient and convection driven by 
interstitial fluid pressure (IFP) gradients[29]. 
Thereafter, it encounters the cellular compartment, 
which we further divide into two additional 
compartments: the bound compartment and the 
internalized compartment. Upon binding to PSMA 
expressed on the surface of prostate cancer cells, the 
radiopharmaceutical undergoes an internalization 
process, resulting in its concentration within the cell. 
Consequently, the concentration of the 
radiopharmaceutical in the three 
compartments—interstitium (Ci), bounded (Cb), and 
internalized (Cint)—can be mathematically expressed 
as follows: 

∂Ci
∂t

 = DPSMA∇2Ci − ∇(Rfv��⃗ Ci)+ ∅s − konCi(R0 −
Cb) + koffCb − λdecCi  (Equation 1) 

∂Cb
∂t

 = konCi (R0 − Cb) − koffCb − kintCb − λdecCb 
 (Equation 2) 

∂Cint
∂t

 = kintCb
FVi
FVc

−  krel Cint − λdecCint  (Equation 3) 

The time derivative of Ci can be described by a 
CRD model. The diffusion term,  DPSMA∇2Ci , is 
governed by  DPSMA, diffusivity of PSMA-ligands. The 
convection term, ∇(Rfv��⃗ Ci),  is defined by Rf , 
molecule/carrier movement coefficient, and v��⃗ , 
velocity imposed by IFP (Supplementary Material). 
The reaction term encompasses the remaining 
components in (Equation 1). The source term, 
denoted by ∅s, is determined by the input function 
(IF) of the vessel map (Supplementary Material). 
Given that our samples are from prostate tissue, we 
used the physiologically based pharmacokinetic 
(PBPK) model to estimate the time-activity curve 
(TAC) of IF within the prostate's vasculature [29,60]. 
The injected amount of IF is carefully selected to 
deliver a mean absorbed dose of 10 Gy to the prostate 
after 14 days post-injection by PBPK model (Figure 
S6C), considering the clinical relevance [13]. The 
vasculature contour was delineated by applying a 
threshold to the vessel map, with the cut-off 
established as the mean value between two cluster 
centers defined through k-means clustering. The 
association and dissociation rates are represented by 
kon and koff, respectively. The receptor density, R0, is 
proportionally adjusted by the PSMA binding density 
map, and λdec denotes the decay constant specific to 
each radiopharmaceutical. Specifically, the PSMA 
binding density map underwent binarization, 
employing a threshold derived similarly to the 
vasculature contour. Subsequently, the PSMA binding 
density map was normalized by its maximum value, 
and the resulting map was utilized as a scaling factor 
for R0.  
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The rates of change of Cb and Cint are modeled 
using first-order kinetics. The internalization rate is 
represented by kint, while the release rate is denoted 
by krel. The fractional volumes of tumor interstitium 
and cells within each ST spot are represented by FVi 
and FVc, respectively.  

To solve the system of PDE (Equation 1-3), we 
employed the MATLAB PDE Toolbox (MathWorks, 
Natick MA). Neumann boundary conditions were 
applied, specifying a normal derivative at the vessel 
edge to be zero (Figure S6B). The concentration Ci, Cb 
and Cint  were solved at every time step, with 
calculations performed in five-minute intervals over a 
period of 14 days. The parameters used in the 
simulations were obtained from previous the 
literature (Table S2-S3) [29,61]. The simulation was 
repeated 20 times for each tissue sample and for both 
177Lu and 225Ac-labelled RPT, and the reported results 
were derived from the average of these simulations. 
The coefficient of variation (CV) was measured to 
provide the robustness of the simulation. 

Calculation of absorbed dose 
According to the MIRD formalism[20,62,63], the 

mean absorbed dose D(rT,TD) to target tissue rT over a 
defined dose-integration period ( TD) after 
administration of the radioactive material to the 
subject is given as: 

D(rT,TD) = ∑ A� (rS,TD) S(rT←rS)rs   (Equation 4) 

where A� (rS,TD) is the time-integrated activity 
(TIA), calculated by ∫ A(rS, t)dtTD

0  , in source tissue rS 
over the period TD . In this work, we numerically 
integrated Cb and Cint over a duration of 14 days to 
obtain the TIAs, considering Ci was negligible (Figure 
S6C). The quantity S(rT←rS)  is specific to the 
radionuclide and to the computational phantom 
defining the spatial relationship and tissue 
compositions of rS and rT and their intervening tissues 
in the reference individual or tissue model. To 
determine S-values for 177Lu and 225Ac, we utilized the 
DPK method, and the kernel values were derived 
from MIRDcell (V2.0) (Figure S6D)[21]. MIRDcell is a 
tool that adapts the MIRD formalism for cellular and 
subcellular dosimetry. It models the dose to the 
cellular and subcellular compartments (i.e., the cell 
membrane, cytoplasm, and nucleus) for both isolated 
cells and clusters of cells using cellular S values and 
mathematically models the responses of labeled and 
unlabeled cells as a function of the fraction of cells 
labeled.  

Biological effect modeling 
The dose-dependent cell survival can be 

described by the target theory-based linear quadratic 
(LQ) model. The survival probability, 𝑃𝑃𝑠𝑠, is calculated 

using the equation: 

𝑃𝑃𝑠𝑠 =  𝑒𝑒  −𝑎𝑎𝑎𝑎−𝑏𝑏𝑎𝑎2   (Equation 5) 

Here, D represents the absorbed dose, 𝑎𝑎 is the 
linear sensitivity coefficient and 𝑏𝑏  is the quadratic 
sensitivity coefficient. Cells with a higher a and b are 
more sensitive to radiation[64]. For 
[225Ac]Ac-PSMA-targeted RPT, which induces more 
DNA DSBs, 𝑃𝑃𝑠𝑠 can be modeled as[29]: 

𝑃𝑃𝑠𝑠 =  𝑒𝑒  −𝑎𝑎/𝑎𝑎0   (Equation 6) 

In this equation, 𝐷𝐷0 represents the absorbed dose 
required to yield a survival fraction of 37%. 

The LQ model parameters are influenced by 
tissue oxygenation. Cells in well-oxygenated tissues 
tend to be more radiosensitive resulting in a more 
effective killing effect of RPT. Therefore, in our study, 
we divided the regions into normoxia 
(oxygen-abundant) and hypoxia (oxygen-depleted) 
based on the hypoxia map by setting a threshold at 
the mean value of third and fourth cluster center 
defined through k-means clustering of the hypoxia 
map. Different sets of a, b, and 𝐷𝐷0values were assigned 
to each region (Table S4). 

Stability of the simulation 
To address the stability of PDE solution, 

simulations were conducted 20 times for each PC1, 
PC2, and PC3 sample for PSMA-targeted RPTs, and 
the coefficient of variation (CV) for dose distribution 
and cell survival probability was calculated for each 
spot location in the tissues (Figure S7). CVs were 
spatially mapped to the tissue location, and the 
association between CV and various parameters was 
investigated, including endothelial cells, prostate 
cancer cells, FOLH1 expression, and Harris Hypoxia 
scores. The CV of absorbed dose increased in regions 
with high FOLH1 expression and a higher proportion 
of prostate cancer cells in PC1. However, this trend 
was not as clear in PC2 and PC3 tissues. On the other 
hand, the negative association between CV of cell 
survival probability and FOLH1 expression, as well as 
prostate cancer cell fraction, was more consistent and 
prominent. 

Dose analysis using dose-volume histogram 
(DVH) 

The efficacy of RPT relies on its ability to deliver 
cytotoxic radiation specifically to cancer cells or the 
surrounding TME while minimizing normal tissue 
toxicity. Thresholds (0.005, 0.01, 0.02, and 0.05) in the 
PC cell map were varied to investigate alterations in 
dose distribution and treatment efficacy based on the 
proportion of cancer cells within each spot. For the 
study, the tumor cell-abundant/-depleted regions 
were designated by applying a cut-off of 0.01, unless 
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mentioned otherwise. DVH analysis provides insight 
into the radiation dosage received by specific tissue 
volumes, allowing for a comprehensive evaluation of 
treatment outcomes. RPT efficacy was assessed by 
plotting the DVH within each tumor 
cell-abundant/-depleted/entire region. Subsequently, 
various indices including conformity indices (CI), 
homogeneity indices (HI), and gradient indices (GI) 
were analyzed based on the DVH, commonly used in 
evaluating dose distribution in external beam 
radiotherapy (EBRT) (Table S1). The CI assesses the 
agreement between the irradiated volume and the 
target volume, while the HI evaluates the uniformity 
of dose distribution within the target volume. 
Furthermore, the GI indicates information about the 
steepness of the dose falloff outside the target volume 
[65]. The target volume, identified as the area 
abundant in tumor cells, was determined by applying 
a threshold of 0.01 to the PC cell map. The target dose 
was 10 Gy, and we conducted a subsequent 
measurement of all indices, adjusting the dose 
distribution to center the average around the target 
dose through mean normalization. 

Application to FAP and GRPR 
Given the extensive scope of clinical trials in 

RPT, the methodology was extended to assess dose 
and its bioeffect in FAP- and GRPR-targeting RPT. It 
was assumed that the radiopharmaceuticals 
employed in both RPT scenarios exhibit similar 
kinetics to PSMA-ligand. The FAP and GRPR maps 
were extracted and processed using identical 
procedures. In summary, this method can be used to 
investigate the intratumoral heterogeneity of 
biological effects for RPTs in targets other than PSMA. 

Statistical analysis 
Pearson's correlation was assessed to examine 

the correlation between the ST maps of various gene 
expressions and cell types. To compare the dose 
distribution between [177Lu]Lu- and [225Ac]Ac-PSMA- 
ligand within different subregions (tumor 
cell-abundant/-depleted/-entire region), a paired 
t-test was conducted. Additionally, a paired t-test was 
employed to analyze the disparity in cell survival 
probability between [177Lu]Lu- and [225Ac]Ac-PSMA- 
ligand. To assess the potential impact of PSMA 
density and hypoxia on the efficacy of PSMA-targeted 
RPT, Spearman's rank correlation was measured 
which evaluates the monotonic relationship between 
these influencing factors and each dose and cell 
survival probability distribution. 

Supplementary Material  
Supplementary information, figures and tables. 
https://www.thno.org/v14p7122s1.pdf  
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