Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 Apr 15;180(1):25–35. doi: 10.1042/bj1800025

Effects of protein-deprivation on the regeneration of rat liver after partial hepatectomy.

J McGowan, V Atryzek, N Fausto
PMCID: PMC1161015  PMID: 486103

Abstract

Rats maintained on a protein-free diet for 3 days have an altered time course of hepatic DNA synthesis during liver regeneration. The delay in DNA synthesis is eliminated by the administration of casein hydrolysate (given as late as 6h after partial hepatectomy), but not by glucose or incomplete amino acid mixtures. Despite the change in the timing of DNA synthesis, the increases in hepatic amino acid pools, which take place at the earliest stages of the regenerative process, occur in a normal pattern in the regenerating liver of rats fed the protein-free diet. Protein-deprived rats have increased protein synthesis and decreased rates of protein degradation in the liver in response to partial hepatectomy, but these adaptations do not prevent a lag in protein accumulation and low protein/RNA ratios. The regenerating livers of these animals show a deficit in the accumulation of cytoplasmic polyadenylated mRNA as well as a smaller proportion of free polyribosomes. It is suggested that the deficit in free polyribosomes found in the regenerating liver of protein-deprived rats might be a consequence of the slow accumulation of mRNA species coding for intracellular proteins.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alston W. C., Thomson R. Y. Effect of protein hydrolysate administration on liver composition. Cancer Res. 1968 Apr;28(4):746–752. [PubMed] [Google Scholar]
  2. Andersson G. M., von der Decken A. Deoxyribonucleic acid-dependent ribonucleic acid polymerase activity in rat liver after protein restriction. Biochem J. 1975 Apr;148(1):49–56. doi: 10.1042/bj1480049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barbiroli B., Potter V. R. DNA synthesis and interaction between controlled feeding schedules and partial hepatectomy in rats. Science. 1971 May 14;172(3984):738–741. doi: 10.1126/science.172.3984.738. [DOI] [PubMed] [Google Scholar]
  5. Bucher M. L., Swaffield M. N. Regulation of hepatic regeneration in rats by synergistic action of insulin and glucagon. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1157–1160. doi: 10.1073/pnas.72.3.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bucher N. L., Swaffield M. N. Nucleotide pools and [6-14C]orotic acid incorporation in early regenerating rat liver. Biochim Biophys Acta. 1966 Dec 21;129(3):445–459. doi: 10.1016/0005-2787(66)90060-8. [DOI] [PubMed] [Google Scholar]
  7. Colbert D. A., Tedeschi M. V., Atryzek V., Fausto N. Diversity of polyadenylated messenger RNA sequences in normal and 12-hr regenerating liver. Dev Biol. 1977 Sep;59(2):111–123. doi: 10.1016/0012-1606(77)90246-9. [DOI] [PubMed] [Google Scholar]
  8. Conde R. D., Scornik O. A. Role of protein degradation in the growth of livers after a nutritional shift. Biochem J. 1976 Aug 15;158(2):385–390. doi: 10.1042/bj1580385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dallman P. R., Manies E. C. Protein deficiency: turnover of protein and reutilization of amino acid in cell fractions of rat liver. J Nutr. 1973 Feb;103(2):257–266. doi: 10.1093/jn/103.2.257. [DOI] [PubMed] [Google Scholar]
  10. Fausto N., Brandt J. T., Kesner L. Possible interactions between the urea cycle and synthesis of pyrimidines and polyamines in regenerating liver. Cancer Res. 1975 Feb;35(2):397–404. [PubMed] [Google Scholar]
  11. Fausto N. Studies on ornithine decarboxylase activity in normal and regenerating livers. Biochim Biophys Acta. 1969 Sep 17;190(1):193–201. doi: 10.1016/0005-2787(69)90168-3. [DOI] [PubMed] [Google Scholar]
  12. Fausto N. The control of ornithine decarboxylase activity during liver regeneration. Biochim Biophys Acta. 1971 Apr 29;238(1):116–128. doi: 10.1016/0005-2787(71)90015-3. [DOI] [PubMed] [Google Scholar]
  13. Ferris G. M., Clark J. B. Early changes in plasma and hepatic free amino acids in partially hepatectomised rats. Biochim Biophys Acta. 1972 Jun 26;273(1):73–79. doi: 10.1016/0304-4165(72)90192-4. [DOI] [PubMed] [Google Scholar]
  14. Gan J. C., Jeffay H. Origins and metabolism of the intracellular amino acid pools in rat liver and muscle. Biochim Biophys Acta. 1967 Nov 28;148(2):448–459. doi: 10.1016/0304-4165(67)90141-9. [DOI] [PubMed] [Google Scholar]
  15. Garlick P. J., Millward D. J., James W. P., Waterlow J. C. The effect of protein deprivation and starvation on the rate of protein synthesis in tissues of the rat. Biochim Biophys Acta. 1975 Nov 18;414(1):71–84. doi: 10.1016/0005-2787(75)90126-4. [DOI] [PubMed] [Google Scholar]
  16. Garlick P. J., Waterlow J. C., Swick R. W. Measurement of protein turnover in rat liver. Analysis of the complex curve for decay of label in a mixture of proteins. Biochem J. 1976 Jun 15;156(3):657–663. doi: 10.1042/bj1560657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hager S. E., Jones M. E. Initial steps in pyrimidine synthesis in Ehrlich ascites carcinoma in vitro. 1. Factors affecting the incorporation of 14C-bicarbonate into carbon 2 of the uracil ring of the acid-soluble nucleotides of intact cells. J Biol Chem. 1965 Dec;240(12):4556–4563. [PubMed] [Google Scholar]
  18. Hilton J., Sartorelli A. C. Induction of microsomal drug-metabolizing enzymes in regenerating liver. Adv Enzyme Regul. 1970;8:153–167. doi: 10.1016/0065-2571(70)90014-2. [DOI] [PubMed] [Google Scholar]
  19. Jefferson L. S., Korner A. Influence of amino acid supply on ribosomes and protein synthesis of perfused rat liver. Biochem J. 1969 Mar;111(5):703–712. doi: 10.1042/bj1110703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Lewis C. G., Winick M. Studies on ribosomal RNA synthesis in vivo in rat liver during short-term protein malnutrition. J Nutr. 1978 Mar;108(3):329–340. doi: 10.1093/jn/108.3.329. [DOI] [PubMed] [Google Scholar]
  22. MUNRO H. N., WADDINGTON S., BEGG D. J. EFFECT OF PROTEIN INTAKE ON RIBONUCLEIC ACID METABOLISM IN LIVER CELL NUCLEI OF THE RAT. J Nutr. 1965 Apr;85:319–328. doi: 10.1093/jn/85.4.319. [DOI] [PubMed] [Google Scholar]
  23. McGowan J. A., Fausto N. Ornithine decarboxylase activity and the onset of deoxyribonucleic acid synthesis in regenerating liver. Biochem J. 1978 Jan 15;170(1):123–127. doi: 10.1042/bj1700123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Montecuccoli G., Novello F., Stirpe F. Effect of protein deprivation and of starvation on DNA synthesis in resting and regenerating rat liver. J Nutr. 1972 Apr;102(4):507–513. doi: 10.1093/jn/102.4.507. [DOI] [PubMed] [Google Scholar]
  25. Munro H. N. The determination of nucleic acids. Methods Biochem Anal. 1966;14:113–176. doi: 10.1002/9780470110324.ch5. [DOI] [PubMed] [Google Scholar]
  26. Ord M. G., Stocken L. A. Uptake of amino acids and nucleic acid precursors by regenerating rat liver. Biochem J. 1972 Aug;129(1):175–181. doi: 10.1042/bj1290175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rosbash M. Polyadenylic acid-containing RNA in Xenopus laevis oocytes. J Mol Biol. 1974 May 5;85(1):87–101. doi: 10.1016/0022-2836(74)90131-4. [DOI] [PubMed] [Google Scholar]
  28. SCHIMKE R. T. Differential effects of fasting and protein-free diets on levels of urea cycle enzymes in rat liver. J Biol Chem. 1962 Jun;237:1921–1924. [PubMed] [Google Scholar]
  29. Scornik O. A., Botbol V. Role of changes in protein degradation in the growth of regenerating livers. J Biol Chem. 1976 May 25;251(10):2891–2897. [PubMed] [Google Scholar]
  30. Short J., Armstrong N. B., Zemel R., Lieberman I. A role for amino acids in the induction of deoxyribonucleic acid synthesis in liver. Biochem Biophys Res Commun. 1973 Jan 23;50(2):430–437. doi: 10.1016/0006-291x(73)90858-9. [DOI] [PubMed] [Google Scholar]
  31. Sidransky H., Epstein S. M., Verney E., Verbin R. S. The effect of cycloheximide on hepatic RNA synthesis and nucleolar size in rats force-fed a threonine-devoid diet. J Nutr. 1976 Jul;106(7):930–939. doi: 10.1093/jn/106.7.930. [DOI] [PubMed] [Google Scholar]
  32. Siimes M. A., Dallman P. R. Nucleic acid and polyamine synthesis in the rat during short-term protein deficiency: responsiveness of the liver to partial hepatectomy. J Nutr. 1974 Jan;104(1):47–58. doi: 10.1093/jn/104.1.47. [DOI] [PubMed] [Google Scholar]
  33. Stirling G. A., Bourne L. D., Marsh T. Effect of protein deprivation and a reduced diet on the regenerating rat liver. Br J Exp Pathol. 1975 Dec;56(6):502–509. [PMC free article] [PubMed] [Google Scholar]
  34. Swick R. W., Ip M. M. Measurement of protein turnover in rat liver with (14C)carbonate. Protein turnover during liver regeneration. J Biol Chem. 1974 Nov 10;249(21):6836–6841. [PubMed] [Google Scholar]
  35. Tedeschi M. V., Colbert D. A., Fausto N. Transcription of the non-repetitive genome in liver hypertrophy and the homology between nuclear RNA of normal and 12 H-regenerating liver. Biochim Biophys Acta. 1978 Dec 21;521(2):641–649. doi: 10.1016/0005-2787(78)90305-2. [DOI] [PubMed] [Google Scholar]
  36. Wannemacher R. W., Jr, Wannemacher C. F., Yatvin M. B. Amino acid regulation of synthesis of ribonucleic acid and protein in the liver of rats. Biochem J. 1971 Sep;124(2):385–392. doi: 10.1042/bj1240385. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES