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Abstract
Purpose The availability of population datasets and machine learning techniques heralded a new era of sophisticated 
prediction models involving a large number of routinely collected variables. However, severe class imbalance in clinical 
datasets is a major challenge. The aim of this study is to investigate the impact of commonly-used resampling tech-
niques in combination with commonly-used machine learning algorithms in a clinical dataset, to determine whether 
combination(s) of these approaches improve upon the original multivariable logistic regression with no resampling.
Methods We previously developed and internally validated a multivariable logistic regression 30-day mortality predic-
tion model in 30,619 patients using preoperative and intraoperative features.
Using the same dataset, we systematically evaluated and compared model performances after application of resam-
pling techniques [random under-sampling, near miss under-sampling, random oversampling, and synthetic minority 
oversampling (SMOTE)] in combination with machine learning algorithms (logistic regression, elastic net, decision trees, 
random forest, and extreme gradient boosting).
Results We found that in the setting of severe class imbalance, the impact of resampling techniques on model perfor-
mance varied by the machine learning algorithm and the evaluation metric. Existing resampling techniques did not 
meaningfully improve area under receiving operating curve (AUROC). The area under the precision recall curve (AUPRC) 
was only increased by random under-sampling and SMOTE for decision trees, and oversampling and SMOTE for extreme 
gradient boosting. Importantly, some combinations of algorithm and resampling technique decreased AUROC and 
AUPRC compared to no resampling.
Conclusion Existing resampling techniques had a variable impact on models, depending on the algorithms and the 
evaluation metrics. Future research is needed to improve predictive performances in the setting of severe class imbalance.
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1 Introduction

Every year, more than 300 million surgeries are performed globally, with more than 4 million deaths [1]. Worldwide, post-
operative mortality is the third leading cause of death, after ischaemic heart disease and stroke, contributing to 8% of all 
deaths [1]. There has been significant research interest in the accurate prediction of postoperative mortality, to assist with 
perioperative risk stratification, shared decision making, and disposition planning [2–8]. The availability of population periop-
erative datasets from electronic health record (EHR) [9] and machine learning techniques heralded a new era of sophisticated 
prediction models. These models involve a large number of routinely collected preoperative and intraoperative variables, 
such as demographics, surgery types, laboratory values, and vital signs [5, 7, 8]. However, a major challenge in postoperative 
mortality prediction is the problem of severe class imbalance in the clinical datasets [10].

Class imbalance occurs when the event rate of a binary outcome (i.e. has two categories or classes) is <50% and can be 
particularly problematic when the outcome is rare [10, 11]. In the setting of postoperative mortality prediction, the incidence 
of mortality is typically 2% or lower [3, 5–8]. Such extreme class imbalance poses two significant challenges during model 
development and validation. First, during model development, the algorithms will mostly learn from samples without events. 
Second, standard performance metrics [e.g. accuracy and area under receiving operating curve (AUROC)] can be misleading 
and overly optimistic in the setting of class imbalance [10–12]. For example, with a mortality event rate of only 2%, a model 
that predicts that no one dies will only be wrong only 2% of the time and will be correct 98% of the time. However, such a 
model would be useless and harmful, despite high accuracy. Moreover, clinicians are more interested in predicting who will 
have the event in order to implement appropriate interventions (such as increased monitoring). Thus, missing a high-risk 
patient may lead to dire consequences.

Several methods have been used in the literature to mitigate the issue of imbalanced datasets [10, 11], which can be 
grouped into the broad categories performance metrics and resampling techniques. In terms of performance metrics, several 
alternatives have been studied [13]. The area under precision-recall curve (AUPRC) presents precision [positive predictive value 
(PPV)] against recall (sensitivity) and indicates how well the model  can predict true positives [12]. The baseline of AUPRC in 
a given model is the event rate in the dataset [12]. However, this metric has only been reported in two papers in the postop-
erative mortality prediction literature [7, 8]. In terms of model development, a possible approach involves using resampling 
techniques in the derivation set [7, 14, 15], to balance the class distribution by sampling more from patients with events 
(over-sampling) or sampling less from patients without events (under-sampling). Note that resampling is never applied to the 
validation set, such that model performances can be correctly calculated in a dataset with the unaltered, real-life event rate.

However, it remains under active research how different resampling techniques to improve class imbalance affect model 
performances when used in combination with machine learning algorithms (learners), which would be important to inform 
best practices in clinical machine learning modeling. While studies found that resampling techniques improved model 
performances, the effectiveness of the resampling strategies varies with the dataset and the learner [16, 17]. As within a 
given dataset it is usually unknown which one will have the best performance, one must also test multiple learners for the 
domain task under consideration. Special-purpose algorithms have been proposed to learn in conditions where the data 
is imbalanced, such as different versions of extreme gradient boosting (XGBoost) [18, 19]. Moreover, some characteristics 
of medical data, such as high dimensionality, can lead to problems that can make resampling strategies less effective in 
improving model performance [18, 19].

We have previously developed and internally validated a multivariable logistic regression 30-day mortality predic-
tion model in 30,619 patients using preoperative and intraoperative features, with validation set AUROC of 0.893 (95% CI 
0.861–0.920) and AUPRC of 0.158 (baseline 0.017 based on mortality rate) [8]. The aim of this study is to systematically evaluate 
and compare commonly-used resampling techniques [random under-sampling, near miss under-sampling, random over-
sampling, and synthetic minority oversampling (SMOTE)] in combination with commonly-used machine learning algorithms 
(logistic regression, elastic net, decision trees, random forest, and extreme gradient boosting) in a clinical dataset where the 
events are rare, to determine whether combination(s) of these approaches improve upon the original multivariable logistic 
regression with no resampling.
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2  Materials and methods

We received research ethics approval (Nova Scotia Health Authority Research Ethics Board, Halifax, NS, Canada; file 
# 1024251), with waiver informed consent for secondary analysis of de-identified population dataset developed in a 
published retrospective cohort study [8]. Figure 1 illustrates the methodology of this study.

2.1  Dataset

Please see the previous publication [8] for details about the dataset. Briefly, the cohort consists of 30,619 patients age 
≥45 and undergoing inpatient noncardiac surgery (except deceased organ donation) at two tertiary academic hospi-
tals in Halifax, Nova Scotia, Canada, between January 1, 2013 to December 1, 2017. Multiple sources of data [hospitals’ 
Anesthesia Information Management System (AIMS) containing intraoperative vital signs and anesthetic interventions, 
hospitals’ perioperative EHR, the Nova Scotia Vital Statistics database which documented all deaths within Nova Scotia, 
and Canadian Institute for Health Information (CIHI) Discharge Abstract Database (DAD)] were linked to create the final 
de-identified dataset containing preoperative, intraoperative, and postoperative variables. The final de-identified dataset 
was extracted by and accessed through Health Data Nova Scotia (HDNS).

To mirror real-life application, where prediction models are built using data from the past and validated with prospec-
tive data, the cohort was divided into derivation and validation sets temporally by ranking surgery dates from the earliest 
to the latest [8]. The derivation set consisted of patients with the earliest 75% of the surgery dates, and the validation 
set consisted of patients with the latest 25% of the surgery dates (i.e. 75:25 division). There were no major differences in 
cohort characteristics between the derivation and validation datasets (standardized mean difference were all <0.2) [8].

Fig. 1  Methodology overview
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Also, the models in this study used the same final set of features (predictors) and event (outcome) as the previously 
published primary multivariable logistic regression model [8]. The event was all-cause mortality within 30 days after 
surgery, in- or out-of-hospital. The event rate was 2.2% (493/22964) in the derivation set, and 1.7% (131/7655) in the 
validation set (i.e., the derivation and validation sets have an imbalance ratio of 2.2 and 1.7%, respectively). While the 
class imbalance ratios within the derivation and validation sets are extremely high, they are within the expected values 
observed in the literature for postoperative mortality, where the typical imbalance ratio is approximately 2% or lower. 
The features (predictors) are listed in Table 1. The mean (SD) age was 66 (11) years, with 50.2% female (8).

2.2  Statistical analysis

2.2.1  Software

Data analysis was performed on the HDNS Citadel server using R 4.1.0 and Python 2.7.10 (in particular scikit-learn, 
hyperopt, and imblearn) [20–23].

2.2.2  Pre‑processing

To facilitate machine learning, one hot encoding was used for categorical encoding, and standard scaling was applied 
to continuous variables with zero mean and unit standard deviation.

2.2.3  Resampling techniques

The resampling approaches tested were: no resampling, random under-sampling [24, 25], near miss under-sampling 
[26], random oversampling [24, 25], and  SMOTE [10, 11]. The more frequent event class (i.e. patients without mortality 
in our dataset) is referred to as the majority class, and the less frequent event class (i.e. patients with mortality in our 
dataset) the minority class. The class weight and resampling ratio are amongst hyperparameter that needed to be tuned 
(please see “Hyperparameter tuning” below). Under-sampling addresses class imbalance by removing samples from the 
majority class randomly (random under-sampling) or by proximity in the feature distribution space amongst majority 
and minority classes (near-miss under-sampling). Over-sampling balances the dataset by adding subjects to the minority 
class with randomly selected replicas (random over-sampling) or by generating sample data by interpolating amongst 
randomly selected subjects and their K nearest neighbours (SMOTE) [27, 28].

2.2.4  Machine learning algorithms

The algorithms developed in the derivation set were logistic regression, elastic net [29], decision tree [30], random for-
est [31], and XGBoost [32]. Elastic net is logistic regression with L1 and L2 regularization, which helps reduce overfitting. 
Decision trees are simple models that are interpretable. XGBoost and random forest are ensemble methods based on 
decision trees, which work well for nonlinear relationships, can reveal feature importance, and help reduce overfitting.

2.2.5  Hyperparameter optimization

Each algorithm has hyperparameters that must be optimized (Appendix 1). Hyperparameter tuning for algorithms, class 
weight, and the resampling ratio are necessary to ensure that when comparing the different models, the differences are 
due to the algorithm or the resampling technique rather than suboptimal hyperparameter settings. In the derivation 
set, Bayesian optimization [22, 33] was used to efficiently obtain the best hyperparameters for each model, with five-fold 
stratified cross validation in the derivation set using AUROC as the metric. The models were subsequently validated in 
the validation set using the best hyperparameters.

2.3  Model validation

Model performances were evaluated in the validation set. A variety of metrics were calculated, since no single metric 
is sufficient for discerning the best model [34, 35]. The main metrics assessed were AUROC (95% CI calculated by 2000 
stratified bootstrap replicates using the original event rate in the test set) and AUPRC.
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Table 1   List of features 
according to preoperative, 
intraoperative vital signs, and 
other intraoperative groups

For the surgery type, the reference group was general surgery

AIMS Anesthesia Information Management System, BPM beats per minute, ETCO2 end-tidal  CO2, GA gen-
eral anesthesia, HR heart rate, IQR interquartile range, MAC Minimal Alveolar Concentration, MAP mean 
arterial pressure, Max. maximum, SE standard error, SBP systolic blood pressure

Features

Preoperative features

Age (years)

Female sex

Emergency surgery

Procedural Index for Mortality Risk

Surgery type (compared to general surgery)

 Neurosurgery

 Obstetrics and gynecology

 Orthopedic surgery

 Other

 Otolaryngology

 Plastic surgery

 Thoracic surgery

 Urology

 Vascular surgery

Hypertension

Chronic obstructive pulmonary disease

Revised Cardiac Risk Index

Elixhauser Comorbidity Index

Hospital Frailty Risk Score

Obesity

Vital signs features

Max. decrease (%) of SBP relative to first AIMS SBP

Cumulative duration (minutes) < MAP 70 mmHg

Max. change of HR in 10 BPM above first AIMS HR

Max. change of HR in 10 BPM below first AIMS HR

Cumulative duration (minutes) of HR < 60

Cumulative duration (minutes) of HR > 100

Cumulative duration (minutes)  SpO2 < 88%

Cumulative duration (hour) of temperature <36 °C

Cumulative duration (hour) of temperature >38 °C

Cumulative duration (minutes)  ETCO2 < 30 mmHg, GA

Cumulative duration (minutes) of  ETCO2 > 45 mmHg, GA

Other intraoperative features

Duration of Surgery (hour)

General anesthesia

Neuraxial anesthesia

Peripheral nerve block

Laparoscopic surgery with no conversion to open

Age-adjusted MAC during GA, time averaged

Crystalloid (L) above 1L

Use of vasopressors and inotropes

Use of vasodilators



Vol:.(1234567890)

Research Discover Artificial Intelligence            (2024) 4:91  | https://doi.org/10.1007/s44163-024-00199-0

In addition, sensitivity (also known as recall), specificity, positive predictive value (also known as precision), negative 
predictive value, F1-score (harmonic mean of precision and recall, i.e. measure of accuracy), and G-mean (geometric mean 
of sensitivity and specificity, helpful in imbalanced datasets) were assessed at a probability threshold of 0.5.

3  Results

Compared to logistic regression, at baseline (without resampling), the other models (elastic net, decision tree, random 
forest, and XGBoost) did not meaningfully improve upon the AUROC nor AUPRCs. Different resampling techniques 
impacted each algorithm differently. A summary of the performances from combinations of each resampling technique 
and each algorithm are displayed in Fig. 2 for AUROC, and Fig. 3 for AUPRC. Importantly, despite the high AUROC, all 
models exhibited poor calibration (Appendix 2).

Overall, existing resampling techniques improved some performance metrics (i.e. AUPRC) for decision tree and 
XGBoost, but did not meaningfully improve model performances for logistic regression, elastic net, and random forest. 
Random over-sampling minimally improved AUROC for decision trees (0.837 with over-sampling vs. 0.817 without resa-
mpling), though this needs to be interpreted in the context of lower baseline AUROC compared to other algorithms. The 
AUPRC was only increased by random under-sampling and SMOTE for decision trees (increase between 0.05 and 0.1, 
approximately), and oversampling and SMOTE for XGBoost (increase between 0.3 and 0.35, approximately).

Importantly, some combinations of algorithm and resampling technique decreased AUROC and AUPRC compared 
to no resampling. For example, all resampling techniques returned worse AUROC for XGBoost (with a decrease rang-
ing between 0.1 and 0.3), and near miss undersampling decreased the AUROC of logistic regression (approximately 0.3 
decrease) and elastic net (approximately 0.15 decrease). For AUPRC, SMOTE decreased AUPRC for logistic regression, 
and random forest (approximately 0.1 decrease), while near miss undersampling decreased the AUPRC for elastic net, 
randomforest, and XGBoost (decrease ranging between 0.05 and 0.1). Overall, the AUROC bootstrapped results show 
a performance consistent with the non-bootstrapped results for all learning algorithms and resampling techniques. 
The exception to this is a general decrease in performance for the alternative of not using any resampling technique. 
This decrease ranged between approximately 0.1 for elastic net, decision trees, and random forest, to a 0.4 decrease for 

Fig. 2  Area under the receiver 
operating curve (AUROC) 
results from combinations of 
algorithms and resampling 
techniques. Legend: y-axis, 
area under the receiver oper-
ating curve (AUROC); x-axis, 
algorithms in combination 
with resampling techniques
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XGBoost. When using logistic regression with the option involving no resampling, a performance of approximately 0.9 
is observed for both bootstrapped and non-bootstrapped alternatives.

The performances of the five algorithms in combination with each resampling approach are displayed in Table 2 (no resa-
mpling), Table 3 (random under-sampling), Table 4 (near-miss under-sampling), Table 5 (random over-sampling), and Table 6 
(SMOTE). Table 7 provides the p-values of a paired t-test carried out for each learning algorithm comparing pairs of resampling 
techniques, on both AUROC and AUPRC scores, with the Benjamini–Hochberg correction [39] for multiple hypothesis testing.

4  Discussion

In medical settings, prediction models must be able to accurately identify which patients will have rare but severe 
consequences, such as postoperative mortality. However, model performances are often overestimated by com-
monly reported metrics such as the AUROC [12]. It remains unknown the optimal approaches to improve the mod-
els’ ability to identify positive cases in the setting of severe class imbalance. Our study systematically evaluated 
the performances of combinations of algorithms and resampling techniques in a highly imbalanced cohort with 
imbalance ratios of 2.2% and 1.7% in the derivation and validation sets, respectively. This study found that in the 
setting of severe class imbalance, the impact of resampling techniques on model performance varied by the machine 

Fig. 3  Area under the precision recall curve (AUPRC) results from combinations of algorithms and resampling techniques. Legend: y-axis, 
area under the precision recall curve (AUPRC); x-axis, algorithms in combination with resampling techniques
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Table 2  Model performances in the validation set for algorithms with no resampling

Bootstrapping was performed using 2000 replicates

AUROC area under the receiver operating curve, AUPRC area under the precision recall curve, CI confidence interval

Metric Logistic regression Elastic net Decision trees Random forest XGBoost

AUROC 0.892 0.897 0.817 0.903 0.888
Bootstrapped AUROC mean 0.890 0.733 0.702 0.777 0.485
Bootstrapped AUROC 95% CI 0.859–0.918 0.698–0.769 0.657–0.749 0.743–0.809 0.436–0.537
AUPRC 0.166 0.169 0.125 0.135 0.135
Precision 0.400 0.074 0.040 0.111 0.166
Recall (sensitivity) 0.015 0.853 0.830 0.700 0.030
F1-score 0.030 0.136 0.080 0.190 0.051
Specificity 0.999 0.816 0.962 0.903 0.997
Negative predictive value 0.980 0.996 0.995 0.994 0.983
Geometric mean 0.124 0.834 0.752 0.795 0.175

Table 3  Model performances in the validation set for algorithms with random under-sampling

Bootstrapping was performed using 2000 replicates

AUROC area under the receiver operating curve, AUPRC area under the precision recall curve, CI confidence interval

Algorithm Logistic regression Elastic net Decision trees Random forest XGBoost

AUROC 0.893 0.895 0.609 0.906 0.775
Bootstrapped AUROC mean 0.897 0.897 0.609 0.906 0.775
Bootstrapped AUROC 95% CI 0.871–0.923 0.870–0.923 0.573–0.648 0.880–0.930 0.747–0.800
AUPRC 0.157 0.169 0.182 0.151 0.022
Precision 0.080 0.071 0.070 0.089 0.020
Recall 0.823 0.838 0.270 0.861 0.961
F1-score 0.145 0.132 0.118 0.161 0.040
Specificity 0.836 0.813 0.941 0.847 0.261
Negative predictive value 0.996 0.996 0.986 0.997 0.997
Geometric mean 0.829 0.825 0.510 0.845 0.501

Table 4  Model performances in the validation set for algorithms with near-miss under-sampling

Bootstrapping was performed using 2000 replicates

AUROC area under the receiver operating curve, AUPRC area under the precision recall curve, CI confidence interval

Algorithm Logistic regression Elastic net Decision trees Random forest XGBoost

AUROC 0.564 0.737 0.767 0.894 0.750
Bootstrapped AUROC mean 0.564 0.738 0.767 0.894 0.750
Bootstrapped AUROC 95% CI 0.518–0.611 0.699–0.778 0.729–0.805 0.868–0.918 0.727–0.780
AUPRC 0.171 0.055 0.114 0.109 0.077
Precision 0.018 0.029 0.040 0.125 0.150
Recall 0.923 0.815 0.715 0.007 0.084
F1-score 0.037 0.057 0.070 0.014 0.100
Specificity 0.175 0.541 0.704 0.999 0.980
Negative predictive value 0.992 0.994 0.993 0.983 0.990
Geometric mean 0.402 0.664 0.710 0.087 0.380
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learning algorithm and the evaluation metric, and that existing resampling techniques are inadequate to meaning-
fully improve model performances. With the exception of decision trees and XGBoost, the resampling techniques 
worsened or only minimally improved AUROC or AUPRC. For decision trees, random oversampling minimally improved 
AUROC, while random under-sampling and SMOTE improved AUPRC. For XGBoost, random oversampling and SMOTE 
increased AUPRC but at the cost of decreased AUROC. Some combinations of algorithm and resampling techniques 
worsened model performance.

The overall poor results of AUROC may indicate that the dataset have other factors that were not solved by resa-
mpling techniques. The loss in performance observed when applying near miss under-sampling when compared 
to random under-sampling points to the presence of other factors such as small disjuncts not directly related to 
the imbalance that are not addressed by these techniques. Moreover, the performance loss observed for all learn-
ers when applying SMOTE indicates that in this case at least one of the known scenarios that cause SMOTE to fail is 
present (e.g. small disjuncts, presence of outliers). Regarding the AUPRC results, the same impact in performance is 
observed with the exception of random under-sampling and SMOTE for decision trees, and random oversampling 
and SMOTE for XGBoost. Still, these improvements are obtained in a setting where all alternatives exhibit a very 
low performance (below 0.2). Overall, this shows that the predictive task involves other more complex factors that 
resampling techniques generally are not able to address.

Table 5  Model performances in the validation set for algorithms with random over-sampling

Bootstrapping was performed using 2000 replicates

AUROC area under the receiver operating curve, AUPRC area under the precision recall curve, CI confidence interval

Metric Logistic regression Elastic net Decision trees Random forest XGBoost

AUROC 0.892 0.895 0.837 0.906 0.756
Bootstrapped AUROC mean 0.893 0.895 0.727 0.906 0.754
Bootstrapped AUROC 95% CI 0.863–0.920 0.866–0.921 0.687–0.767 0.881–0.928 0.718–0.786
AUPRC 0.166 0.169 0.082 0.146 0.441
Precision 0.080 0.074 0.051 0.080 0.017
Recall 0.800 0.838 0.776 0.800 0.946
F1-score 0.154 0.136 0.105 0.158 0.030
Specificity 0.845 0.818 0.785 0.856 0.104
Negative predictive value 0.996 0.996 0.992 0.995 0.990
Geometric mean 0.826 0.828 0.775 0.827 0.314

Table 6  Model performances in the validation set for algorithms with synthetic minority oversampling technique (SMOTE)

Bootstrapping was performed using 2000 replicates

AUROC area under the receiver operating curve, AUPRC area under the precision recall curve, CI confidence interval

Algorithm Logistic regression Elastic net Decision trees Random forest XGBoost

AUROC 0.808 0.895 0.334 0.604 0.570
Bootstrapped AUROC mean 0.808 0.895 0.334 0.603 0.578
Bootstrapped AUROC 95% CI 0.769–0.845 0.866–0.922 0.291–0.375 0.554–0.657 0.555–0.598
AUPRC 0.091 0.166 0.229 0.026 0.484
Precision 0.078 0.075 0.010 0.016 0.017
Recall 0.423 0.838 0.923 0.976 0.969
F1-score 0.132 0.138 0.03 0.032 0.034
Specificity 0.913 0.821 0.077 0.008 0.058
Negative predictive value 0.989 0.996 0.983 0.955 0.990
Geometric mean 0.621 0.830 0.266 0.090 0.237
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Importantly, despite high AUROC, all models demonstrated poor calibration. The additional impact of different tech-
niques to improve calibration in combination with resampling techniques and learners, including Platt scaling, isotonic 
regression, or Bayesian binning into quantiles, should also be further explored in future studies. Our study highlights that 
further research is much needed to develop techniques to improve prediction in the setting of severe class imbalance 
that is common in many medical applications of machine learning [10]. When modeling using a dataset with class imbal-
ance, researchers may consider exploring a variety of resampling techniques in combination with different algorithms.

Our results align with the findings from a recent study by van den Goorbergh et al. [36]. They examined model 
performances of standard and penalized logistic regression models in the setting of under-sampling, over-sampling, 
and SMOTE, in a dataset of 3369 patients with an event rate of 20%. They also performed Monte Carlo simulations 
of various numbers of predictors and outcome event rates. They found that resampling methods did not improve 
AUROC and worsened calibration, though they did not examine AUPRC. Rather than changing event distribution, 
van den Goorbergh et al. suggest refining the probability threshold for classifying events from non-events. Find-
ing the optimal probability threshold may be difficult in practice in the clinical setting, as we need to balance the 
consequences of not applying interventions on patients with events versus unnecessarily treating patients with 
non-events. We agree with van den Goorbergh et al. that a decision curve analysis approach focusing on Net Benefit 
[37] may be complementary for optimizing clinical utility.

Other studies using medical data suggest that resampling techniques effectively improve performance [16]. How-
ever, how resampling strategies impact performance is not well understood, especially in the setting of factors specific 
to individual datasets such as small disjuncts that may hinder the performance of resampling techniques and add 
complexity to the predictive task [11]. Problems intrinsic to the resampling techniques have also been identified. For 
instance, in high-dimensional datasets, issues with SMOTE includes decrease in the variability of the minority class 

Table 7  P-value results of 
a paired t-test comparing 
all resampling techniques 
for each learner with the 
Benjamini–Hochberg 
correction [39]

AUROC area under the receiver operating curve, AUPRC area under the precision recall curve, NearM near 
miss under-sampling, ROS random oversampling, RUS random under-sampling, SMOTE synthetic minority 
oversampling

Learners Resampling AUROC AUPRC

SMOTE RUS ROS NearM SMOTE RUS ROS NearM

Decision trees Baseline 0.0000 0.0000 0.0065 0.0000 0.0000 0.0000 0.0000 0.0309
SMOTE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
RUS 0.0000 0.0000 0.0000 0.0000
ROS 0.0000 0.0002

ElasticNet Baseline 0.8285 0.8230 0.5734 0.0000 0.2968 0.9682 0.9682 0.0000
SMOTE 0.8592 0.8592 0.0000 0.2968 0.2206 0.0000
RUS 0.8285 0.0000 0.9755 0.0000
ROS 0.0000 0.0000

Logistic regression Baseline 0.0000 0.3181 0.2290 0.0000 0.0000 0.0882 0.0520 0.0933
SMOTE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
RUS 0.5566 0.0000 0.0260 0.0238
ROS 0.0000 0.0816

Random forest Baseline 0.0000 0.7833 0.1926 0.0304 0.0000 0.0043 0.0692 0.0000
SMOTE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0030
RUS 0.3952 0.0086 0.0030 0.0000
ROS 0.0133 0.0000

XGBoost Baseline 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMOTE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
RUS 0.0000 0.0007 0.0000 0.0000
ROS 0.9138 0.0000
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or the introduction of correlation between some samples [38]. Our results align with these difficulties, except for 
XGBoost when observing the AUPRC. Regarding the performance of the XGBoost, mixed results have been reported 
regarding its capability to deal with imbalanced data [18]. Our results align with the literature that XGBoost impacts 
performance differently depending on the metric and resampling techniques are applied.

Regarding paired t-tests of model performances with the Benjamini–Hochberg correction [39] for multiple hypoth-
esis testing (Table 7), all decision tree results are statistically significant for AUROC and AUPRC (p-values <0.05). The 
same trend is observed for XGBoost (p-values <0.05) with the exception of the pair random oversampling and near 
miss for AUROC which has a high p-value. For elastic net, both metrics do not show statistically significant results for 
all resampling techniques pairs except for the pairs involving near miss. In this case, when compared against near 
miss, all alternative resampling strategies tested show a p-value >0.22, while the pairs including near miss show a 
p-value <0.05. Finally, a more mixed scenario is observed for random forest and logistic regression where generally no 
statistical significance is observed with the exception of pairs involving SMOTE on both metrics (exhibiting a p-value 
<0.05) and pairs involving near miss for AUCROC (with a p-value <0.05 for both models) or most pairs involving ran-
dom under-sampling for AUPRC (all pairs show a p-value <0.05, except the random undersampling and baseline pair 
for which the logistic regression model shows a p-value of ~0.0882).

In addition to model performances, the computational efficiency, memory usage, and complexity of the models in 
the setting of electronic health records and healthcare informatics networks must also be considered. Overall, logistic 
regression and elastic net may be more resource efficient, while random forest and the XGBoost are the most time-
consuming. When considering the resampling techniques, both under-sampling techniques (random unders-sampling 
and near miss under-sampling) reduce the dataset size and in turn learner training time and memory usage, but present 
the risk of information loss. Random oversampling and SMOTE have a high memory usage and increase the dataset size, 
which leads to a higher training time for the learners.

5  Strengths and limitations

The strengths of our study include a robust clinical dataset with large sample size and high data quality, systematic 
evaluation of combinations of algorithms and resampling techniques, and use of Bayesian hyperparameter tuning to 
ensure hyperparameter optimization of the models. Our conclusions are limited by the use of a retrospective dataset 
from tertiary academic hospitals, and prospective, external validation are required. Moreover, the machine learning 
algorithms used are restricted to logistic and decision tree-based models. Other types of machine learning models 
should be considered in the future. This study considered all features available in the original model [8] (Table 1), and 
no additional feature selection method was applied beyond the learner; the impact of feature selection in conjunction 
with resampling can be explored as future research. Our study focused on the most used resampling techniques, and 
the impact in performance of more advanced resampling techniques under highly imbalanced settings can be further 
explored. We observed an overall poor calibration of the algorithms, an issue that should be addressed in future research 
through methods such as Platt scaling or isotonic regression. Finally, our results are dependent on the dataset used and 
might not be generalizable to other dataset in the medical domain or other applications. Simulation studies can help 
better understand the characteristics of the resampling methods that are dependent and independent of the datasets 
used to improve generalizability.

6  Conclusion

This study found that in the setting of severe class imbalance, the impact of resampling techniques on model perfor-
mance varied by the machine learning algorithm and the evaluation metric. Existing resampling techniques did not 
meaningfully improve model performances for logistic regression, elastic net, and random forest. For XGBoost, improve-
ments in AUPRC random oversampling and SMOTE were offset by decreased AUROC. Performances of decision trees 
were improved by multiple resampling techniques.

Future research is needed to improve predictive performances in the setting of severe class imbalance.
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Appendix

Appendix 1: Hyperparameter optimization

Elastic net

Hyperparameter Range of Parameter tested No resampling Resampling strategy

Random 
under-sam-
pling

Near miss 
under-sam-
pling

Random 
oversampling

Synthetic 
minority over-
sampling

C 1 to 1000, increment of 10 800 140 130 10 130
Class weight None, Balanced Balanced None Balanced Balanced Balanced
L1 ratio 0.1 to 0.9, increment of 0.1 0.5 0.4 0.2 0.7 0.2
Max Iteration 1000 to 100,000 2606 91,357 91,323 36,888 91,232

https://doi.org/
https://doi.org/10.1007/s12630-022-02287-0
https://github.com/Arunachalam4505/In-hospital-Mortality-Prediction-Research-Project
https://github.com/Arunachalam4505/In-hospital-Mortality-Prediction-Research-Project
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Hyperparameter Range of Parameter tested No resampling Resampling strategy

Random 
under-sam-
pling

Near miss 
under-sam-
pling

Random 
oversampling

Synthetic 
minority over-
sampling

Sampling Strategy 0.1 to 0.9, increment of 0.1 N/A 0.2 0.1 0.2 0.1

Decision trees

Hyperparameter Range of parameter tested No resampling Resampling strategy

Random 
under-sam-
pling

Near miss 
under-sam-
pling

Random over-
sampling

Synthetic 
minority over-
sampling

Maximum depth 5 to 70, increment of 1 39 41 41 50 10
Maximum features Sqrt, Log2 Sqrt Sqrt Sqrt Log2 Sqrt
Criterion Gini, Entropy Gini Entropy Entropy Entropy Entropy
Class weight Balanced, None Balanced Balanced Balanced Balanced Balanced
Minimum samples leaf 1, 100, 200, 300, 400, 500 300 100 100 4000 200
Sampling Strategy 0.1 to 0.9, increment of 0.1 N/A 0.1 0.1 0.4 0.6

Random forest

Hyperparameter Range of parameter tested No resampling Resampling strategy

Random 
under-sam-
pling

Near miss 
under-sam-
pling

Random over-
sampling

Synthetic 
minority over-
sampling

Class weight None, Balanced Balanced Balanced Balanced Balanced Balanced
Criterion Entropy, GINI GINI Entropy Entropy Entropy Entropy
Max depth 6 to 15 7 13 14 6 14
Max features Sqrt, Log2 Log2 Sqrt Sqrt Sqrt Sqrt
Number of estimators 100 to 1000 972 604 630 460 630
Sampling strategy 0.1 to 0.9, increment of 0.1 N/A 0.8 0.3 0.6 0.4

XGBoost

Hyperparameter Range of parameter tested No resampling Resampling strategy

Random 
under-sam-
pling

Near miss 
under-
sampling

Random over-
sampling

Synthetic 
minority over-
sampling

Gamma 0 to 0.5, increment of 0.01 0.47 0.42 0.11 0.49 0.49
Learning rate 0 to 0.5, increment of 0.01 0.07 0.11 0.33 0.09 0.09
Max depth 5 to 70, increment of 1 38 10 25 9 9
Minimum child weight 1 to 10, increment of 1 10 7 8.0 1 1.0
Number of Estimators 20–200, 5 16 20 20 28 28
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Hyperparameter Range of parameter tested No resampling Resampling strategy

Random 
under-sam-
pling

Near miss 
under-
sampling

Random over-
sampling

Synthetic 
minority over-
sampling

Scale positive weight 1 or 91,454 (ratio of positive to 
negative classes from training 
set)

1 91,454 1 91,454 91,454

Sampling Strategy 0.1 to 0.9, increment of 0.1 N/A 0.1 0.1 0.1 0.1

Appendix 2: Calibration graphs
Appendix 2.1 Logistic regression

Appendix 2.2 Elastic net
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Appendix 2.3 Decision tree

Appendix 2.4 Random forest

Appendix 2.5 XGBoost
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